
SIAM J. COMPUT.
Vol. 8, No. 1, February 1979

(C) 1979 Society for Industrial and Applied Mathematics

0097-5397/79/0801-0001 $01.00/0

DETERMINING THE CHROMATIC NUMBER OF A GRAPH*

COLIN McDIARMIDf

Abstract. Certain branch-and-bound algorithms for determining the chromatic number of a graph are
proved usually to take a number of steps which grows faster than exponentially with the number of vertices
in the graph. A similar result holds for the number of steps in certain proofs of lower bounds for chromatic
numbers.

Key words, graph, chromatic number, algorithm, proof

1. Introduction. Graph coloring problems arise in many practical situations, for
example in various timetabling and scheduling problems (see for example [13], [14]).
It would be very useful to be able to determine quickly the chromatic number of a
graph. However, it is well known that this problem is NP-hard, and thus we do not
expect to find good algorithms for the problem ([1], [9]). A class of branch-and-bound
coloring algorithms, which we call "Zykov" algorithms (see [5]) has been proposed.
We branch on whether or not two nonadjacent vertices will have the same color and
bound by using the fact that the chromatic number is at least the size of any complete
subgraph. Zykov algorithms always explore at least a "pruned Zykov tree" for a
graph. We shall prove that for almost all graphs G,, on n vertices every pruned Zykov

1ogl/2tree has size (number of vertices) at least c where c is a constant > 1. It follows
that for any Zykov algorithm the number of steps usually required grows faster than
exponentially with the size of the graph.

E. L. Lawler [10] has recently noted that a simple algorithm involving the
maximal stable sets of a graph requires a number of steps which grows only (!)
exponentially with the size of the graph. The Lawler algorithm is then asymptotically
faster than any Zykov algorithm. This result contrasts with the conclusions of D. G.
Corneil and B. Graham [5].

In the next section we give some preliminary definitions, including those of Zykov
trees and Zykov algorithms. In 3 we investigate the size of (unpruned) Zykov tree.
(The standard algorithm for determining the chromatic polynomial of a graph involves
the exploration of a Zykov tree--see for example [2, chap. 15].) Then in 4 we
investigate the size of pruned Zykov trees and deduce that Zykov algorithms are slow.
Finally in 5 we give an interpretation of our earlier results in terms of the lengths of
certain proofs concerning chromatic numbers. The results in this section are similar in
spirit to some recent results of V. Chvfital [4], and indeed the research reported here
was initially inspired by discussions with Chvfital concerning his results. He was
interested in certain "recursive" proofs for establishing upper bounds for stability
numbers of graphs, and showed that for almost all graphs with a (sufficiently large)
linear number of edges, the number of steps in any such proof grows at least
exponentially with the size of the graph. This result implies that for a certain (wide)
class of algorithms which determine the stability number of a graph each member
algorithm is "slow".

Further related results are given in the forthcoming paper [12]. Both this paper
and the paper [12] are based on the technical report [11].

* Received by the editors May 31, 1977, and in final revised form January 13, 1978.
Corpus Christi College, Oxford, England. Presently at London School of Economics, London,

England.

2 COLIN McDIARMID

2. Preliminaries. We consider only graphs without loops or multiple edges. A
(proper) coloring of a graph G is a coloring of the vertices of G so that no two adjacent
vertices receive the same color; and the chromatic number x(G) is the least number of
colors in a proper coloring of G. A graph is complete if every two vertices are
adjacent; and the clique number to(G) is the greatest number of vertices in a complete
subgraph of G. A set of vertices is stable if no two are adjacent; and the stability
number a(G) is the greatest number of vertices in a stable set. A proper partition of G
is a partition of the vertex set into stable sets. Thus proper partitions and proper
colorings are closely related.

Let n be a positive integer. We denote by J,, the set of all graphs with vertex set
{1, 2,- , n), and by * the set of all graphs with vertex set the sets of a partition of
{1, 2,.-., n}. We may fail to distinguish between an integer k and the singleton set
{k} containing it, and for example consider that ,_ J*. The use of sets to label
vertices is simply a notational convenience.

We adopt in this paper a very simple probability model. (A more general model is
considered in [12].) Throughout the paper p will be a real number with 0 < p < 1 and q
will be 1- p: usually p and q will be constants. We induce a probability distribution on
the set 3n of graphs by stipulating that each edge occurs independently with pro-
bability p. Thus for example the number of edges in a graph in ,, is a binomial

random variable B= B((), p) with parameters ()and p.

We now move on towards the definitions of Zykov trees and Zykov algorithms.
Suppose that x and y are nonadjacent vertices in a graph H in c,. Following [5] we
define the reduced graphs H’xy and Hy (or simply H’ and H"). The former, H’y, is
obtained from H by simply adding an edge joining x and y; and the latter, Hy, is
obtained from H by replacing the vertices x and y by a single new vertex adjacent to
each vertex to which x or y was adjacent. We say that H’ and H" are obtained from H
by an "edge-addition" and a "vertex-contraction" respectively. In any proper color-
ing of H either x and y have different colors or they have same color. Thus we have
the simple and well known result (see [15]) that

(2.1) x(H) min {x(H’), x(H")}.

Suppose that we have a graph H in * which is itself a leaf in a binary tree. Then
branching at H involves choosing nonadjacent vertices x and y in H and giving H the
leftson H’y and the rightson Hxy. Of course we cannot branch at H if H is complete.
Now let G be a graph in ,. If we start with the single node G, the root of our binary
tree, and branch repeatedly we obtain a partial Zykov tree for G. By (2.1) we know
that x(G) is the minimum value of x(L) over all leaves L of any partial Zykov tree for
G. A Zykov tree for G is a partial Zykov tree in which each leaf is a complete graph,
that is in which we have branched until we can branch no more. We give below an
example of a Zykov tree for a graph in 4. (See also [2, chap. 15] and [5].)

Example. See Fig. 2.1.
We have now described the "branching" process to be used in our branch-and-

bound algorithms. The "bounding" process depends on the obvious result that for any
graph G

(2.2) x(G) >= to(G).

A Zykov algorithm is a branch-and-bound algorithm for determining the
chromatic number of a graph, using branch and bound processes as described above.

THE CHROMATIC NUMBER OF A GRAPH 3

4

2

4 3

2

2,4

3

FIG. 2.1.

Such an algorithm has a subroutine for determining for each graph H a lower bound
w’(H) for the clique number o(H) (for example by finding a complete subgraph of
H). Also it maintains a current best upper bound for the chromatic number, which is
always at most the number of vertices in any graph encountered. It operates as follows
on a graph G. It begins to (construct and) explore a partial Zykov tree for G, starting
with the root G. Suppose that at some stage we have explored a partial Zykov tree T
for G and we have an upper bound b for x(G)- The algorithm chooses a leaf L of T
with w’(L)< b if there is such a leaf, then it branches at L and updates the upper
bound: if there is no such leaf L the algorithm returns x(G)= b and stops. Examples
of Zykov algorithms are investigated in [5] and [12].

It is easy to see that after a finite number of steps a Zykov algorithm returns the
correct value for the chromatic number and stops. Further if say it conducts a
depth-first search of the partial Zykov tree the storage requirement need only be say
O(n3). We shall see, however, that the number of steps required grows very quickly
with n, even if we suppose that the subroutine can always determine w(H) exactly and
without cost, and that we can always start with the upper bound at the actual value of
the chromatic number. (Both these suppositions are of course rather unlikely, since we
would be solving NP-hard problems 1].)

Given a Zykov tree T for a graph G, and a positive integer k, the corresponding
Zykov tree pruned at k consists simply of the root G if o(G)=> k and otherwise is the
unique maximal rooted subtree of T containing as internal nodes precisely the nodes
H of T with o(/-/)< k: the corresponding pruned Zykov tree T* is the tree pruned at
k --x(G). Any Zykov algorithm for determining the chromatic number of a graph G
must explore at least some pruned Zykov tree for G. We shall prove that pruned
Zykov trees are usually very large and thus that Zykov algorithms are usually very
slow.

Finally note that all logarithms are natural; and for any real number x we let Ix]
denote the least integer not less than x and Ix] denote the greatest integer not more
than x.

4 COLIN McDIARMID

3. Zykov trees. In this section we investigate the sizes of Zykov trees. We have
three main reasons for doing this. Firstly the sizes of Zykov trees are of interest if we
wish for example to determine the chromatic polynomial of a graph ([2, chap. 15]);
secondly some knowledge of the sizes of Zykov trees helps us to interpret results on
the sizes of pruned Zykov trees; and thirdly some of the arguments brought up here
will be useful later.

The first result in this section shows in particular that every Zykov tree for a given
graph has the same size, that is the same number of nodes. Given a graph G let us
denote by C(G) the number of proper partitions of G (that is, the number of colorings
with "color indifference").

PROPOSITION 3.1. Every Zykov tree Tfor a given graph G has 2C(G)- 1 nodes.
Proof. It is not hard to check that the vertex sets of the leaves of T are in 1-1

correspondence with the proper partitions of G. Alternatively we may use an easy
inductive proof.

We are interested in the size of Zykov trees for a graph G,, on n vertices. By the
above proposition we may state results in terms of the number C(G,) of proper
partitions of G,, and we choose to do so. The following proposition requires no proof.

PROPOSITION 3.2. (a) If G’ is a subgraph of G, then C(G’,) >- C(G,), with equality
only if the graphs are the same.

(b) Let th, and K, denote respectively the null (edge-less) and complete graphs on n
vertices. Then C(K,) 1, and C(qb,) is simply the number ofpartitions of a set of size n,
so that (see for example [16])

log C(th.) n(log n-log log n- 1 + o(1)).

The "extreme" properties of C(G,) are thus easily handled. We may also
determine quite closely the "usual" properties.

THEOREM 3.3. (a) The expected value E(C,) of C(G,)]:or graphs G, in c, satisfies
log E(C,) n(log n-(2 log(l/q) log n)’/2--1/2 log log n + O(1)).

(b) With probability 1 o(e-)

n(log n-3(log (l/q)log2 n)l/3)=<log C(G,)<=n(log n-(2 log (l/q)log n)1/2).
Proof. (a) We first show that log E(C,) is at least the value given above. Let

d d(n) be an integer-valued function such that d(n)-o as n- but say d(n)=
O(n/log n). We shall choose d below. Let , be the set of partitions of {1,..-, n}
into k [n/dJ sets each of size d and (possibly) the (n-kd) singleton sets {kd+
1},. ., {n}. Then the number of partitions in , equals

(kd)! (n-d)!
k!(d!)k (n/d)!(d!),,/d,

and the probability that a partition in . is proper equals

()k q(/2)ndq

Hence the logarithm of the expected number of proper partitions in . is at least

(n-d) log (n-d)-(n/d) log (n/d)-(n/d)(d log d)-1/2nd log (l/q) + O(n)
(3.1)

n(log n-(log n)/d-log d-1/2d log 1/q + O(1)).
Now let

f. (x) (log n)/x + log x + 1/2 log 1 /q)

THE CHROMATIC NUMBER OF A GRAPH 5

for x>0. Then fn(x) achieves a unique minimum for
((2 log (l/q) log n + 1) 1/2-1)/log (l/q) and this minimum equals

(3.2) (2 log (l/q) log n) /2 +1/2 log log n + O(1).

x>0 at x=

We set d(n)= [(2 log (I/q) log n) 1/21 and find that the right hand side in (3.1) equals
the right hand side in the statement of (a).

We now prove the reverse inequality in (a). Let k k(n) be an integer such that
the expected number of proper partitions into sets is a maximum. Then of course
E(C,) is at most n times the expected number of proper partitions into k nonempty
sets. Let d d(n)= n/k. (Thus d is not necessarily an integer.)

Let O be a partition of {1, , n} into k sets, of sizes S1, S/. Then as in [8] we
see that the probability that O is proper equals

H q(l/2)s,(s,-) q(1/2)(E s-,,) < q(i/2)(,,2/k -n).
i=1

Also the number of partitions of {1,..., n} into k nonempty sets is at most
Hence

and so

(log (1/q))nZ/k + O(n)log E(Cn) <= n log k k log k -n log n- n log d-(n/d) log n-1/2 (log (1/q))nd + O(n)

n(log n-f(d)+ O(1)).

But by (3.2)

f(d)-> (2 log(l/q) log n)’/2 +1/2 log log n + O(1).

This completes the proof of part (a) of the theorem.

Proof of (b). The right hand inequality here follows from (a) and the standard
result that for any nonnegative random variable X and any real number x,

E(X) >= x Prob {X -> x}.

The left hand inequality follows from Lemma 3.4 below and the discussion preceding
it.

Suppose that we have functions l(n) and r(n) with nonnegative integer values.
For each positive integer n we let Tn(l, r) be the set of graphs G, in , such that in
some Zykov tree for G, we may reach a leaf by starting at the root G,, and descending
through the tree making at most l(n) left turns and r(n) right turns. If a graph Gn in ,
is not in T,(l, r)then certainly every Zykov tree for G, has at least-(l+ r) nodes. We

/

wish to find functions l(n) and r(n)so that Prob Tn(l, r)O as n-c and (l+ r) is as
/

large as possible.
LEMMA 3.4. There exist functions l(n) and r(n) such that

Prob T,(I, r)= o(e-") as n

6 COLIN McDIARMID

and

log (l + r => n(log n 3(1/4 log (1/q) log2 /,1) 1/3
\

for n sufficiently large.
Lemma 3.4 may be proved along the lines of the proof in the next section of the

more important Lemma 4.7: we do not give a proof here. The lemma is in a sense best
possible (see [12-1).

4. Pruned Zykov trees. In this section we investigate the size of pruned Zykov
trees. We do not manage to find out as much about the pruned trees as we found out
about the unpruned trees in the last section, but we are able to prove a greater than
exponential lower bound on their size. This result shows that Zykov algorithms for
determining the chromatic number of a graph usually require more than exponential
time.

We have seen that every Zykov tree for a given graph G, has the same size
(which is less than n"). Thus certainly if we have to construct a Zykov tree there is no
point in spending time choosing a "best" way of branching. The situation is quite
different when we look at pruned Zykov trees.

PROPOSITION 4.1. There is a sequence (G*) of graphs on n vertices such that a
smallest pruned Zykov tree for G* has 3 nodes and a largest pruned Zykov tree for G*
has n n(l+(1)) nodes.

Proof. For each integer k _-> 5 let Hk be the pentagon C5 together with (k- 5)
vertices adjacent to each other vertex. It is easy to check that w(Hk)= k-3 and
x(H,) k- 2; and that every pruned Zykov tree for H has exactly 3 nodes. Now for
each positive integer n let

k k(n)= In(log n)-1/2].
Then k(n)_->5 for n _->7, and we can let G* be the graph Hk together with (n-k)
isolated vertices (see Fig. 4.1).

0

0
0

0

FIG. 4.1. G* is H7 plus 4 isolated vertices.

By branching within the H component of G* we see that the size of a smallest
pruned Zykov tree for G* is 3. By branching first amongst the isolated vertices of G*
we see there is a pruned Zykov tree T,, for G* "containing" as a subtree those nodes
K of a Zykov tree for bn_ (the null graph on n- k vertices) with o(K)<x(G*)=
k- 2. Hence the number T. of nodes in Tn is at least the number of partitions of a set

THE CHROMATIC NUMBER OF A GRAPH 7

of size (n-k) into at most (k-3) sets. Let

d d(n) [(n k)/(k 3)1.

Then, much as in the proof of Theorem 3.3(a)

Tn[> ((k-3)d)!
(k 3)!(d!)k-3=

(n-2k)!
kn

n(l+o(1))

We have now seen that the sizes of pruned Zykov trees for a given graph G may
vary wildly. For lower bounds on running times of Zykov algorithms we are of course
interested in the minimum size, say Z*(G), of a pruned Zykov tree for G. We
investigate below both the "extremal" and the "usual" properties of Z*(Gn).

Consider first the extremal properties. It is clear that Z*(G)= 1 if and only if
to(G) x(G). However, it is not clear how large Z*(G) may be for graphs G with n
vertices.

PROPOSITION 4.2. There is a sequence G*) of graphs on n vertices such that

Z*(G*n >= n(l+(1))n/lO.

To prove Proposition 4.2 we need one lemma. For each positive integer k we
define a graph Hk on 5k vertices. The graph Hk is obtained from the pentagon C5 by
"expanding" each vertex into a complete graph on k vertices. More formally we let Hk
have disjoint sets of vertices SI,. , $5 each of size k; and let distinct vertices x in Si
and y in Sj be adjacent if i-j---O, 4-1 (mod 5). (See Fig. 4.2.)

FG. 4.2. Ha.

LEMMA 4.3. Let k and x be positive integers with x <- k. Then every subgraph of Hk
with 2k + x vertices misses at least kx edges.

Proof. Let H be an (induced) subgraph of Hk with 2k + x vertices such that the
number rn of edges missing is a minimum. We must show that tn >= kx. For
1,-.-, 5 let ni be the number of vertices of H in Si. There are two cases to consider.

(a) At least two of the integers n are equal to k. We may suppose (without loss of
generality) that n k. Then

m >-- k(n3 + tt4)

and so we may suppose that n3 and nn are less than k. But now we may assume that
n2-- k, and so

m >-- k(n3 + n4 4r ns) kx.

8 COLIN McDIARMID

(b) At most one of the ni equals k. Note first that the ni are not all equal, for then
we would have

rn 5(2k+x) 2

-k2>-- + kx > kx.
5

It follows that we may assume that nl =max (hi) and nl > n3. Note that n2, ns < k.
Suppose that n4 > 0, and consider the graph H’ obtained from H by removing a vertex
in $4 and adding one in Ss. Then the number of edges missing on H’ equals m less the
positive number nl- n3, which contradicts our choice of H. Thus n4 0. But now

n > r4 and so arguing as above we have n3 0. Hence

n2+ n5 2k +x-tl =>k +x,
and so

m n2n5 >- kx.

This completes the proof of the lemma.
Proof of Proposition 4.2. Let n be an integer at least 5 and let k [n/5]. Let G*

be H, together with n-5k vertices adjacent to each other vertex. Then Z*(G*)
Z*(H,) and so it suffices to prove that

(4.1) Z*(H,) k k((1/2)+(1)).

Note first that every stable set in H, contains at most two vertices, and so

x(H,) >- rsk/21.
(In fact we have equality but this is not needed.)

and

For each k let

r(k) [k/2] [k/log k

l(k) [k2/log k] 1.

Let T be any Zykov tree for H,, and let K be any node in T which we may reach from
the root by descending through the tree making at most l(k) left turns and r(k) right
turns. If w(K)_--> x(H,) then Hk must have a subgraph on

x(gk)- r(k) >= 2k + rk/log kl
vertices which misses at most l(k) edges; and by Lemma 4.3 this is not possible. Thus
the node K is in the pruned tree T* corresponding to T. Hence

[T*[>=(l + r)r
k g((’/2)+(1))"

This establishes (4.1) and so completes the proof of the proposition.
It is possible to prove that for the sequence (G,*) of graphs constructed above we

actually have

Z*(G*) n(1+(1))n/.

Perhaps every such sequence (G*) of graphs satisfies

Z*(G*, <= n(+())’/,
so t’hat Proposition 4.2 is in a sense best possible?

THE CHROMATIC NUMBER OF A GRAPH 9

We now move on towards our main result, which concerns the "usual" behavior
of the minimum size Z*(Gn) of a pruned Zykov tree for graphs Gn. We need a
number of lemmas. The first concerns the chromatic number of a random graph, and is
taken essentially from [8].

LEMMA 4.4. Prob {x(G,,)-<_ n log (1/q)/(2 log n)}= o(n-k)]’or any k as n -.
Proof. Recall that the stability number (G,) satisfies a(G,)x(G,)>= n. Let

Then

s s(n)= [2 log n/log (l/q)].

Prob {g(Gn)_< n log (1/q)/(2 log n)}
-<_ Prob {(G,)->_ s}

(ns) (n_ ,/s_,)<= q <= q

exp s(-log s + O(1))

o(n-) for any k.

We now look at the number of edges in a "contraction" of a random graph. Let O
be a family of disjoint subsets of the vertex set of a graph G. We say that O is proper
for G if each set in O is stable. The "contracted" graph Go has vertices the sets in O
and an edge between two of these sets if there is an. edge in G between some two
vertices one from each set. Clearly Go may be formed from G by a sequence of
vertex-contractions if and only if O is proper for G. We are interested in the number
of edges we are likely to have in Go.

Given two random variables X and Y we write X <= Y in distribution if Fx(t)>=
Fv(t) for each real number t, where Fx and Fv are the distribution functions of X and
Y respectively.

LrMMA 4.5. Suppose that X, Y, Z are random variables, thatX <= Y in distribution,
and that the pairs X, Z and Y, Z are independent. Then X +Z <= Y +Z in distribution.

Proof. For any real number t,

Fx+z(t) I Fx(t-u) dFz(u)

f Fy(t- u) dFz(u)= Fv+z(t).

Let m and n be positive integers, and let q be a real number with 0 < q < 1. Let

be a binomial random variable with parameters (7) and l-q, and for eachB(q)

partition Q of {1,..., n} let the random variable N(Q)=N(Q, n, l-q) be the
number of edges in the contracted graph Go, for graphs G in (g, with edge-probability
1-q.

LEMMA 4.6. For each partition Q of {1,- , n} into m sets

(4.2) N(Q) <-_ B(q"/m)) in distribution.

Proof. We may of course assume that m _-> 2. We prove first that

(4.3) N(Q) <-_ B(q n/m) in distribution.

(The inequality (4.3) is in fact good enough for the purposes of this paper.) Let

10 COLIN McDIARMID

O ($1,’-’, S,,) be a partition of {1, , n} into m sets, and suppose that Isll + 1 -<

Is21-1. Let O’ be the partition obtained from O by switching one element from $2 to
$1. In order to prove (4.3) it is sufficient to prove that

(4.4) N(O) ----< N(O’) in distribution.

For 1 _-< < j -< m let Xij 1 if Si and Sj are adjacent in Go and let Xi 0 otherwise.
The random variables Xi are of course all independent. Define independent random
variables Xi from O’ in a similar way. Note that Xi Xj for > 2, and let the random
variable Z be the sum.of all such Xi (or Xi). Then

N(Q) X12 q-- 2 (Xlj q- X2j) q- Z,

and

N(O’)=X2 + Y (Xi+X’2j)+Z.

But it is straightforward to prove that

X12 X2 in distribution,

and for j= 3,..., m

Xlj -3t- X2j <- Xj 3c X2j in distribution.

The result (4.3) now follows by repeated use of Lemma 4.5.
We now use (4.3) to prove (4.2). Given a set S of positive integers and a positive

integer k let kS be the set of positive integers such that [i/k] is in S. Given a
partition O=(SI, Sm) of {1,’" ", n} let kO be the partition (kS,..., kSm) of
{1,..., kn}. (For example if O is the partition ({1, 2}, {3}) of {1, 2, 3} then 20 is the
partition ({1, 2, 3, 4}, {5, 6}) of {1, 2, , 6}.)

It is easy to see that for each positive integer k

N(O, n, 1- q)= N(kO, kn, 1- q/k2) in distribution.

Hence by (4.3) for each k

N(O, n, 1- q) <- B(q [t’n/ml2/2) indistribution.

But [kn/m]2/k2-(n/m)2 as k-oo, and so (4.2) holds. This completes the proof of
Lemma 4.6.

We need one more lemma in order to prove the main result. Suppose that we
have a positive constant and functions l(n) and r(n) with nonnegative integer values.
For each positive integer n let T’,, (/, r) be the set of graphs Gn in n such that in some
Zykov tree for G, we may reach a leaf or node H with o(H)_-> tx(G,) by starting at
the root and descending through the tree making at most l(n) left turns and r(n) right
turns. (Compare with the definition of T,(I, r) preceding Lemma 3.4 in the last
section.) If a graph Gn in cgn is not in Tt (/, r) then certainly every Zykov tree for G,

at least(l+- r- nodes H with w(H)< tx(G,). In the case t-- 1 we see that if Gnhas is
r !

not in T(I, r)then every pruned Zykov tree for G, has at least (l+ r] nodes. We wish
r /

to find functions l(n) and r(n)such that Prob Tt,, (l, r)- 0 as n- oo and (l+ r] is as
r /

THE CHROMATIC NUMBER OF A GRAPH

large as possible.
LEMMA 4.7. For any positive constant there exist]unctions l(n) and r(n) such that

as

Prob Tt,, (l, r) o(n-k) for any k

and

log (l
We may take and r so that

and

+r r) m(7 log (l/q) log n) ’/2

l(n) n5/3+1)

r(n)= [tn(log (1/q)/(12 log n))’/zJ.
Lemma 4.7 above of course is similar to Lemma 3.4 in the last section, and we

noted there that that lemma is in a sense best possible. Lemma 4.7 is also in a sense
best possible [12].

Proof. Let k be any positive integer. Let l(n) and r(n) be functions with nonne-
gative integer values, which we shall choose later. Let

b(n) =[m log (1/q)/(2 log n)J
and let

B, ={G ,: x(G)<n log(I/q)/(2 log n)}.

Let Cn(l, r) be the set of graphs G in n such that in some Zykov tree for G we may
reach a leaf or node H with w(H)>=b(n) by starting at the root and descending
through the tree making (as usual) at most l(n) left turns and r(n) right turns. Then

Tt,(I,r)B,,UC,(I,r).

By Lemma 4.4 Prob B, o(n-k) as n . Thus we wish to choose functions l(n) and
r(n) such that

(4.5) Prob Cn(/, r)= o(n-k) as n

and(/+r)r
is as large as possible.

Let be the collection of all families of b disjoint subsets of {1,--., n} with
union containing at most r + b elements. For each family O in let To be the set oj
graphs G in q3, such that the "contracted" graph Go misses at most edges. Now if G
is a graph in C,(l, r) then some graph obtained from G by performing at most r
vertex-contractions contains a subgraph on b vertices missing at most edges; and so
G To for some family O (proper for G) in . Hence

(4.6) Cn (l, r)
_

kJ { To: O }.

Next we find an upper bound for the Prob To. Let N be a binomial random

variable with parameters and q where x rib + 1. By Lemma 4.6 for each

Oin

(4.7) Prob To --< Prob {N --< l}.

COLIN McDIARMID

Now let /(n)= [1/2E(N)]. Then by a standard inequality concerning the binomial
distribution (see for example [6, pp. 17, 18])

(4.8) Prob {N -< !} =< exp (-(1/2)E(N)).
But of course contains at most n" families O. Hence by (4.6), (4.7) and (4.8)

(4.9) Prob C, (l, r) n" exp (-(1/2)E(N)).
Let

r(n) [un(log (1/q)/log n)l/ZJ
for some constant u to be chosen with 0 < u < 1/2t. Then

x(n)= (1 + o(1))(2u/t)((log n)/log (l/q))1/2

and so

E(N)= q

=exp (2 log n-(4uZ/t2) log n +o(log n))
1,[(2--4uZ/t2+o(l)).

But 4u2/t2 < 1 and so (4.5) holds by (4.9).

It remains to choose u to maximize (l +r r). But

log
/{l + r}\ r(log l--logr + O(1))
\ r /

un(log (1/q)/log n)l/(1 --4u2/t2 + a(1)) log n

(u --4u3/t2 + a(1))(log (I/q) log n)/2n.
The maximum value of u-4u3/t for u>0 is attained at u 12(-1/2)t<-t. Thus we

give u this value, and find that log-(1+ r) is as in the statement of the lemma. The
\ r]

functions l(n) and r(n) are now also as in the lemma. This completes the proof.
Suppose that for each positive integer n we have a subset An of (n, the set of all

graphs on {1,- ., n}. We shall make statements like "the event An occurs for almost
all G,," if the sum of the probabilities that each An fails to occur is convergent. (This
definition corresponds to embedding all our probability spaces c in a single space and
using a Borel-Cantelli lemmaNcompare with [8].) Thus for example by Lemma 4.4,
for almost all graphs On we have

x(Gn) >- n log (1/q)/(2 log n).

From Lemma 4.7 and the discussion preceding it we may now deduce immedi-
ately our main result.

THEOREM 4.8. If is a positive constant then for almost all graphs Gn every Zykov
tree for Gn contains at least

exp [(1 + o(1))tn(7 log (l/q) log n)/]
nodes Hsuch that o(H) < tx(G,).

Recall that Z*(G) is the minimum size of a pruned Zykov tree for a graph G.

THE CHROMATIC NUMBER OF A GRAPH 13

COROLLARY 4.9. For almost all graphs

Z*(G,,) => exp [(1 + o(1))n(log (l/q)log n)/2].
COROLLARY 4.10. For almost all graphs G, the number of steps needed by any

Zykov algorithm to determine x(Gn) is at least the quantity given above.
In the case p q --1/2 Corollary 4.9 yields
COROLLARY 4.11. The proportion of graphs Gn on n vertices such that

Z*(Gn) _>-exp (. 157n log 1/2 n)
tends to 1 as n o.

Corollary 4.10 above shows that the time taken by Zykov algorithms for deter-
mining chromatic numbers grows faster than exponentially with the number of
vertices; and thus that these algorithms are slower asymptotically than the algorithm
considered by E. L. Lawler 10].

M. R. Garey and D. S. Johnston [7] have shown that the problem of determining
the chromatic number of a graph to within a factor less than 2 is NP-hard. By analogy
one might possibly have expected some effect in Theorem 4.8 at any t 1/2, but none is
apparent (see also Corollary 5.1 below).

5. Lengths of proofs. The above results may be phrased in terms of the lengths of
certain kinds of proof which determine chromatic numbers or which, establish lower
bounds for chromatic numbers. We then obtain results concerning chromatic numbers
which are similar in spirit to recent results of V Chvfital [4] concerning stability
numbers. Indeed this paper was initially motivated by discussions with Chvfital
concerning his results.

If k is an integer at least as great as x(G) then there is a short proof that
x(G)-< k--namely we may exhibit a proper coloring of G using at most k colors. In
general such a proof is hard to find but it must of course exist. However, if k is at most
x(G) then it is not clear if there is necessarily a short proof of this fact.

Consider the following proof system for establishing lower bounds for chromatic
numbers. A statement is simply a pair (G, b) where G is a graph and b is a nonnegative
integer. (Such a statement is to be interpreted as the inequality x(G) _-> b, which may of
course be false.) A recursive proof of (G, b) is a sequence of statements (Gk,
(k 1,. , m) such that (G,,, b,,) (G, b) and for each 1 _-< k -< m either w(Gk) >-
or there are integers 1 _-< i, j < k such that Gi and Gj are a pair of reduced graphs for
Gk and bk _--<min (bi, bj). We call the integer m the length of the proof. If there is a
recursive proof of (G, b) then by (2.1) and (2.2) we have x(G) >- b; and conversely if
x(G) -> b then we can construct a recursive proof of (G, b) from any Zykov tree for G
pruned at b. In fact if x(G) ->_ b there is close correspondence between recursive proofs
of (G, b) and Zykov trees for G pruned at b. In particular the minimum length of a
recursive proof of (G, b) equals the minimum size of a Zykov tree for G pruned at b.

From Theorem 4.8 we obtain
COROLLARY 5.1. Let 0 < <-- 1. Then for almost all graphs Gn on n vertices, every

recursive proof of (G,, tx(G,)) has length at least c "lgm’/, where c is a constant > 1.
From Corollary 4.11 we obtain
COROLLARY 5.2. Consider the property for graphs G, on n vertices that every

recursive proof of (G,,, x(G,)) has length at least

exp (. 157n log/2 n).

The proportion of graphs on n vertices with this property tends to 1 as n c.
The reader is reminded that further related results are given in [12].

14 COLIN McDIARMID

REFERENCES

1] A. V. AHo, J. E. HO’CROq" AND J. D. ULIMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] C. BERGE, Graphs and Hypergraphs, North-Holland, London, 1973.
[3] N. CJIsaovIIES, An algorithm for the Chromatic number of a graph, Comput. J., 14 (1971), pp.

38-39.
[4] V. CVAa’AL, Determining the stability number of a graph, this Journal, 6 (1977), pp. 643-662.
[5] O. G. CORNEIL AND B. GRAHAM, An algorithm for determining the chromatic number of a graph, this

Journal, 2 (1973), pp. 311-318.
[6] P. E)os ANO J. S’ENCE, Probabilistic Methods in Combinatorics, Academic Press, New York and

London, 1974.
[7] M. R. GAREY AND D. S. JOHNSON, The complexity of near-optimal graph coloring, J. Assoc.

Comput. Mach., 23 (1976), pp. 43-49.
[8] G. R. GRIMMETW AND C. J. H. MCDIARMID, On coloring random graphs, Math. Proc. Camb.

Philos. Soc., 77 (1975), pp. 313-324.
[9] R. M. KARt’, Reducibility among combinatorial problems, Complexity of Computer Computations, R.

E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
10] E. L. LAWLER, A note on the complexity of the chromatic number problem, Information Processing

Lett., 5 (1976), pp. 66-67.
11 C. J. H. MCDAMID, Determining the chromatic number of a graph, Technical Report STAN-CS-76-

576, Stanford University, 1976.
12], Determining the chromatic number of a graph II, to appear.

[13] D. J. A. WELSIJ ANO M. B. POWERS, An upper bound to the chromatic number of graph and its
application to time-tabling problems, Comput. J., 10 (1967), pp. 85-86.

14] D. C. WooI, A technique for coloring a graph applicable to large scale time-tabling problems, Ibid., 12
(1969), pp. 317-319.

[15] A. A. Z<ov, On some properties of linear complexes, Mat. Sb., 24 (1949), pp. 163-188; English
translation, Amer. Math. Soc. Translation 79, 1952.

[16] N. DE BRUN, Asymptotic Methods in Analysis, 2nd ed., North-Holland, 1961.

SIAM J. COMPUT.
Vol. 8, No. 1, February 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0801-0002 $01.00/0

A MINIMUM LINEAR ARRANGEMENT ALGORITHM
FOR UNDIRECTED TREES*

YOSSI SHILOACHf

Abstract. The minimum linear arrangement problem is a special case of more general placement
problems which are discussed in Hanan and Kurtzberg [5] and might occur in solving wiring problems as well
as many other placement problems. It is also a special case of the quadratic assignment problem [5] and has a
lot in common with job sequencing problems (Adolphson and Hu [1, 4]).

The minimum linear arrangement problem for general undirected graphs is NP complete as shown in
Garey et al. [2]. The corresponding problem for acyclic directed graphs is also NP complete (Evan and
Shiloach [4]). D. Adolphson and T. C. Hu solved the problem for rooted trees by an O(n log n) algorithm.
In this paper we solve the problem for undirected trees by an O(n22) algorithm.

Key words, algorithm, linear arrangement, trees

1. Introduction. Let G (V, U) be an undirected loopless graph with n vertices.
A linear arrangement r (henceforth denoted by art.) is a 1-1 mapping of V onto
{1,. , n}. C[r, G]--the cost of r, is defined by:

E
(vi,vj)E

r is a minimum arr. of G if there is no other arr. of G with smaller cost.
Finding a minimum arr. for general undirected graphs is NP complete as shown in

[2] and [4]. In this paper we present an O(na2) algorithm solving the minimum arr.
problem for undirected trees.

In 2 we provide the definitions for the basic concepts which are necessary in
order to understand the algorithm, which is given in 3.

In 4 we develop the basic tools which we used in the validity proof of the
algorithm. These tools are three operators on arrangements (i.e. they transform a
given arr. into another one). Under certain conditions, these operators do not increase
the cost. We introduce the theorems which specify these conditions.

Section 5 provides the validity proof of the algorithm. It is shown there that there
exists a minimum arr. having one of two specific types. This is done by applying the
non-increasing-cost operators on an arbitrary arr. transforming it into another arr. of
one of these two types, without increasing the cost.

In 6 we analyze the complexity of the algorithm. Its polynomiality is due to the
fact that the search for a minimum arr. is don on a very restricted set of arrange-
ments.

2. Basic concepts.
2.1. Types ot arrangements.
DEFINITION 2.1.1. Let 7r be an arr. of a given tree T; then denotes the arr.

obtained from r by reversing the order of the vertices (i.e. (u)< (v) iff 7r(u)>

DEFINITION 2.1.2. Let v, be a vertex of T. Deleting v, and its incident edges
from T, yields several subtrees of T. Each of them is called a subtree o[T mod. v,. For
each edge (v, v,) there is a unique subtree of T mod. v,, say T’, such that v T’. The
vertex v is the root o[T’ mod. v,. (See Fig. 1).

Received by the editors March 11, 1976, and in final revised form February 16, 1978.
f Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

15

16 YOSSI SHILOACH

V

FIG 1. T1 T2 and T3 are subtrees ofT mod, v,, v, v2 and v3 are their roots mod. v, respectively.

DEFINITION 2.1.3. Let T1,’" ", Tk be subtrees of T mod. v, and let 7r be an arr.
of T. 7r is of type (T1, , T,lv,) if the following holds:

]-1

(2.1) Y’. ni < "n’(v) Z ni < r(v,)
i=1 i=1

for all v 6 T. and for all 1 _-<j_-< k, Here ni denotes the number of vertices of T,
i=l,...,k.

7r is of the type (v,lTk,’’’, TI) if -- is of type (T1,’" ", TklV,). r is of type
(TI,...,TpIv,ITp+I,...,T,) if it is of both types (T,...,Tplv,) and

(v,ITp+l,..., T,). These three types are illustrated in Fig. 2.

(a) An arrangement of type (T1, TklV,).

(b) An arrangement of type (v, ITk, TI).
v,

(c) An arrangement of type (Tx, TIv,ITp/, T).
FIG. 2

Henceforth, whenever a tree T,, is concerned, n, will denote its number of vertices for any index a.

MINIMUM LINEAR ARRANGEMENT ALGORITHM 17

DEFINTION 2.1.4. Let T1, , Tk be subtrees of T mod. v,. T- (T1, , Tk)
denotes the tree obtained from T by removing the vertices of T1,- ", Tk and their
incident edges.

2.2. Anchored trees. Let To be a subtree of T mod. v, and let Vo be its root
mod. v,. Assume that we know that there exists a minimum arr. of T of type (Tolv,).
Providing minimum arrangements for To and T-To separately is wrong, since we
have no control on the length of the edge (v0, v,).

In Fig. 3 we split (v0, v,) into three segments.

FIG. 3

The segment in the middle is of one unit length. The left segment is connected to To at
v0 which is its left endpoint. It covers the distance between Vo and the right-most
vertex of To. This segment is a right anchor of To. The segment in the right is
connected to T- To at v, which is its right endpoint. It covers the distance between v,
and the left-most vertex of T- To. This segment is a left anchor of T- To.

This informal description motivates the following definition: Let T be an n-vertix
tree, let v T and let 7r be an arr. of T. T is called a right anchored tree (at v) and
denoted by (v) when its cost is defined by:

(2.2) C[Tr, 7(v)] C[m TI + n r(v).

It is called a left anchored tree (at v) and denoted by T(v) when its cost is defined by:

(2.3) C[Tr, (v)l C[Tr, T]+Tr(v)- 1.

Note that n- 7r(v) in (2.2) and 7r(v)- 1 in (2.3) stand for the length of the right
and left anchors of T, respectively.

Note that if we know that a tree T has a minimum arr. of type (Tolv,), it is
sufficient to find minimum arrangements for (Vo) and for ---S-o(V,) separately (see
Theorem 3.1.2.a)). This fact suggests two new problems, namely, finding minimum
arrangements for right and left anchored trees. These problems are equivalent since
by reversing the order of the vertices a right-anchored tree becomes a left-anchored
while the cost is unchanged.

The problem of finding a minimum arr. for right-anchored trees will be solved
simultaneously with the corresponding problem for free (not anchored) trees.

2.3. The central vertex theorem.
THEOREM 2.3. There exists a vertex v, satis[ying: I To, , Tk are all the subtrees
rood. v, then

(2.4) ni <-- [] for O, k.

18 YOSSI SHILOACH

Proof. By removing an edge (vi, vi) from T, we split it into two subtrees T and T,
such that vi T and v T. For each edge (v, vi) let d.i In- nil. Let

(2.5) d,,io min d,i.
(vi, v)e E

Assuming that nio-> n we set v,-- Vio. T, is a subtree of T mod. v, and n =<
since n+ no n and no ->- n,. Let T1," , Tk be all the other subtrees of T mod. v,,
numbered so that nl => n2 ->" => nk It is enough to show that n => nl.

Assume to the contrary that n, < nl.

dio, jo-- n- 2n,. dl,jo](n hi)-

If dl.io n 2nl < n 2n, we contradict (2.5). T1 and T, are vertex-disjoint subtrees of
T and v, does not belong to any of them, hence: n6 < n-nl and n < n-n6. Thus
(n- n,)- n,> n-(n- nl). Therefore, assuming that d,i 2nl- n also yields a
contradiction to (2.5). Q.E.D.

3. The main theorem and the algorithm. In this section we present two
theorems which motivate the algorithm which follows them. We deal with free and
(right) anchored trees simultaneously, using a parameter c. a 0 for free trees and
c 1 for anchored trees. Theorem 3.1.1 is the heart of this paper. Its proof (for the
free trees version) is given in 5. The main differences between free and anchored
trees are discussed in 3.3.

It is assumed through this section that v, is a vertex of T which satisfies (2.4) if T
is a free tree. If T is an anchored tree, v, denotes the vertex in which the anchor is
connected to T. T(a) denotes"

T if c =0,
(v,) if-l.

In both cases To,-" ", Tk are all the subtrees of T(a)mod. v,. They are numbered so
that n0- n =>" => nk. The roots of To, , Tk mod. v, are v0, , Vk respectively.

3.1. The motivating theorem. Let p, denote the greatest integer satisfying:

ni> + for 1, 2p , where
2 2

(3.1) 2_

i=0

THEOREM 3.1.1. a). Ifp 0 then T(ce) has a minimum arr. of type (Tolv,).
b) Ifp>O then T(a) has a minimum arr. of one of the following types:

A: (Tol v,),
B: (r, r,-.., r:,o-lv.Ir:o-:,’", r,, T:).

Figure 4(a) and 4(b) illustrate arrangements of types A and B for T and (v,)
respectively.

Let T, r(a)- T1, T2p,,-,) and let:

So (n3 + n4)- 2(n5 + n6)+""" +(Po- 1)(n2po-1 + np,,)+po(n, + 1),

$1 (n2 + n3)+ 2(n4 + n5)+. +(Pl- 1)(nzp,-2 + nzp,-1)+pa(n, + 1)- 1.

MINIMUM LINEAR ARRANGEMENT ALGORITHM 19

v,
vo v,

To T To T T3 T.- T.. T
Type A Type B

FIG. 4(a)

v,
Vo V,

To T To T T3 Tp._ Tp._ T T
FIG. 4(b)

THEOREM 3.1.2. a) If 7r is an arr. of T(a) of type A then

C[r, o(Vo)] + C[r, ’T- To(v,)l +
C,,(A) C[Tr, T(a)]

[.C[Tr, o(Vo)] + C[7r, T- To] + n no

(b) If 7r is an arr. of T(a) of type B, then

C,(B) C[7r, T(a)]
2p, 2p, --2c

E C[TT,(vi)] "JI-
i=1 i=1
is odd is

+c[, T,] + S.
The proof of Theorem 3.1.2 is by a straightforward calculation which follows the

elementary definitions. We omit the details. Theorem 3.1.2 yields the following
important corollary:

COROLIARV 3.2.1. a) If 7r is a minimum art. of T(a) of type A then: 7r/To
(Tr, restricted to To) is a minimum art. of T,(vo) and 7r/T-To is a minimum arr. of
"T- To(v,) (or T- To in case a 1).

b) If Tr is a minimum arr. of T(a) of type B then: 7r/Ti are minimum arrangements
of L(v,) for i= 1, 3,..., 2p-1 and of L(v,) for i=2, 4,..., 2p-2. 7r/T, is a
minimum arr. of T,.

Proof. The proof of a) is immediate, b) is true since S, is independent of 7r.

3.2. The algorithm. The algorithm is a straightforward implementation of
Theorem 3.1.1 and Corollary 3.1.2. Using the parameter c, the algorithms for free
and anchored trees are combined together. Each of them is recursive and uses both of
them as subroutines for smaller trees.

ALGORITHM.
1. Find a vertex v, satisfying (2.4). (See Theorem 2.3.) (In an anchored tree, v, is

the vertex at which the anchor is connected to the tree.)
2. Find minimum arrangements 7r0 for (v0) and 7r for ’7’- To(v,) (or for T- To

if T is anchored.).
3. Determine Ca (A). (See Theorem 3.1.2.)
4. Determine the value of p. If p, --0 go to 9.

20 YOSSI SHILOACH

5. Find minimum arrangements 7r,, i=l,--.,2p,,-a, for (vi) i=
1, 3,- , 2p,,- 1 and for (v,) 2, 4, , 2p,- 2re and a minimum arr. 7r, for
T-(T1,’’’, T2p,-o,).

6. Determine C(B).
7. If C,(A)<-_ C,(B)go to 9.
8. The arrangement 7rm of type (T1, T3,"’, Tzp,-l]V, Tzp,.-2,,’", T4, T2)

determined by 7ri on Ti for 1,.. , 2p-a and by 7r, on T-(T1," ", Tzp-,,) is a
minimum arr. of T. C[’rr, T(a)] C,, (B).

Stop.
9. The arrangement 7rm of type (Tolv,)determined by 7ro on To and by 7r on

T- To is a minimum arr. of T. C[Tr, T(a)] C,(A).
Stop.

3.3. The main differences between free and anchored trees.
1. If T is free, then v, is its "central" vertex.. If T is anchored, then v, is the

connection point of T with its anchor. The centrality of v, is necessary to prove
Theorem 3.1.1. a) for a 0.

When a 1, this statement can be proved using the fact that v, is the left
end-point of the right anchor.

Part a) of Theorem 3.1.1 is a crucial statement for the complexity estimations in
6.

2. Type B is different in the cases a 0 and a 1. When a 0 the number of the
T’s to the left of v, is equal to the number of T’s to the right of v,. When a 1 we
have one more subtree to the left of v, than to the right of v,. This is caused by the
right anchor, playing the role of a subtree on the right-hand side of v,.

4. Non-increasing-cost operators. The N.I.C. operators which are defined on the
set of all arrangements are used to transform an arbi.trary arr. into another one of type
A or B without increasing the cost.

Let v, T, let To be a subtree of T mod. v, and let r be an arr. of T. Ll(Tr, To)
[Rl(Tr, To)] is the arr. of type (Tolv,) [(v, IT0)] in which the internal order of the
vertices of To and T- To is preserved as it is in r. Denoting the length of an edge e in
a given arr. 7r by l,.,.(e), it is easily seen. that:

C[Ll(’rr, To)] C[’rr, Tol+ C[’rr, T- Tol+/LI(-/r, To)((-)0,

(As usual, Vo denotes the root of To mod. v,. See Fig. 5(a).) IL,<=,To)((Vo, V,)) is exactly
1 + the number of vertices between Vo and v,. This number may be decreased when
we reverse (if necessary), the order of the vertices of To and/or the order of the
vertices of T- To so that the following inequalities are satisfied:

Ivlv e To and 7r(v)> zr(vo)}l <= l{vlv e To and -(v)<

]{v]v e T--To and 7r(v)< rr(v,)}] <-I{vlv e T- To and 7r(v)> 7r(v,)}].

The modified arr. is denoted by L2(Tr, T0) (see Fig. 5(c)). R2(’rt’, To) is defined in a
symmetric way.

The definition of Lz(Tr, To) and Rz(Tr, To) implies that:

(4.1) ILz=,To)((Vo, V,)) IRz=,To)((Vo, V,)) <[no;11 In-no-i]+
2

MINIMUM LINEAR ARRANGEMENT ALGORITHM 21

Vo V,

b

d e f
Vo V,

c d e [a b

FIG. 5(a). zr (above); Ll(Tr, To).

V,

d e f a b c

FIG. 5(b). R,(Tr, To).

Vo

c b a f e d

FIG. 5(C). L2(Tr, To).

THEOREM 4.1. Let v, T, let To be a subtree of T rood. v, and let zr be an arr. of T.
a) If zr-l(1) To and zr-l(n) To then C[LI(er, To), T]<-C[Tr, T].
b) 1 zr) To and r- n) To then C[RI(Tr, To), T]<- C[Tr, T].
C) If 7r-l(1), 7r-l(n)E To and no < In + 2/2] then

1. ,C[L2(rr, To), TIN C[rr, T],
2. C[R2(m To), T] -< C[r, r].

Proof. We prove only a) and c-l) since b) and c-2) are symmetric to a) and-c-l)
respectively.

Proof of a). Let Vo be the root of To mod. v,. The definition of Ll(rr, To) implies
that"

(4.2)

Let

l,(,,To)(e)<- l.(e) We (Vo, v,).

A {vlv To and 7r(v) > 7r(v,)},

B {vlv T- To and 7r(v) < 7r(vo)}.
A t_J B are all the vertices which are between Vo and v, in the arr. L(Tr, To)

22 YOSSI SHILOACH

and were not there in 7r. Hence we have:

(4.3) lL(.x, To)((1)O, v,))- l=((Vo, v,))

If v e A then 7r(v,)< rr(v)< n. Since v, and -X(n)fi T-To, v contributes one
unit to the length of, at least, one edge of T-To in the arr. 7r. ("v contributes one
unit to the length of an edge (vi, vj)" means that r(vi) < 7r(v) < rr(vj)or rr(vi) < r(v)<
7r(v).) But v To and therefore contributes nothing to the length of any edge of
T- To in the arr. Ll(Tr, To). A symmetric argument shows that if v e B, it contributes
one unit length to, at least, one edge of To, in 7rwand does not do so to any edge of To
in Ll(Tr, To). Thus, we "gain" at least IA[+[BI length units by transforming r into
La(Tr, To). The proof follows now immediately from (4.2) and (4.3).

Proof of c-l). As in part a) we have:

(4.4) lL(,To)(e) <- l(e) Ve (Vo, v,).
From (4.1)we have"

(4.5) IL2(=.To)((Vo, V,))--l=((Vo, V,)) +
2

If V e T- To then 1 < zr(v)< n. Since 7r-(1) and 7r-l(n)e To, v contributes one unit
length to at least one edge of To in 7r. Since To and T- To are separated in L2(rr, To)
there is no contribution of any vertex of T-To to the length of any edge of To in

L2(rr, To). Thus

[no-1] [n-no-ll_(n_no)"C[L2(rr, To), T] -< C[r, T]+
2

+
2

Since

. +
2

This completes the proof. Q.E.D.
(1) v,), then thereTHEOREM 4.2. I[7r is an art. o[T such that 7r- (n)= v,(Tr-exists an arr.

C[m TI.
Proof. The proof is by induction on k, the number of subtrees of T mod. v,.
The case k 1 is trivial.
Assume that k > 1 and r-(1)6 T. Since r-a(n) T we have (Theorem 4.1.a).

(4.6) C[La(rr, r), r]<= C[Tr, r].

Let T T-T, then

(4.7) C[L,(Tr, r), T] C[-rr, (v)] + n n, + C[7r, ’].
has k subtrees mod. v, which is its right-most vertex in the arr. 7r/T. We can

apply the inductive hypothesis to yield an arr. 7r’o of , of type (T, , Tlv,) such
that

(4.8) C "TFtio, T, <= C rr, T
Let rr’ be the arr. of T of type (T,..-, T,lv,) which coincides with r (and

L(cr, T)) on Ta and with 7r’io on Ta. By (4.7), (4.8) and (4.6) we have

C[’, r]--< C[L,(Tr, T), rl<= C[r, r]. Q.E.D.

MINIMUM LINEAR ARRANGEMENT ALGORITHM 23

THEOREM 4.3. Let 7rl and "17"2 be two arrangements of T of type
(T,, T,lv,I T,, T,), such that

C[,, L(v)] C(2, L(vi)], k 1,-.., r.

Let T,=T-(,,..-,,, ,,...,,); then C[,, TIC[2, T] iff C[,, T,]
r,l.

Proof. The proof follows immediately from Theorem 3.1.2.b). Q.E.D.
DEFINITION. Let be an art. of T. (Ti,.--, T]v,)/ is the art. of type

(T,...,TIv,) in which the internal order of the vertices of T1,.’’,T and
T-(T,. ., Tk) is the same as it is in . In a similar way we define (v,lT,. ., Tk)/
and (rl,’’’, Tvv,]Tv+," ", Tk)/.

THEOREM 4.4. Let T, T be subtrees of T rood. v, satisfying

nn2" "nk.

a) If is an art. of type (,, ,[v,) ({il,’" ", ik} ={1,’" ", k}), then

C[(TI,..., T,lv,)/.n" Tl<-C[rr, T].

b) If 7r is of type (v, ITi,, Tik) then

C[(v,JTk,..., Ta)/Tr, T]<= C[Tr, T].

c) If 7r is of type (T/l,’’’ T/mlv,ITI,""" Tm) and {i,,..., im, ja,"" ,j,,,}=
{1,"" ", (- 2m)}, then

C[(T,T3,"’, Tk_,Iv,IT,..., T4, Tz)/rc, T] <- C[rc, T].

Proof. We prove a) and c). b) is symmetric to a).
Proof of a). It would suffice to show that if nia <- nia+l then C[Tr’, T] <= C[Tr, T],

where 7r’= (T/,, , Ta_,, T/a+ ,, T/ T/a+2, , Tiklv,)/Tr. Let via, via+, be the roots of

Ta, Ta+ mod. v, respectively. Transforming 7r into 7r’ only (v,, via)and (v,, via+,)
change their length, l,((v,, via)) is decreased by nia+, and l=((v,, via+)) is increased by

nia. This completes the proof of a) since nia -< nia+,.
Proof of c). The proof is by induction on m. The case m 1 is trivial.
Assume that m > 1 and ip 1.
Case: 1:2 =/’q. Using the same argument as before, we can show that:

C[T,, T,,..., T,_,, T,+,,..., T,,Iv, T,,,..., Ta+,, Tjq_l,... TI T2)/"ll T]
<- C[r, rl.

Let T,- T-(T, T2). The inductive hypothesis implies"

C ,)/ T,]_-< T,],
and the proof is completed by using Theorem 4.3.

Case 2: 2- iq. We may assume that p < q. Let T, T-(T,, , Tp, T,, , Tp)
and let # be obtained from 7r be reversing the order of the vertices of T, (see Fig. 6).
Obviously C[Tr, T,]= C[, T,], and.by Theorem 4.3 C[Tr, T]= C[, T]. satisfies
the conditions of Case 1, i.e. T1 and T2 are on different sides of v,. Thus
C[(T,, T3,"’, Tk-llV,ITk,’’’, Te)/rr, T] -< C[’#, T] C[rr, TI. Q.E.D.

Let To, T, Te be subtrees of T mod. v, and let 7r be an art. of T of type
(T1]v, IT2). Let T’= T-(T, T2). We now define the arr. L3(Tr, To, T, T2) in the
following way. First, we apply Le(Tr, To) to T’, Keeping T to the left, and T2 to the

24 YOSSI SHILOACH

right of T’. Let 7re be the arr. obtained by this step. L3(Tr’ To, T1, T2) is defined as
Ll(Trc, To). Replacing every L by R we obtain the definition of R3(Tr, To, T1, T2). (See
Fig. 7.)

THEOREM 4.5. Let To, T, T: be subtrees o[T rood. v,, let be an arr. o[pe
(Tv,IT) such that -(n, + 1), -(n-n:)s To, and let T, T-(To, T, T:).

a) If

nN +k 2

then C[L(m To, T, T), T]N C[m T].
bl

then C[ea(m To, r, r), rl c[m rl.
Pro@ We prove only a) since b) is symmetric. Let v0 be the root of To mod. v,.

Transforming into L3(m To, T, T), only (vo, v,) may become longer. From the
definition of L3(m To, T, T) we have:

2 2

Since -(1), -(n) T0, every vertex of T0 contributes a unit to the length of at
least one edge of T-To. Such contributions do not occur in L3(m To, r, T). Thus
we gain" at least no length units in this way. Moreover, -(n + 1), -(n- n)e To
and therefore each vertex of Ti contributes one unit to the length of at least one edge

T,
FG. 6. r (above); ’.

MINIMUM LINEAR ARRANGEMENT ALGORITHM 25

/\
/v,\

T’ v,

FIG. 7. -tr (above); "n’t. (middle); L3(.n- To, T1, T2).

of To in 7r. No such contribution occurs in L3(Tr, To, T1, T2). Thus we have"

C[Tr, T]-C[L3(Tr, To, T1, T_), T]

[no-1] In,;11 [no+2] [n,-2l=> no + n,
2

na
2

+ n -> O. Q.E.D.

5. Proof of Theorem 3.1.1. The proof of Theorem 3.1.1 is the heart of this paper.
In fact we prove the theorem only for a- 0. The proof for the case a 1 is very
similar and does not contain any argument which is not used in the proof below.

Given a free tree 5r; we choose v, T which satisfies (2.4). To, T1," , Tk are all
the subtrees of T mod. v,. v0,-",/)k are their roots mod. v, respectively, and
through the whole section we assume"

(5.1) l-] >= no>= nl >=’’’>= nk.

The proof technique is as follows" We start with anarbitrary arr. 7r of T. We
assume that:

(5 2)
There is no arr. 7r’ of T of type (To Iv,) (and therefore no arr. of type (v,ITo))

such that C[Tr’, T] _-<.C[7r, T].

We then use 7r in order to define a nonnegative integer p. Using (5.1) and (5.2) we
show that p->l (Lemma 5.3) and that there exists an arr. 7r’ of type
(T1, T3,-’-, TEp-llV,ITzp,’", T4, T2)such that C[Tr’, T]_-< C[ar, T]. Finally we show
(Lemma 5.7) that p p0. The reader can easily verify that when everything is shown,
the proof is completed.

Let us use 7r to define a new order on T1, , Tk. This is the order in which they
appear in, the arr.. 7r. The "left-most" ’subtree is first, the "right-most" is second, the
second from left is third and so on, until we reach To.

More formally, let 11 be defined by the requirement" The left-most vertex of T
(mod. 7r) belongs to Tl,.

A Lz(zr, rl).

26 YOSSI SHILOACH

rl is defined by the requirement" The right-most vertex of T (mod. *rll) belongs to Trl,

A
7-/-rl Ll(Tl-ll Trl),

Assume that lj, rj, rlj, rrj and T. have already been defined for j- 1,- -, i- 1. Then
satisfies: The left-most vertex of T-I (mod. rr,_l) belongs to Tl,. rl, is the arr. of type
(Tll,’’’, Tl,]v, ITr,_l,"’, Trl) which is obtained from rr,_l by applying Lz(’n’ri_l, T6)
on /_1, keeping the rest unchanged, ri satisfies: The right-most vertex of -1 mod.
belongs to Tr,. rr, is the arr. of type (Tll,’’’, Tl, lv, ITr,,’", Trl) which is obtained
from m, by applying Rl(rt,, Tr,)on -1 keeping the rest unchanged.
T-I-(Tl,, Tr,). p is defined by the requirement: l, r # 0 for i= 1,- -., p; lp+ 0 or

rp+l 0, i.e. the process is stopped when we reach To.
In order to show that the definition of l and ri is legitimate (for 1,- -, p) we

must show that v, is neither the left-most nor the right-most of any of the T’s for
0,--., p. (’o A T.) This is done in Lemma 5.2.
In Fig. 8 we have a tree T with six subtrees mod. v, (To,-’-, Ts).
An arr. r of T is shown for which 11 1, rl- 5, 12--4, r2--2 (p= 2). The

arrangements rll, rr,, rl2 and , are also shown.
LEMMA 5.1. C[rl, T] <= C[, T], C[rr, T] <-__ C[r, T] for j 1,..., p.
Proof. We shall prove a much stronger statement, namely" C[%, T] -< C[r/, T] -<

C[%_1, T], j= 1,..., p (where rro r). Using Theorem 4.3 it is enough to prove
that"

C[TTrp T]-I] C[’TFIp T/--I],

C[’lT"l], T]-I] C[71"r]_ T/--1 I.

The right-most vertex of T._I mod. ,rl belongs to Trj while the left-most doesn’t
(it belongs to T6). Thus (5.3) is implied directly from Theorem 4.1.b).

The left-most vertex of T-l mod. z%_1 belongs to Tr If the right-most doesn’t,
we can use Theorem 4.1.a) to prove (5.4). If the right-most vertex of T_I also belongs
to Tlj we can use Theorem 4.1.c). We just have to show that nl;_--<1/2fi.-l. This is true
since To and T# are subtrees of T.-1 and no >= nit Q.E.D.

In order to establish the validity of the definition of l-, r. for] 1,. , p we have
to prove the following lemma.

LEMMA 5.2. a) v, is not the left-most vertex of T. mod. 7Try for j O, p (To T,

b) v, is not the right-most vertex of T mod. rlj+l for] 0,"., p.

Proof. We shall prove only a). The proof of b) is almost the same.
If v, is the left-most vertex of T mod. r we can use Theorems 4.2 and 4.4 to

obtain an arr. r’ of T of type (v,[To) such that C[r’, T] -< C[r, T]---contradicting
(5.2). Thus, the statement is true for j 0.

Assume that]>0 and that the lemma holds for 0,...,]-1. Thus rll,

rrl, , rl, rr are well-defined and by Lemma 5.1 C[rr, T] <-C[r, T].
Assume that v, is the left-most vertex of T mod. rr. Applying Theorems 4.2 and

4.4 on_,, it can be shown that there exists an arr. r" of of type (v,ITo)such that
C[r", To] <- C[r, ’]. r" can be extended to an arr. of T by identifying it with r on

Tll, Trl," ", Tto, Trr The extended r" is of type (Tll, , Tllv, To, Trj," ", Trl) and by
Theorem 4.3

C[r", T] -< C[m;, T] (<- C[-rr, T]).

MINIMUM LINEAR ARRANGEMENT ALGORITHM 27

Theorem 4.4 can be used now to yield an arr. r’ of type (v,ITo) such that
C[Tr’, T] -< C[Tr", T] contradicting (5.2). Q.E.D.

LEMMA 5.3. p => 1.
Proof. p 0 means that either 7r-1(1) To or r-l(n)G To or both.
By Theorem 4.1 all these three cases yield a contradiction to (5.2). When both

7r’-1(1) and 7r-l(n) belong to To, we also use (5.1). This is the only place in which we
need the "centrality" of v,. Q.E.D.

In the following lemmas we shall show that 7rrp is an arr. of type B or, at least, can
be easily transformed into an arr. of type B without increaging its cost.

FIG. 8

28 YOSSI SHILOACH

LEMMA 5.4. We may assume that"

(5.5) nil >= nr, >--" >-- nip >- nrp or equivalently

(5.6) 11 < rl <’’ < lp < rp.

of typeProof. If (5.5) does not hold we can transform % into a new arr. re

(Tti,’", Z,blv.]Ti,,"’, Ti) such that" C[Tr’r,, T]_-< C[7%, T], {/1,’"; rp}--
{1’1, , r’p} and nil >= tlrl >=" >- nl’p >= nr,. (See Theorem 4.4.) We then use 7r’,, as our
new 7% for the discussion below. Q.E.D.

LEMMA 5.5. The right-most and the left-most vertices of Tp mod. 7% belong to To.
Proof. By the definition of p one of the two cases holds:
1. The left-most vertex of Tp mod. 7% belongs to To.
2. The right-most vertex of Tp mod. 7%+, belongs to To.
Assume that case 1 holds. If the right-most vertex of Tp mod. 7"l’rp belongs to

T0mthe statement of the lemma is true. If not, a contradiction to (5.2) can be obtained
by using Theorems 4.1.a), 4.3 and 4.4 in a way which is very similar to that which was
used in the proof of Lemma 5.2.

If only case 2 holds then C[TTlp+l T]<-_C[7%, T].The right-most vertex of Tp
mod. %+1 belongs to To while the left-most doesn’t (it belongs to T,+I). Thus, the
same argument as before leads to a contradiction to (5.2). Q.E.D.

LEMMA 5.6. a){/1, rl,’’’, lp, rp}={1, 2,..., 2p}.
b) n2p+ (tl2p.

Proof. a). It is enough to show that {1,. -, 2p}_ {/1," ", rp} since both sets have
the same number of elements.

Assume to the contrary that j {1,. ., 2p} and j {/1," , rp}. Let T. Tp To.
(Fig. 9 shows Tp-1 under the arr. 7%; note that by Lemma 5.5, the left-most and
right-most vertices of Tp belong to To.)

FIG. 9. The tree Tp-1 under the arr. 7%.

Since j{ll,..., rp}, T. is a subtree of T, and therefore n; =<n,. But rp>2p
(Lemma 5.4) and j -< 2p implies that j < rp and

Since np =< no we have:

(5.7) nrp <
2

+
2

MINIMUM LINEAR ARRANGEMENT ALGORITHM 29

Lemma 5.5 together with (5.7) allow us to apply Theorem 4.5 to yield:

C[R3(’rt’rp, To, T,,, T,,), Tp-1] C[’lrq,, Tp_].

Let rr" be the arr. of T obtained from -, by applying R3(r, To, T, T,)on Tp_.
(See Fig. 10.)

By Theorem 4.3, C[r", T]-< C[’,, T]. Moreover by Theorem 4.4, rr" can be
transformed into a (v, ITo) art. rr’ without increasing the costa contradiction to (5.2).

/ v,

/Trt

FIG. 10. "rr".

b) By part a), nrp n2p. 2p + 1 {ll, rp} and therefore T2p+l is a subtree of T,
and n2p+l n,. If n2p---t2p+l, we have

which is impossible according to part a). O.E.D.
CoaoAa 5.6.1. l 2i-- and r 2i or 1,. , 2p. (See Lemma 5.4.)
COROLLARY 5.6.2. e set o[the first 2p subtrees{T,..., T} is uniquely

determined by their numbers o vertices (Lemma 5.6.b).)
The value of p as defined above, seems to depend on the particular choice of an

initial arr. . e following lemma shows that it is not so and, in fact, p P0. Recall
that P0 was defined as the greatest integer satisfying:

[no+2] in,+21 for i=l,-..,2po(5.8) n> 2
+

2

2powhere n, n
LMMA 5.7. p Po.
Proof. It is easy to see that p satisfies (5.8therwise (5.2) is violated as shown in

the proof of Lemma 5.6. If q >p also satisfies (5.8) then

naq_ >
2

and nq >
2

so that nq_ + nq > no.
Since To, Tq_ and Tq are disjoint subtrees of Tp, we have: n0 < g/2.
Using Lemma 5.5 and Theorem 4.1.c) we have

C[L(, To), Tp] C[,,, Tel.

30 YOSSI SHILOACH

The proof is completed by Theorems 4.3 and 4.4 as we have done several times
before. Q.E.D.

6. Complexity. Let f(n)denote the number of elementary computation opera-
tions required in order to find a minimum arr. for a tree T(a) with n vertices. The
following theorem is implied directly by the algorithm.

THEOREM 6.1. f (n satisfies the following recursive inequalities:

fo(n) <= f (no) + f (n no) +f (n)+... +f (nzpo)
+ fo(no + n,)+ Co" n,

f,(n) <- f,(no)+fo(n no)+fl(nl)+""" +

+fo(no + n,)+ c, n,

subject to the following constraints"

(6.1)

(6.2)

(6.3)

(6.4)

p>=l,

rio > nl > > >0,

tl n, q- li0 + + n2p,-,,

n > 2
+

2

Note that c, n are required in order to perform steps 1, 3, 4, 6 of the algorithm.
THEOREM 6.2. There exists a constant c such that f(n)<-_ cn22 for all n.

Proof. The proof is by induction on n.
Assume that there exists a constant c such that

fa (n’) <-- cl’lt2"2 for all n’< n.

We have to show that f(n)-< cn2"2 too. Though the proofs for both cases a 0
and a 1 are quite similar, the case a 1 is a little more difficult and we shall prove
only this case.

Let s 2.2 and let q 2pl- 1. Inequality (6.1) can be rewritten in the form:

(6.5) q => 1.

The inducive hypothesis together with Theorem 6.1 imply that there exists a constant

c(c >- Cl) such that

fl (n) c[no + n -b. .-b n, + (n no) + (no + n,) + n].

Let

F(no, n,-.., nq, n,)

-(no+" .+nq+n,f -[n +. .+nq+(n+. .+nq+n,) +(no+n,)S+no
+. .+nq+n,].

We have to show that F(no,..-, nq, n,)>=O at every point of the domain D deter-
mined by the constraints (6.2),..., (6.5). Note that the variables n0,’",n, n,
are independent since they are not connected by any equation.

MINIMUM LINEAR ARRANGEMENT ALGORITHM 31

For all 1 _-< _-< q we have

OF(no,.’., nq, n.)
Oni

s[(no+nl +... +nq +n,)S-l-n-I-(n+... + n,)S-a-]
>s (no+" "+nq+n,)S--no -(n +. .+n,)-
>0,

since (a + b)--aS-l-b-- 1Is >0 for all a, b > 2. F is therefore strictly increasing
in each of the variables n,. ., nq at every point of D.

Since q _-> 1 and n > (no + n,)/2 for 1, , q, it would be enough to prove that

(no + n,)F no,
2

,O,...,O,n,

no+ n, + +(no+ n,) +(no+ n,=((n+n*))s- + 2 2

Claim. n; + ((no + 3 n,)/2) < (no + n,) + ((no + n,)/2).
Proof of the claim. Let

no + 3n, no + n,
x no, Y 2 X2 nO -’["/’/g, Y2 2

We have to show that x + y < x2 + Y 2. But x -]- Y X2 -t- Y2- It would, therefore, be
enough to show that Ix1- yl < Ix- yl (- (no+ n,)/2), x-y (no- 3n,)/2 <
(no + n,)/2 and

3n,-no no+n,
2 2

since no > n,. (See (6.2) and (6.4).) This completes the proof of the claim.
The previous claim reduces the problem to showing that (-}(no+n,))-_>

2(no + n,) + 2((no + n,)/2) + (no + n,), or,

(6.6) => 2 + 21-s +2(no + n,)s-"

But (-) > 2 + 2-. (Note that this is not true for s 2, in fact s was determined by
this inequality.) For a large no, 3/(2(no / n,)-) is small enough to satisfy (6.6) and the
size of such an no affects only the constant c. Q.E.D.

REFERENCES

[1] D. ADOLPHSON AND T. C. Hu, Optimal linear ordering, SIAM J. of Appl. Math., 25 (1973), pp.
403-423.

[2] M. R. GAREY, D. S. JOHNSON AND L. STOCKMEYER, Some Simplified NP-complete graph problems,
Theoret. Comput. Sci., (1976), pp. 237-267.

32 YOSSI SHILOACH

[3] R. M. KARP, Reducibility among combinatorial problems, Proc. of 6th Annual ACM Symp. on Theory
of Computing, 1974, pp. 47-63.

[4] S. EVAN AND Y. SHILOACH, NP-Completeness of several arrangement problems, technical report no.
43, Computer Science Dept., The Technion, Haifa, Israel.

[5] M. HANAN AND J. M. KURTZBERG, A review of.the placement and quadratic assignment problems,
SIAM Rev., 14 (1972), pp. 324-342.

SIAM J. COMPUT.
Vol. 8, No. 1, February 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0801-0003 $01.00/0

A PARTIAL ANALYSIS OF RANDOM HEIGHT-BALANCED TREES*

MARK R. BROWNer

Abstract. The collection of nodes nearest to the external nodes in a random height-balanced tree is
analyzed. We determine the proportion of balanced nodes in this section of the tree, and find the average
number of single and double rotations which occur at the minimum height during insertions. If/, denotes
the average number of balanced nodes in a random height-balanced tree with n internal nodes, we show

10that (n + 1)_<-/,, <- (n + 1)- for n -> 6.

Key words, analysis of algorithms, AVL tree, height-balanced tree

1. Introduction. Height-balanced binary trees (or AVL trees) [1], [2], [3] are a
method of organizing information which allows both fast accessing and fast updating.
For example, height-balanced trees may be used to represent arbitrary linear lists of
length n such that items can be inserted into and deleted from a list in at most
O(log n) time. In fact, these operations take 0(log n) time on the average, because
even in a perfectly balanced tree the average successful or unsuccessful search
requires f(log n) time.

A more precise analysis of the average behavior of height-balanced trees seems
difficult, however. The most promising situation for study is building a height-
balanced tree by random insertions; Knuth [3] gives the results of empirical tests using
random numbers for trees of size between 100 and 2000, and tabulates exact results
for the case of the 10th random insertion, but gives no analytical results.

In this paper we give a partial analysis of random height-balanced trees. To
outline the scope of the analysis it will be useful for us to review the definition of a
height-balanced tree here, and to make some new definitions. A binary tree is
height-balanced if the height of the left subtree of every node differs by at most +1
from the height of its right subtree. (The height of a tree is the length of the longest
path from the root to an external node.) An example of a height-balanced tree is given
in Fig. 1; following the conventions of [3], internal nodes are circular and external
nodes are square. The balance factor in each internal node is shown as +,., or
according as the right subtree height is one greater than, equal to, or one smaller than

A F

B E H

D G

FIG. 1. A balanced tree.

* Received by the editors August 5, 1977, and in revised form March 17, 1978.

" Department of Computer Science, Yale University, New Haven, Connecticut 06520.

A function g(n) is f(f(n)) if there exist positive constants C and no with g(n) Cf(n) for all n ->no; it
is O(f(n)) if there exist positive constants C, C’, and no with Cf(n) <- g(n) <- C’f(n) for all n -> no. Hence the
"0" can be read "order exactly" and the "f" as "order at least"; see [4] for further discussion of the 0 and
f notations.

33

34 MARK R. BROWN

the left subtree height. A node whose subtrees have equal height is called balanced,
while other nodes are unbalanced.

We define an internal node in a height-balanced tree to be a tringe node if at least
one of its two offspring is an external node; the set of all fringe nodes is called the
]:ringe of the tree. In the tree of Fig. 1 the fringe contains six nodes, since the only
nonfringe nodes are C, F and H. The balanced fringe nodes (nodes B, D, G and I in
Fig. 1) must have two external nodes as offspring; the unbalanced fringe nodes (A and
E in the figure) have an external node as one offspring, and must have a balanced
fringe node as the other.
Our goal is to analyze the fringe of a random height-balanced tree; in particular, we

would like to determine the proportion of balanced nodes in the fringe. Besides giving
us exact information about the probability of certain events during height-balanced
tree insertion (such as the two simplest cases of rebalancing), this will allow us to
derive fairly good bounds on the proportion of balanced nodes in the tree as a whole.

The remainder of the paper is divided into two sections. In 2 we show how the
fringe of a height-balanced tree can be viewed as consisting of two classes of subtrees,
and prove lemmas which characterize how these subtrees behave under insertion. In
3 we use these lemmas to perform the analysis. We also discuss the possibility of

extending the analysis to include nodes outside of the fringe; this appears to be
difficult.

2. The fringe subtrees and insertions. When the nonfringe nodes are removed
from a height-balanced tree, the fringe becomes a collection of disjoint subtrees, each
having one of the two forms shown in Fig. 2. An M-subtree is rooted by a fringe node
which is unbalanced, while an N-subtree is simply a balanced fringe node which is not
the offspring of a fringe node. (The shapes of the letters "M" and "N" are intended to
suggest, however imperfectly, the shapes of the corresponding subtrees.) Figure 3
shows how the fringe of the height-balanced tree in Fig. 1 decomposes into these
subtrees.

M-subtrees N-subtrees

FIG. 2. The two types of subtrees containing fringe nodes.

Our analysis is performed in terms of M-subtrees and N-subtrees, rather than
directly in terms of balanced and unbalanced fringe nodes; it is clearly possible to

RANDOM HEIGHT-BALANCED TREES 35

H

N-subtrees

FIG. 3. Grouping the fringe nodes into subtrees.

translate between these two views. There is also an obvious dependency between the
number of M-subtrees, the number of N-subtrees, and the total number of nodes in a
balanced tree"

balanced path
to inserted node

X

single
rotation

unbalanced path
to inserted node

X

A B

balanced path unbalanced path
to inserted node to inserted node

FIG. 4. Rebalancing transformations after inserting node X. (Mirror images are possible, and the roles o"
and may be reversed in a double rotation. When h 0 in a double rotation, the inserted node is B.)

36 MARK R. BROWN

LEMMA 1. Let T be an n node height-balanced tree with M M-subtrees and N
N-subtrees, where n >0. Then

3M+2N=n+I.
Proof. Each M-subtree has three external nodes, and each N-subtree has two;

hence the left hand side counts the number of external nodes in T. But an n node
height-balanced tree has n + 1 external nodes. 1-]

It is now easy to consider the effect which an insertion may have on the fringe; we
begin with a review of the height-balanced tree insertion algorithm. The first step of
inserting a new element into a height-balanced tree is to search the tree for this
element, using ordinary binary tree search. The search terminates at an external node
of the tree, and this external node is replaced by an internal node containing the new
element. Then we climb back up the search path from the inserted node, changing the
balance factors of balanced nodes from to + (if the inserted node lies in this node’s
right subtree, which has grown in height)or as appropriate, until we encounter a
node which is unbalanced. (If no unbalanced node lies on the search path, then the
entire tree has grown in height and the algorithm terminates.) This node now either
becomes balanced or becomes more unbalanced; in the latter case, the subtree rooted
at the unbalanced node is transformed by a single or double notation to restore
balance. These transformations are shown in Fig. 4.

From this brief description of the insertion process it is clear that an insertion into
a height-balanced tree may change the number of M- and N-subtrees in the fringe.
The following two lemmas show that these changes take a very simple form.

LEMMA 2. An insertion which falls into an external node ofan M-subtree reduces the
number of M-subtrees by one and increases the number of N-subtrees by two.

Proof. Figure 5 shows what happens when an insertion falls into any of the three
external nodes of an M-subtree. (Insertions into the mirror-image tree give mirror-
image results.) In each case the M-subtree is transformed into two N-subtrees joined
by a nonfringe node; there are no changes higher in.the tree because the root of an
M-subtree is unbalanced.

LEMMA 3. An insertion which falls into an external node ofan N-subtree reduces the
number o N-subtrees by one and increases the number of M-subtrees by one.

Proof. Figure 6 shows what happens when an insertion falls into either of the two
external nodes of an N-subtree. In both cases, the N-subtree is transformed into an
M-subtree, but rebalancing may take place higher in the tree since the root of an
N-subtree is balanced. It remains to determine what effect this rebalancing can have
on the fringe. Rebalancing has no effect on nodes which lie outside of the rebalanced
subtree (rooted at node A in Fig. 4), and if the fringe of the rebalanced subtree is
entirely contained in subtrees which are moved without change by the rotation
(subtrees a,,., y and 6 in Fig, 4), then we can see that the rotation has no effect on the
fringe. We can also see (by inspecting Fig. 4) that the only case in which the fringe of
the rebalanced subtree is not totally contained in these subtrees and an insertion lands
in an N-subtree is the case h 1 of a double rotation. Fortunately there is only one
height-balanced subtree (and its mirror-image) in which this case occurs; the two
insertions which cause double rotations with h 1 are shown in Fig. 7. In both of these
situations, the net effect on the whole fringe is to eliminate one N-subtree and
introduce one M-subtree. Thus, although the rebalancing affects the fringe in these
cases, it does not change the number of M- and N-subtrees. [-1

3. Analysis of the fringe. An insertion into a height-balanced tree is said to be a
random insertion if it is equally likely to fall into each of the external nodes of the tree.

RANDOM HEIGHT-BALANCED TREES 37

insert I insert I insert
"A C E"

B B B

D

no double single
rotation rotation rotation

B C D

FIG. 5. Insertion into an M subtree.

A random height-balanced tree of size n is a height-balanced tree constructed by
making n successive random insertions into an initially empty height-balanced tree.

Given the lemmas of the previous section, it is relatively easy to determine the
average number of M- and N-subtrees in the fringe of a random height-balanced tree
of size n. In fact, the required argument is given in Yao’s analysis of the lowest level of
random 2-3 trees [5]. For completeness we shall restate the argument here.

Let Pn (M, N) denote the probability that a random height-balanced tree of size n
contains M M-subtrees and N N-subtrees in the fringe. If we define

N,,= , N.P,(M,N)
M,N

then clearly Nn is just the average number of N-subtrees in the fringe of a random
height-balanced tree with n nodes; the quantity M, is defined analogously.

THEOREM 1. R, =-(n + 1) and f’l, (n + 1), for n >>-6.
Proof. Let T be an n node height-balanced tree with M M-subtrees and N

N-subtrees in the fringe, for some n > 0. Then by Lemmas 2 and 3, the next insertion
into T changes the number of N-subtrees to N-1 or N + 2, depending on whether
this insertion falls into an N-subtree or an M-subtree. On a random insertion into T

38 MARK R. BROWN

insert insert
"A C"

(rotation possible
higher in tree)

FIG. 6. Insertion into an N subtree.

(rotation possible
higher in tree)

these events happen with probabilities 2N/(n + 1) and 3M/(n + 1)= (1 -(2N)/(n + 1))
respectively, so

N,+x Y P,(M,N).n+l.(N-1)+ l-n+ 1
.(N+2)

M,N

--t-2, n+l

-(1- 6)/, +2n+l

Clearly N1 1, and by using the recurrence above to compute a few values we
immediately guess that),, (n + 1) for n -> 6; this guess is easy to verify by induction.
Then the expression for 2rn follows using Lemma 1. 71

This theorem allows us to confirm the accuracy of some of the empirical results on
random height-balanced trees given by Knuth. In [3, 6.2.3 Table 1], the probability
that a random insertion into a large random height-balanced tree falls into an M-
subtree and causes either no rebalancing, a single rotation, or a double rotation is
listed as approximately 0.144 in each case; the corresponding exact probability for the
10th insertion is 7x-= 0.1429571... [3, 6.2.3 Table 2]. The following corollary shows
that is the exact answer for every insertion after the sixth.

COROLLARY 1. The probability that a random insertion into a random height-
balanced tree of size n falls into an M-subtree is for n >-6.

Proof. Since an M-subtree has three external nodes, this probability is

3M 3
Y’. P,, (M, N) ’. M. P,, (M, N)
,N n + 1 n + 1 t,

3 r, 3

n+l
for n => 6, by Theorem 1.

RANDOM HEIGHT-BALANCED TREES 39

insert "C"/

A F

duble
rotation

double
rotation

D D

B F B F

FIG. 7. Cases in which rotation changes the fringe.

Theorem 1 also shows that roughly of the internal nodes of a random height-
balanced tree lie in the fringe. Hence our knowledge that about 75% of these nodes
are balanced allows us to prove bounds on the number of balanced nodes in the entire
tree.

THEORFM 2. Let Bn denote the average number of balanced nodes in a random
height-balanced tree of size n. Then

211(n+l)</n<76-(n+l)-l= forn>6.=
Pro@ Let T be an n-node height-balanced tree with M M-subtrees and N

N-subtrees in the fringe, and let B denote the number of balanced nodes in T. The
tree T contains N +M balanced nodes in the fringe (one in each fringe subtree), and
N +M- 1 nodes not in the fringe (one fewer than the number of fringe subtrees). At
most all of the nonfringe nodes may be balanced, so

B <=N+M+(N+M- 1).

40 MARK R. BROWN

Taking averages gives

B,<=2(Nn+M,,)-I,

so the upper bound follows from Theorem 1.
A similar lower bound argument gives 73-(n / 1)-</,, since we assume that none of

the nonfringe nodes are balanced. This assumption is true for certain cases, but if
N >M then some of the nonfringe nodes must be balanced. To see this, consider the
set of nodes p such that p is the parent of an N-subtree. We say that p has type 0 if it is
balanced (i.e., has two N-subtrees as its offspring), type 1 if its other offspring is an
M-subtree, and type 2 if its second offspring is a node of type 0. If we let Ai denote the
number of nodes of type in a balanced tree, then clearly 2A0 +A +A2 N for n => 2
(the left hand side counts the N-subtrees). But AI=<M and A2<-_Ao, so N_-<

2A0 +M + Ao, or Ao >- (N M)/3. Hence we conclude that when N >M there are at
least (N-M)/3 balanced nodes outside the fringe. There are still N/M balanced
nodes in the fringe, so

IQ,, + ffl,., + P,,(M, N) (N-M) < ,,.
B/I,N 3
N>M

But we only make this inequality weaker by including terms in the sum for which
(N M)/3 is negative. Thus

< Bn
M,N 3

3

and now the lower bound follows from Theorem 1.
Knuth’s experiments indicate that B, is approximately 0.68n [3, p. 462]; this is

slightly larger than the average of the upper and lower bounds given in Theorem 2.
While the gap between the bounds of Theorem 2 is large, these inequalities are an
improvement over bounds on B, derived from the minimum and maximum number of
balanced nodes possible in any n node balanced tree. The minimum number is about
1/4)n 0.38197n, which is attained asymptotically by the Fibonacci trees [3, Exer-
cise 6.2.3-3]; the maximum number is n, which is attained by the complete binary tree
when n 2-1.

Yao’s analysis of random 2-3 trees can in principle be carried out to an arbitrary
degree of accuracy. (We say in principle" because the computational effort required
by the method quickly becomes too large to contemplate.) It is therefore interesting to
consider whether this partial analysis of balanced trees can be extended in a similar
way.

The natural method of extending the analysis is to include larger subtrees, and
therefore more subtrees, in it. The collection of subtrees must form a closed class" in
the sense that an insertion into one of the subtrees of the class always produces either
another subtree of the class or produces a tree consisting of two or more subtrees of
the class tied together by some extra nodes at the root. It must also be possible to
prove results analogous to Lemmas 2 and 3 which define the effect of an insertion into
each external node of every subtree in the class.

With height-balanced trees it is not clear how to find a larger class of subtrees
satisfying these requirements. The problem is that if one of the subtrees contains

RANDOM HEIGHT-BALANCED TREES 41

a balanced path from an external node through the root, then an insertion into the
subtree can cause a rotation at the node above the root of the subtree. The tree which
results from this rotation is not determined by the structure of the subtree where the
insertion occurred--it also depends on the other subtree of the node where the rotation
takes place. The reason we were able to analyze the class containing M- and N-subtrees
is simply that there is only one possible "other subtree" in this.case, as shown in the
proof of Lemma 3. Thus it appears that a different kind of argument will be required for
a more complete analysis of random height-balanced trees.

Acknowledgment. The author would like to thank Lyle Ramshaw and Donald
Knuth for their valuable criticisms of an earlier draft, and Phyllis Winkler of Stanford
for typing it.

REFERENCES

[1] G. M. A’DELSON-VEL’SKII AND E. M. LANDIS, An algorithm for the organization of information,
Dokl. Akad. Nauk SSSR, 146 (1962), pp. 263-266; English translation Sov. Math. Dokl., 6
(1963), pp. 1259-1263.

[2] P. L. KArLTON, S. H. FULLERS, R. E. ScrOGGS AND E. B. KAEHLER, Performance of height-
balanced trees, Comm. ACM 19, (1976), pp. 23-28.

[3] DONALD E. KNUTH, Sorting and Searching, The Art of Computer Programming, vol. 3, Addison-
Wesley, Reading, MA, 1973.

[4] , Big omicron and big omega and big theta, SIGACT News, 8, 2 (1976), pp. 18-24.
[5] ANDREW C.-C. YAO, On random 2-3 trees, Acta Informat., 9 (1978), pp. 159-170.

SIAM J. COMPUT.
Vol. 8, No. I, February 1979

(C) 1979 Society for Industrial and Applied Mathematics
0097-5397/79/0801-0004 $01.00/0

OPTIMAL 2,3-TREES*

RAYMOND E. MILLER, NICHOLAS PIPPENGER, ARNOLD L. ROSENBERG+
AND LAWRENCE SNYDER$

Abstract. The 2,3-trees that are optimal in the sense of having minimal expected number of nodes
visited per access are characterized in terms of their "profiles". The characterization leads directly to a
linear-time algorithm for constructing a K-key optimal 2,3-tree for a sorted list of K keys. A number of
results are derived that demonstrate how different in structure these optimal 2,3-trees are from their
"average" cousins.

Key words. 2,3-trees, B-trees, enumeration

Introduction. Many algorithms use as their principal data structure a "search
tree" in which records may be located when present, inserted when absent, and
deleted when unwanted in time logarithmic in their number. AVL trees and 2,3-trees
(a/k/a 3-2 trees, a/k/a 2-3 trees) are examples of this kind of structure. Both have the
property that a number of different representations for the same set of records are
permissible within the limits of the definitions of the respective structures. The
logarithmic performance is guaranteed regardless of which structure arises, but a
natural question is, "What, if any, are the quantitative differences among these
different representations?"

This paper addresses that question for 2,3-trees and their generalization, B-trees.
We derive a characterization of those 2,3-trees (2) and those B-trees (4) that are
optimal in the sense of havirig minimal expected path length per access. Our charac-
terization directly yields a linear-time algorithm for constructing optimal trees. We
round out our study by demonstrating how different in structure these optimal trees
are from their "typical" cousins and how rare they are in the forests of 2,3-trees and
B-trees, respectively (3).

1. 2,3-Trees and their costs. In this section we prepare the way for our study of
optimal 2,3-trees. We assume familiarity with trees and their related notions.

(1.1) A 2,3-tree is a rooted, oriented tree each of whose nonleaf nodes has either 2
or 3 successors, and all of whose root-to-leaf paths have the same length. We
assume the root is not a leaf.

The use of 2,3-trees as balanced search trees (which use originates in unpublished
work by Hopcroft) involves placing keys at the nonleaf nodes of the trees--the leaves
are dummy nodesmaccording to the following discipline. A node with s successors
(s 2,3) accomodates s- 1 keys. All keys in the left (resp., right) subtree rooted at a
given node are smaller in magnitude (resp., larger in magnitude) than the key(s)
resident in the node; should s 3, the keys in the center subtree are strictly inter-
mediate in magnitude between the keys resident in the node; see Fig. 1. The reader
familiar with the literature on 2,3-trees will recognize this description as cleaving to
the variant presented by Knuth [2, 6.2.3] rather than that discussed in [1, 4.4,
4.5].

* Received by the editors May 2, 1977.
? Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,

New York 10598.
: Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,

New York 10598. Permanent Address: Department of Computer Science, Yale University, New Haven,
Connecticut 06520.

42

OPTIMAL 2,3-TREES 43

We now delineate those structural features of 2,3-trees that enter into our
characterization of optimal trees.

(a)

FIG. 1. (a) A bushy 2,3-tree with 8 keys. (b) A scrawny 2,3-tree with 8 keys.

(1.2) The root of a 2,3-tree is said to be at level 0; the direct successors of a node at
level are said to be at level + 1. The depth of the tree is the (common) level d
of its leaves. The height of a node is d-(its level).

With each level of a 2,3-tree, we associate three integers:

/3 the number of binary (2-successor)nodes at level l;
7. the number of ternary (3-successor) nodes at level l;, the number of nodes at level l.

We combine these integers to yield the following descriptors of the tree.

(1.3) (a) The profile of a depth d 2,3-tree is the sequence

1-I- l/o, Pl, Pd.

(b) The detailed profile of the same tree is the sequence

A---(/30 TO>(31, 7.1>’’" (3d, 7.d>.
The reader can easily verify the following useful relationships among the quan-

tities we have been discussing"

(1.4) (a) v0=l;
(b) va 1 + (the number of keys in the tree);
(c) v +;
(d) /t+l 2/3 + 37"1;
(e) (the number of keys at level l)=/3s + 27"s US+l- us.

44 R. E. MILLER, N. PIPPENGER, A. L. ROSENBERG, AND L. SNYDER

The 8-key trees of Fig. 1 enjoy the following descriptors.

Tree of Fig. l(a) Tree of Fig. l(b)

H 1,3,9 1,2,4,9

A (0, 1)(0, 3)(0, 0) (1, 0)(2, 0)(3, 1)(0, 0)

There are at least two significant measures of the cost of a 2,3-tree, the expected
number of key-comparisons per access and the expected number of node-visits per
access. The latter measure would likely be the more significant in an environment
where a ternary comparator were available or in a paging environment where edge-
traversals carried with them the danger of page faults. The former measure would
likely be the more significant in an environment where the entire tree resided in main
memory and only binary comparators were available. In this paper, we study the latter
measure of cost; the last two authors have prepared a paper [3] in which they
characterize those 2,3-trees that are optimal with respect to the expected number of
key-comparisons.

(1.5) The (node-visit) cost of a 2,3-tree T with detailed profile A=
(/30, Zo)""" (/a, za) is

d-1

COST (T) 2 (l + 1)(1i -[- 2zt).
/=0

The cost (1.5) is clearly K times the expected number of nodes per visited access
if T contains K keys. Clearly, all trees having the same detailed profile are equally
costly. In fact this assertion can be strengthened by removing the qualifier "detailed".

LEMMA 1.1. If the 2,3-tree T has profile H Uo, u1,"’, ua, then

d-1

COST(T)=dua- Pl"
/=0

Hence, trees having the same profile are equally costly.
Proof. If one substitutes equation (1.4e) into the expression (1.5) for COST (T),

one finds that

d-1

(1.6) COST (T)=
/=0

Summing (1.6) by parts yields the result directly. !--!
Lemma 1.1 affords us one easy technique for deriving costs of 14 and 20,

respectively, for the trees of Figure 1 (a) and 1 (b). In fact, the greater cost of the tree of
Figure l(b) is predicted by the following result which asserts that added depth means
added cost.

LEMMA 1.2. Let T and T’ be 2,3-trees, both containing K keys, having profiles
H= Uo, uu and H’= PRO,’’" Pte, respectively. If d < e, then COST (T)<
COST (T’).

Proof. The positivity of the difference

e--1 d-1

COST (T’)- COST (T) eut dua E u’ + Pl
k =0 =0

is easily established via the following facts: (a) U’e Ua by (1.4b); (b) e-d => 1 by

OPTIMAL 2,3-TREES 45

hypothesis; (c)
e--1 , < ’e
k=0

since a 2,3-tree has more leaves than internal nodes; (d)
d-1

l,’ll
l=O

since we insist that roots not be leaves. [3
Lemma 1.2 points at a necessary condition for cost-optimality of a 2,3-tree,

namely, minimum depth. The nonsufficiency of this condition is illustrated by the two
5-key, depth 2 trees of Fig. 2: the tree of Fig. 2(a) has cost 8 while that of Fig. 2(b) has
cost 9. Thus our characterization of optimal trees must await further conditions, which
will be developed in the next section.

For the remainder of the paper, we shall adopt the following abbreviations whose
motivation will become clear in 2"

(1.7) A K-key 2,3-tree is bushy if its cost (1.5) is minimum among K-key 2,3-trees.
The tree is scrawny if its cost is maximum among these trees.

(a

(bl
F. 2. (a) A bushy 2,3-tree with 5 keys. (b) A scrawny 2,3-tree with 5 keys.

2. Bushy trees. In this section we develop the two components of our main
result. We begin with our characterization of bushy trees; and we follow with the
linear-time algorithm that derives from the characterization. We close the section with
a discussion of an interesting sidelight of our development.

2.1. The characterization theorem. We lead up to our theorem with two lemmas
that expose facets of the structure of bushy trees that are needed in the theorem.
These structural properties are of some interest in their own rights.

Let the 2,3-tree T have profile I1 Uo, /’1, /]d. The k-prefix of T (1 -< k <-

d), denoted T(k), is the 2,3-tree obtained by replacing all of T’s level k nodes
by leaves. T(’) thus has profile II(k)= u0, Ul," ", u.

46 R.E. MILLER, N. PIPPENGER, A. L. ROSENBERG, AND L. SNYDER

LEMMA 2.1. Every prefix of a bushy tree is bushy.
Proof. Say for contradiction that the prefix T(k) of the bushy tree T is not bushy.

Let T’ be a bushy tree with the same number of keys--hence, the same number of
leaves--as T(k). Let T* be the tree obtained by appending to each leaf of T’ the
subtree rooted at the corresponding leaf of T(k) in T. The construction of T* should
be obvious from Fig. 3.

Now, T* clearly contains the same number of keys as does T. However, it is
a straightforward matter to verify (using Lemma 1. l) that

COST (T*)<- COST (T)- COST (T(k))+ COST (T’)< COST (T),

which contradicts the alleged bushiness of T. I-1

T

T*

FIG. 3. 7he construction of T* from T and T’ in the proof ofLemma 2.1.

PROPOSITION 2.2. There exist bushy trees with nonbushy subtrees. Thus, Lemma
2.1 cannot be strengthened by replacing "prefix" by "subtree".

Proof. Immediate upon comparing the trees of Fig. 4.

(a)

FIG. 4. Bushy trees with (a) 27 and (b) 7 keys for the proof ofPropositions 2.2.

OPTIMAL 2,3-TREES 47

The next lemma peers a bit deeper into the structure of bushy trees.
LEMMA 2.3. If a 2,3-tree has a binary node at level (i > O) and two (or more)

ternary nodes at level] > (z > 1), then it is not bushy.
Proof. Suppose, for contradiction, that the bushy tree T has a binary node at

level and two ternary nodes at level/" > i. We may assume that/" + 1, for if not, we
must have a binary node at level + 1 (since ’i/1 -> 2), and we may shift attention from
the original binary node to this one. Continuing in this way, we must find a level with

l > 0 and ’+ > 1.
Since trees with the same profile are equal in cost (Lemma 1.1), we may assume

further that the ternary nodes are direct successors of the binary node. Thus we have
the configuration

in T (or in a tree that shares T’s profile). It is easy to verify, however, that the cost
(1.5) can be reduced by replacing this configuration with the configuration

This contradicts T’s alleged bushiness.
Although the necessary condition of Lemma 2.3 is not sufficient--cf, the 7-key

trees of Fig. 4--it combines with the depth condition of Lemma 1.2 to yield the sought
characterization. The conjoined conditions are best presented in the following
numerological setting.

(2.2) The profile II ’o, , ud of a K-key 2,3-tree is dense if
(a) d [log3 (K + 1)];
(b) t, min (3 t, [,+1/21) for 1 <_- <_- d 1.
Note that ’o 1 and ’a K + 1 automatically.

THEOrEM 2.4. A 2,3-tree is bushy iff it has a dense profile.
Proof. It will suffice to show that a bushy tree has a dense profile, for once this is

done the following argument gives the converse. Let T have a dense profile and let T’
be bushy. Then T’ has a dense profile. Since there is only one dense profile, T’ has the
same profile as T. Since the profile determines the cost (Lemma 1.1), T’ hag the same
cost as T. Thus T is also bushy.

Suppose T is a bushy tree with K keys. We seek to show that its profile satisfies
(2.2a) and (2.2b). The first of these is easy, for d [log3 (K + 1)] is clearly the

48 R. E. MILLER, N. PIPPENGER, A. L. ROSENBERG, AND L. SNYDER

minimum possible depth of a 2,3-tree with K keys, and by Lemma 1.2 a deeper tree
would have a greater cost.

For the rest, we proceed by induction. The result is trivial for 1 or 2 keys; let us
assume that it holds for all trees with fewer than K keys and prove it for those with K
keys.

It will suffice to prove (2.2b) for d- 1, for once this is done, we may consider
the prefix of T of depth d- 1. By Lemma 2.1, this is bushy. By inductive hypothesis, it
has a dense profile. This gives (2.2b) for the remaining values of I.

It remains to prove that

va-1 min (3a-l, [va/2J).

Clearly,

va_l <= 3a-l,
for a 2,3-tree cannot have more than 3a-1 nodes at level d- 1. Furthermore,

vd-, =< [va/2J,

for every node at level d- 1 has at least 2 successors. We must show that one of these
bounds is attained. Suppose, on the contrary, that

va-1 < 3a-1

and

ld-1 < tltd/gJ"

From the first of these it follows that there is a binary node at or above level d- 2, and
from the second it follows that there are, at least two ternary nodes at level d- 1. Thus,
by Lemma 2.3, T is not bushy, a contradiction. I-1

It follows immediately from the Theorem that a bushy tree has at most two
"active" or unsaturated levels.

PROPOSITION 2.5. If H vo, ", va is a dense profile, then vi 3 for all < d 2.
Proof. Since d= [log3 va] by (2.2a), we know that Vd>3a-a. Hence, Vd/8>

3a-1/8 3a/24> 3d/27 3a-3, SO that va_3 3a-3 by (2.2b), since [[[va/2]/21/21 >
va/8-1. Moreover, since

3 k_-< [3k+/2J for all k,

we are assured that v 3 for all -< d- 3, as was claimed. !1

2.2. An algorithm for constructing bushy trees. Our characterization of bushiness
in terms of dense profiles yields directly an algorithm for constructing a bushy tree for
a given set of keys. If the input set of keys is already sorted, then the algorithm is
linear in the size of the set; otherwise, the algorithm operates in time O(K log K). (No
better timing could be expected since the set is sorted once it resides in the tree.)

We interlace our description of the algorithm with an example.
THE ALGORITHM. Our algorithm can best be described in four phases.
Phase 1. Given the cardinality K of the set of keys to be stored, use the

prescription (2.2) to construct the profile of a bushy K-tree.

(2.3) If K 14, then H 1, 3, 7, 15.

Phase 2. Using the equations

(2.4) fli 3Vi-/’i+1, "ri Vi+l- 2vi,

OPTIMAL 2,3-TREES 49

construct the detailed profile of the tree from its profile.

(2.5) Given the profile H of (2.3), we have z= (0, 1)(2, 1)(6, 1)(0, 0).

Phase 3. Construct the "skeleton" of the tree from its detailed profile; that is,
decide how to place the binary and ternary nodes at those levels that have both.
Clearly, this decision will not affect the cost of the resulting tree, but the layout may
affect the efficiency of subsequent transactions with the key set. Other things being
equal, a decision to left-bias the tree by forcing all ternary nodes as far to the left as
possible is as good as any other.

(2.6) The left-biased tree with the detailed profile A of (2.5) has the following
appearance:

Phase 4. Traverse the tree of Phase 3 in FILLORDER, dropping off the keys in
ascending order as one goes.

(2.7) To traverse a tree in FILLORDER, follow the ensuing recursive prescription.
1. Visit the left subtree in FILLORDER.
2. Visit the root, and deposit a key.
3. Visit the center subtree in FILLORDER)
4. Visit the root, and deposit a key. "i’ for ternary roots only.

5. Visit the right subtree in FILLORDER.

(2.8) We finally complete the example of (2.3), (2.5), (2.6). We use the key set
{1, .’., 14} to illustrate in Figure 5 the FILLORDER of the tree of (2.6).

FIG. 5. The FILLORDER of the tree (2.5).

Timing ot the Algorithm. We assume that our algorithm is to be executed on a
uniform-cost RAM [1, 1]. Accordingly, we assess time O(log K) for the [log3 (g +
1)] operations performed in Phase 1 and for the 2 [log3 (K + 1)] linear-form .evalua-
tions in Phase 2. Phases 3 and 4, which likely would be done simultaneously in an
efficient implementation, can be seen to take time O(K) to perform if the list of keys is

50 R. E. MILLER, N. PIPPENGER, A. L. ROSENBERG, AND L. SNYDER

sorted, and time O(K log K) otherwise. (Note that FILLORDER traversal of a tree is
almost identical to depth-first traversal.)

Discussion. The obvious algorithm for constructing a bushy 2,3-tree would con-
struct the tree top-down, making it as ternary as possible, with some backtracking at
the high-numbered levels to ensure a "fiat bottom." Our use of profiles and detailed
profiles in our algorithm obviates this backtracking, thus enhancing the efficiency of
the construction. A logical competitor for any direct-construction procedure would be
one that constructs a 2,3-tree by successively inserting, in ascending order, say, the
keys one is given, according to the insertion algorithm for 2,3-trees [2, 6.2.3]. The
reader can easily reproduce the induction that demonstrates that trees produced in
this way are often very far from bushy. Specifically, whenever, K 2"- 1, the tree so
produced is a purely binary tree!

2.3. Characterizing scrawny trees. There is a striking and appealing duality
between our characterization of optimal 2,3-trees on the one hand and the analogous
characterization for pessimal or scrawny 2,3-trees.

MF.TATHEOREM. In order to reproduce the results of 2.1]’or scrawny trees,
perform the following transliteration throughout.

For Read

2} even in bases of {33 logs and exponentials 2

min max

floor [xJ ceiling Ix]

ceiling Ix] floor

Details are left to the reader.

3. Typical 2,3-trees. We have found the optimal (bushy) and pessimal (scrawny)
2,3-trees; let us have a look at typical, run-of-the-forest 2,3-trees. We shall find that
almost all n-leaf 2,3-trees share some remarkable statistical properties involving the
golden ratio,

1 +/
&==1.618.-..2

These properties, which will allow us to predict the cost of a typical 2,3-tree, will be
obtained as by-products of an argument for enumerating 2,3-trees.

Let T, denote the number of n-leaf 2,3-trees. We shall show that

(3.1) T. 1,b"U(1),

where U(1) denotes a factor of the form exp O(1). More generally, since we shall be
dealing with "error factors" more often than with "error terms", we shall let U(f(n))
denote a factor of the form exp O(f(n)). In ordinary language, (3.1) determines T,, to
within constant factors.

OPTIMAL 2,3-TREES 5

The major steps in our derivation of (3.1) will be as follows. First we shall obtain a
recurrence having the sequence T, as its unique fixed point (Lemma 3.1). Then we
shall show that any sequence that is an "approximately fixed" point of the recurrence
must be "approximately equal" to the exact fixed point (Lemma 3.2). Finally we shall
show that

1

n

is an approximately fixed point of the recurrence (Lemmas 3.3, 3.4, 3.5). In the
derivation, the notions "approximately fixed" and "approximately equal" will be
given precise meanings by means of error factors.

This method of proceeding leaves unanswered the question of how the solution
was found in the first place. Experience with the enumeration of unlabeled trees in
general, and consideration of 2,3-trees in particular, suggests that Tn grows exponen-
tially, say as e An. An attempt to prove this, along the lines indicated above, reveals
that A must be In b and that a correction of the form nB is necessary. Another pass
through the proof reveals that B 1. Though with hindsight we might find a more
convincing motivation for the solution (by considering, for example, the singularities
of the generating function for Tn), this method of iteration is extremely robust and
after the first pass one can usually work out the successive corrections wi.th very little
wasted motion. An example of a more formidable problem which was solved in the
same way will be given later.

LEMMA 3.1. T satisfies the recurrence

(3.2) Tn= (/3 + ’) T0/.
2/3+3-r=n

Proof. Given an n-leaf 2,3-tree, consider the nodes at height one, that is, the
nodes whose successors are leaves. If /3 and r denote the number of binary and
ternary nodes, respectively, at height one, then 2/3 + 3r n.

An n-leaf 2,3-tree can be constructed by the following three-step procedure.
First, choose/3 and r satisfying 2/3 + 3r n. Second, choose the structure of the tree
below height one. This amounts to choosing r of the/3 + r nodes at height one to be
ternary nodes, leaving the remaining/3 to be binary nodes. This can be done in

ways. Third, choose the structure of the tree above height one. This amounts to
choosing a (/3 + r)-leaf 2,3-tree, and can be done in T+, ways. Since each n-leaf
2,3-tree can be constructed in exactly one way by this procedure, we arrive at
(3.).

The recurrence (3.2), together with the initial conditions T2= 1 and T3 1,
completely determines T,.

LEMMA 3.2. I[S, is a positive sequence satisfying

(3.3) S U(f(n))
2B+3"r=n ’T

where f(n) is an eventually decreasing positive function such that

(3.4) y’. /(2)

52 R. E. MILLER, N. PIPPENGER, A. L. ROSENBERG, AND L. SNYDER

converges, then

(3.5) T,=S,U(1).

Proof. Let AN denote the maximum of $,/T, for 1 <- n <- N. If N is large enough
that f(n) is decreasing beyond N, and if N =< n <- 2N, then

S. U(f(n))
2/3+3-r=,

<= U(f(n)) E
2/3+3-r=,

U(f(n))ANT,

<= U(f(N))ANT,,

since n =< 2N implies/3 + 7. _-< N, and f(n) <- f(N). Thus

and by induction

A_N <= ANU(f(N)),

Ae’N <=AN rI U(f(2N))
Os<t

ANU(o<=<tf(2sN))
Letting t-> with N fixed, we have

A2’N < U(1),

since AN is positive and (3.4)converges. Thus

S./T. <-_ U();

a similar argument shows that

so (3.5) is proved. 71
It remains for us to show that

S./T. >- U(1),

1

is an approximately fixed point of our recurrence. Specifically, we shall show that

This will be done in three steps as follows. First we shall estimate the summand,
separating our estimate into algebraically varying factors (which are U(log n)) and
exponentially varying factors (which are U(n)). We shall then focus our attention on
the exponentially varying factors and see that they impart to the summand a peaking
reminiscent of the central limit theorem" the greatest contribution to the sum comes
from those terms in which 3 and 7. are in certain fixed ratios to 3 + 7. and hence to n.
Finally we shall use this central peaking to estimate the sum.

OPTIMAL 2,3-TREES 53

Successive values of/3 and r differ by 3 and 2, respectively; it will be convenient
to have an index whose successive values differ by 1. Thus we introduce the index m
satisfying

n n
r=2m, 3 =-3m, 3+r=-m.

This index assumes integral values if n is even and half-integral values if n is odd.
LEMMA 3.3.

r 3 +r 2rr3r +r
where

E(>)=F(G()), F(A)=
H(A)+ln b

H(a)=-A Ina-(1-a)ln (l-a),

and In denotes the natural logarithm.
Proof. For the binomial coefficient, the estimate

1(/ +r1/2

exp (fl + z) / r

is an immediate consequence of Stirling’s formula. Define a such that

Then

r= a(O +), /3 (1 a)(/3 + r), n (2 + a)(fl + r).

(fl+r) 1 4+’= U()(+ 1
r 3+r 2rr3r(fl+r

Define such that

1/2

exp nF
3 +

Then Z and tz are related by

Thus

A
1-2/z z 2(2+A)

(fl+3fl 1
(b+" U(+)(1))1/2 exp nEr +r 2rrflr(fl+r

as was to be shown. 71
LEMMA 3.4. The function F(A) assumes its unique maximum (for 0 Z 1) at

A=-2.
At this point

F(A) In b, F’(A) 0, F"(A)
-1

(2 + A)A(1- A)’

54 R. E. MILLER, N. PIPPENGER, A. L. ROSENBERG, AND L. SNYDER

where the primes indicate differentiation. Accordingly, E(lx) assumes its maximum at

and at this point

2(2+A)’

(2 + A)3

E(M) In , U’(l/) 0, E"(m)=-A(I_A--.
Proof. We shall let H(0)= H(1)= 0; this makes H(A), and therefore also F(A),

continuous on the closed interval 0 <-A -< 1. These functions are in fact analytic in the
open interval 0 < A < 1, and thus F(A) can assume its maximum only where its first
derivative vanishes or at an endpoint. We compute the first derivatives

H’(A) In (1-A)/A,

H(A)+ In In (1 A)/A
F’(A)=- (2+A)2 +

2+A

Equating F’(X) with 0 leads to the equation

(1-a)3 a2.
In the interval 0 < a < 1 the left side decreases while the right side increases, so there
can be at most one solution. This occurs at

by virtue of the equation

This gives

1--4)-2= -1"

F(A) In ,
which is obviously larger than F(A) at either of the endpoints. We compute the second
derivatives

-1 H(a)+ln In (1-A)/A 1
H"(A)=A(I_A, F"(A)=2 (2+A)3-2 (2+i)2-(2+I)I(1-I)"

Since the first two terms are a multiple of F’(A), they vanish at A, leaving

F"(A)
-1

(2 + A)A(1 A)"

All of this can be carried over to E(/x), E’(/x), and E"(/z) through the derivatives

4 16)3a’(/x)=
(1 2ix)2 (2 + A)2, G"(tz)=

(1 2ix /3
2(2 + a

and the chain rule.
LEMMA 3.5.

(3.8) U()(1 i)
1/2

+
2rr/3r(/3 + r () r 1og3/2 r/)lbexp nE "\ n 1/2 n

OPTIMAL 2,3-TREES 55

Proof. The major steps of the derivation are as follows. The central peaking of
the summand will be exploited, allowing the tails of the summation to be neglected.
The decaudated sum can be simplified since the algebraically varying factors behave
like constants in the remaining range of summation. The resulting sum will be
estimated with an integral, to which the tails previously removed will be restored. The
recaudated integral can be evaluated by standard methods.

Our sum is

where
1))1/2Wm= U(+)(2zr/3.-/3 + exp

Since E(Ix) is analytic at M, it can be expanded in a Taylor series about M. The result
is

where

E(/x) In & -(Ix -M)2/62 + O((tx M)3),

2A(1- A)) /2
6= (2+f

Thus W,,, can be rewritten as

W.,- U(71)(1 i)
1/2

+. 2rr/3r(/3 + r

where

U((m Mn)3/n 2). V,,,,

V,,, exp -(m Mn)2/t2n.
We shall break our sum into three parts,

Ewe= Z w+ Z w+ E w,
m<a am<=b b<m

where

a= Mn (6A(1-A)n In n) 1/2

(2+a)3

(6A(1- A)n In n)1/2b Mn +
(2 + A)3

For any term in the sum over m < a,

and the other factors in W,. are O(&"). Since there are O(n) terms,

ma

A similar argument shows that

b<m

56 R. E. MILLER, N. PIPPENGER, A. L. ROSENBERG, AND L. SNYDER

SO

a--mb

For any term in the sum over a _-< m ---b,

m MnU(lgl/- n)\ n 1/2

from which it follows that

An u(logX/2 n) (1-A)n U(!.ogl/2 n) n u(!ogl/2 n)r=2+A\ /,/1/2 fl-- 2+A ,, //1/2 il+-r 2+A\ n 1/2

and further that

/.log3/2 n)[(2 + A)3 x/2

Wm ,..,\ nl/2 \2rr{iZ a))
Thus

U(1 ng3/2)/ (2+A)3

))1/2(3.10/ a<=m<--b2 Wm 0
172

n

\2rrZA ,;b"
_-< =<

V,,.,.

NOW,

(3.11) Y’. V,, | Vxdx +0(1),
aa

since the total variation of the integrand is 0(1). We shall express our integral as the
sum of three integrals"

b +oo

Integration by parts gives

Similar considerations show that

Vx dx =0

SO

(3.12)

Using the transformation

and the well-known integral

b +cx3

x Mn + an 1/2
Y

2 1/2exp-y dy=Tr

OPTIMAL 2,3-TREES 57

we obtain

I_ (2 + A)3 /

Working backwards through (3.12), (3.11), (3.10), and (3.9), we arrive at (3.8).
At last we have
TeoM 3.6.

1
T, =-&"U(1).

n

Proof. Lemmas 3.3, 3.4, and 3.5, taken together, prove formula (3.6), which,
taken together with Lemmas 3.1 and 3.2, proves the theorem.

The methods we have used to prove this theorem can be used to obtain a fairly
complete picture of what a typical n-leaf 2,3-tree looks like. The argument that
allowed us to neglect the tails of the sum in Lemma 3.5 shows that, with probability
approaching 1 as n ,

n u(lOgnX/2n) (1-A)nu(lOgnl/2n) An (lOng1/2 n)/3 +r=2+---- 1/2 /3
2+A 1/2 r=2+ A U 1/2

Thus the number of nodes at height one is less than the number of leaves by the factor
2 + A 2 + b-2= 2.381 , and these nodes are partitioned into binary and ternary
nodes in the golden ratio 1-A=b-a=0.618 A= b-2= 0.381 The same
ratios manifest themselves at greater heights, with the result that, with probability
approaching 1 as n, a 2,3-tree has height log2/A n + O(1). This implies that it also
has cost n 1ogz/A n +O(n). Typical 2,3-trees thus assume a position intermediate
between their bushy and scrawny forest-mates:

cost

bushy typical scrawny

n log3 n + O(n) n 1og2+A n + O(n) n log2 n + O(n)

(A=0.381...)

It should be observed that 2,3-trees that are "typical" in the static sense in which we
have used the word (with all n-leaf trees considered equally) have nothing to do with
those that are "typical" in the dynamic sense of being grown by the standard insertion
algorithm (with all n! orders of insertion considered equally). This is easily seen by
comparing the average proportions of binary and ternary nodes derived earlier for the
static sense with the corresponding average proportion found by Yao [4] for the
dynamic sense"

binary nodes:/3/(/3 + z)
ternary nodes: r/(/3 + r)

static dynamic

1_A=4-1 2_3
A b-2 13

The methods of this section can be applied to the number T of bushy n-leaf
2,3-trees or to the number T of scrawny trees. These numbers do not behave as

58 R. E. MILLER, N. PIPPENGER, A. L. ROSENBERG, AND L. SNYDER

smoothly with n as Tn does" for n a power of 3, T)= 1 and for n a power of 2,
T 1; for other values of n, T and T may be large. But one can show that

r(n3) O(n-X/2on), r(n2) O(n-X/2On),
where $- 1.324... is the real root of the equation 3= + 1. These upper bounds
are the best possible, in the sense that they become false if O(...) is replaced by
o(...). Since < $, bushy or scrawny trees constitute an exponentially small fraction
of all 2,3-trees.

The methods of this section can also be applied to the number Pn of profiles of
n-leaf 2,3-trees. The recurrence

23+3-r=

is obtained by analogy with Lemma 3.1. The solution of this recurrence is the same in
outline as that of (3.2), but much more elaborate in detail. The result is

P, U(1)n (1/2) lg2 n--lg2 lg2 n+lg2 e--1/2 (log2 n)(1/2)1g2 lg2 n,
which is perhaps not what one would have first conjectured.

4. B-trees. All of the results in 1-3 generalize from 2,3-trees to their more
practical relatives B-trees [2, 6.2.3]. Although these generalized results are often
harder to prove than their 2,3-relatives, the added difficulty is technical rather than
conceptual in nature. Accordingly, we shall discuss the generalizations in only a
cursory fashion, pointing out the slight differences in formulation as we go.

(4.1) A B-tree of order m (>-3) is a rooted, oriented tree whose root has 2_-<s <-m
successors, whose nonroot interior nodes have [m/2] <- s _-< m successors each,
and all of whose root-to-leaf paths have the same length.

(4.2) The detailed profile of an order m B-tree T is a sequence of (m 1)-tuples

a
where o- is the number of s-successor nodes at level of T.

A 2,3-tree is an order 3 B-tree; the quantities earlier denoted/3, and z, are now
denoted o- and o’, respectively. Obviously, if l> 1, all o- 0 for s < [m/2].

(4.3) The cost of the B-tree T with detailed profile A as in (4.2) is

d-1)(____COST (T)= Y (1+ 1 kr
1=0 k 2

Section 1. The results of 1 and their proofs translate verbatim to our new
setting.

Section 2. Lemma 2.1 and its proof translate verbatim. Lemma 2.3 requires some
translation, as follows.

LEMMA 2.3’. If an order m B-tree has an "unsaturated" node at level (i.e.,
r > 0 for some s < m), and if it has (at least) [m/2] 1 "available" keys at level j >

(i.e., (k- [m/2] + 1)ort >_- [m/2]- 1),
\ [m/2] <k _rn !

then it is not bushy.
The proof of Lemma 2.3’, as .well as that of Theorem 2.4 carry over in a

transparent way to B-trees, once one has translated definition (2.2) by replacing 2 and
3 by Ira/2] and m, respectively.

OPTIMAL 2,3-TREES 59

The linear-time algorithm for constructing bushy trees requires only two emen-
dations of any substance in order to accommodate general B-trees. First, in Phase 2 of
the algorithm, one replaces the equations (2.4) by the equations

(4.4) ui Z o., ’i +1 2 so"

hence, the detailed profile of the tree is no longer uniquely specified by the profile.
However, one can still produce a detailed profile for the tree from the equations (4.4)
in time O(log K), as the reader can easily verify. The second required change is to the
definition (2.7) of FILLORDER; the needed change is obvious.

Finally, the duality between the optimal and pessimal B-tree is almost as striking
as that between the corresponding 2,3-trees. The major distinction results from the
fact that the "2" in 2,3-trees plays the dual role of [m/2] and the minimal degree of
the root. Thus the scrawny order m B-tree profile satisfies the equations

d [log[m/21 (Vd/2)/+ 1,

,, max ([rn/2] ’, [v,+l/rn]),

Vo 1, V’l= 2.

The proof of the characterization theorem, however, mirrors that of the charac-
terization of bushy trees, as is the case with 2,3-trees.

Section 3. The B-tree generalization of 3 can be done, with much more labor
but no more insight. The major observable change is that the golden ratio b is
replaced by a less familiar algebraic number whose degree depends on the order of the
B-trees studied.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] D. E. KNUTH, The Art of Computer Programming III: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

[3] A. L. ROSENBF.RG AND L. SNYDER, Minimal-Comparison 2,3-Trees, this Journal, 7 (1978), pp.
465-480.

[4] A. C.-C. YAO, Random 3-2 Trees, Acta Inform, 9 (1978), pp. 159-170.

SIAM J. COMPUT.
Vol. 8, No. 1, February 1979

(C) 1979 Society for Industrial and Applied Mathematics

0097-5397/79/0801-0005 $01.00/0

A ROUND-OFF ERROR MODEL WITH APPLICATIONS
TO ARITHMETIC EXPRESSIONS*

VIJAY B. AGGARWAL’I" AND JAMES W. BURGMEIER’)"

Abstract. An arithmetic expression is evaluated in a form most suitable to a given computing structure.
To select this "suitable form" restructuring algorithms using laws of associativity, commutativity, and
distributivity have been proposed. This raises the question of how different ways of evaluating an expression
influence the propagation of errors due to round-off.

An error model consisting of "error vectors" is developed to obtain the absolute error bound satisfied
by the computation of a given expression. An error vector algebra is presented that vastly simplifies the
calculation of error bounds; yet this model yields the same bounds as other models. The model is used to

analyze the error accumulation for different evaluations of division-free arithmetic expressions. With error
complexity defined to be the minimum error bound incurred under all modes of evaluation of an expression,
a restructuring algorithm is given that minimizes error complexity.

Key words. Arithmetic expression, restructuring, parallel evaluation, round-off error model, error
complexity, error vectors, arithmetic laws, minimal error

1. Introduction. During the past few years many articles have appeared concern-
ing algorithms for the computation of arithmetic expressions, especially with regard to
parallel evaluation. Using associative, commutative, and distributive laws, these
algorithms restructure an arithmetic expression into an equivalent form suitable for
parallel evaluation. The predominant theme of these papers has been to compare
these restructuring algorithms on the basis of the computational complexity of the
resultant form, namely the number of parallel steps required for evaluation. One
important aspect of restructuring algorithms is an analysis of the round-off error
incurred in the evaluation of the restructured form. This is an open problem
mentioned in Brent [1], Muller and Preparata [8], and Stone [10]. This paper is a step
toward addressing that shortcoming.

Examples may be cited for which different techniques of evaluating a given
arithmetic expression can result in significantly different error bounds. In this paper
the error accumulation for different evaluations of division-free arithmetic expres-
sions is analyzed. Our approach will be to develop an error model that facilitates the
computation of error bounds satisfied by a given arithmetic expression. This model
involves writing an expression in a vector form and computing two associated error
vectors by means of some rules established in the Appendix. The desired error bound
will then be the inner product of the expression vector with the error vectors; This
model possesses at least three important features: (i) the error vector arithmetic rules
are fairly simple and through their use the error bound can be found quickly and
easily; (ii) the bounds produced in this way agree completely with those obtained by
process graphs [2] or Wilkinson’s error analysis [11]; and (iii)this model affords an
analytic approach for comparing the error in various restructured forms of an arith-
metic expression. The last feature provided the original stimulus for the development
of the model: we wanted to assess the effects of restructuring on round-off error. The
model presented here has enabled us to prove some important results concerning the
use of the distributive, commutative, and associative laws in restructuring processes.
We show that round-off error bounds are unaffected by such restructuring except for
the use of additive associativity.

* Received by the editors September 20, 1976, and in final revised form May 26, 1978.

" Department of Mathematics, University of Vermont, Burlington, Vermont 05401.

6O

A ROUND=OFF ERROR MODEL 61

2. Assumptions and definitions. When using floating point arithmetic with fixed
ord length each operation results in an error, referred to as round-of[error. It is
important to recognize that this error is not due to errors in the quantities used in the
computation; rather, it is an independent source of error. Now let E and F be two
expressions with absolute errors AE and AF, respectively. Then the relative error in
the sum E +F is given by

A(E +F) AE AF
E +F E +F+----++

where ra is the round-of[error introduced by the addition itself (typically in a binary
computer with a digit mantissa, Iral -<- 2-’+1). Thus
(2.1) A(E + F) AE + AF + (E + F)ra
similarly

(2.2) A(E F) AE AF + (E F)rs
and

(2.3) A(E F)= FAE +EAF+ (E F)rM.

Here rs and r are round-off errors introduced due to the operations of subtraction
and multiplication, respectively. In (2.3) the term AEAF should also appear, but we
shall ignore such products of errors.

Since we are analyzing round-off errors, we shall assume no errors in the input
data. Throughout the paper all arithmetic expressions will be division-free. Such an
expression E can be written as a sum of products, called terms, T1," , Tk. Let be a
computed value of E. Repeated use of (2.1)-(2.3) results in an expression for the error
consisting of a sum of the terms in E multiplied by round-off errors r and by positive
integers p (due to accumulation):

Error E-E TlPlr + T2pEr2 + + TkPkrk.
Let rA be a bound on all the r’s due to addition or subtraction, and let rt be a bound
on all the r’s due to multiplication. Then

Now this bound is the same bound we would have obtained by using ra for the
round-off error in all additions and subtractions and rt for the error in all multi-
plications. Furthermore all the terms in E may be included in the coefficients of ra and
rt by writing the above inequality as

(2.4) tE-E’I<-(. ITila,)rA+(ITilmi)rM
i=1 i=1

where a is either zero or the appropriate p and m is either zero or the appropriate p.
With the inequality written this way it is clear that the two strings of nonnegative
integers, (al, a2," ak) and (m,. , ink), completely describe the error bound. We
shall call these strings, or vectors, the rA and rt error vectors, respectively.

These two vectors are determined by the mode of evaluation of the arithmetic
expression, except that the order of their components is not uniquely determined. To
remedy this situation we shall define an "expression vector", whose components are
essentially the terms of the arithmetic expression, and which fixes the order in the

62 VIJAY B. AGGARWAL AND JAMES W. BURGMEIER

error vectors (a 1,’’’, ak) and (m 1,’", mk). To this end let E be an arithmetic
expression and let E denote its expression vector. Then E can be defined recursively
as follows"

(1) If E a, and indeterminate, then " ([a I).
(2) If E =F+ G, and F= (fx," ",fl), G (g1,. ., gk), then E

(fx,. , f, g,. , g). We shall write E F + G.
(3) If E F a and F (fx, f2,’" ", ft), then E (fx G, f2G,..., ftG), where fiG

is usual scalar multiplication of a vector. We shall write E F. G.
For example, if E a + b, F c (d e)+ f, then (la I, [b [),

and

if" (Icdl, Ice[, Ill), Ice},

* (lacdl, lacel, lafl, [bcdl, Ibcel, Ibfl)

,= (la[, labl, Iba[,
With this notation, we can write some previous equations in a form that will be

more useful for our purposes. Since we are interested in analyzing algorithms them-
selves and not how they perform on data of a specific character, we shall regard the
input data as indeterminates. Because of this, we must really do a "worst case" error
analysis and our bounds will generally be pessimistic. Now, let A (al,. ", a) and
M (m 1, m) be the rA and rt error vectors for an expression E. Then the (worst
case) absolute error bound, AE(E), is given by the right side of (2.4). In the notation
just introduced we have

(2.5) AE(E) (A E)ra + (M. E)rt.

The worst case error bound in eq. (2.5) is obtained by modifying eqs. (2.1)-(2.3) to"

(2.6) AE(F + G)= AE(F)+AE(G)+ [1. (F + G)]rA

(2.7) AE(F G)= (1. G)AE(F)+(1. F)AE(G)+[1. (F * G)]r

where, for scalar c, (c, c,. , c), a vector of appropriate length.
At this point there is no justification for separating rA and rvt, but our reasons for

this will become clear in the sequel. Also, we will no longer use the bar to distinguish
an expression vector from an expression; whether we are considering E to be an
expression or its expression vector will be apparent from the context. There are
several instances where we refer to (2.5)-(2.7); we will refer to the "unbarred"
versions of these equations as (2.5’), (2.6’), and (2.7’).

The error vectors introduced above satisfy several laws of arithmetic which
facilitate their computation. To state these rules, let A, M be the rA, rt error vectors
for the expression F and B, N be those forthe expression G. Then the rA, rt error
vectors for the expression F + G will be denoted by A +,, B and M+, N, and are given
by

(2.8) A+aB=(I+A,I+B)

(2.9) M+,,N=(M,N).

Let A (a,..., ak) and M (ml,’’’, mk). The rA, rt error vectors for F. G will
be denoted by A .a B and M .,, N, and are given by

(2.10)

(2.11)

A *,B --(al +B, d2+B,’’’, ak +B)

M*,,, N (1 + rl+N, 1 + rfi2+N, , 1 +rfi, +N).

A ROUND-OFF ERROR MODEL 63

These rules are derived in the Appendix and form the basis of our error model.
They provide a simple means to quickly obtain error bounds for arithmetic expres-
sions. The procedure involved is much simpler than either process graphs [2] or
Wilkinson’s forward error analysis [1 1], and yet produces the same error bounds for
division-free expressions. For example, consider the expression

(2.12) E=(x21 +X2 +X +X24)(YlZa+Y2Z2).
For convenience, we will assume yl, y2, Z1, Z2 are positive. A computational tree will
be convenient to display the vectors and is shown in Fig. 1. The rM vector is shown in
brackets], and the rA vector in parentheses). The expression vector E is

(XlyZ, XlY2Z2, X2YlZl, xY2Z2,xylzx, x3y2z2, xyizx, XaY2Z2).

From Fig. 1,

A=(4,4,4,4,3,3,2,2),

(o) (o)
[Ol [Ol
XI XI

[1] *(1,ID
[1,1]

X2 X2 X3 X3 X4 X4

+

’\.
!

(2,2"1) +
[1, 1111

[1,

(o) (o) (o) (o) (o) (o) (o) (o) (o) (o)
[ol [ol [ol [Ol [Ol [ol [Ol [Ol [Ol [Ol

yi zl y2

Ill *

l//

/ (4, 4, 4, 4, 3, 3, 2, 2)
[3,3,3,3,3,3,3,31

E

FIG. 1. A computational tree for expression (2.12) showing rA vectors, (), and rM vectors].

This example was chosen since the left factor in E is examined in [2] using process
graphs and the right factor is done in [11]. Both analyses are tedious and involved,
requiring several pages of equations. With the present approach even the combined
expression is handled easily and quickly.

3. Sum and product of n numbers. We now briefly study the error accumulated
in the evaluation of a sum of numbers. Since any expression is equivalent to an
expression consisting of a sum of terms, we will use these results in 5. Let S Y ai,

where each ai is an indeterminate. Since the rM error vector for S is clearly zero, the
absolute error bound, AE(S), is given by

IS- gI<-AE(S)= (A S)rA

64 VIJAY B. AGGARWAL AND JAMES W. BURGMEIER

where is the computed value for S and A is the rA error vector depending on the
evaluation mode for $. For the sequential-sum algorithm

S (’" ((a + a)+ a3)+ + a)
the rA error vector is As=(n-l,n-l,n-2,’’’,2,1). For the parallel-sum
algorithm

$=(’’’ ((al+a)+(a3+a4))+ +(a,,-l+a,,)’’ ")

with n 2, the rA error vector is Ap =/. These rA error vectors can be obtained
easily from the error vector arithmetic. To compare the different evaluation modes for
S, we shall use the "sum norm" on the respective rA error vectors. Hence the best
computational scheme is the one with the least sum norm for the error vector A, where
the sum norm of A (r, o’, , r,,) is defined by

i=1

The next theorem relates the vector A to the associated binary tree given by the
particular evaluation mode for the sum.

TI-IZORZM 1. Let S be the sum of n variables a, a,. Then, for any evaluation
mode of S (given by an associated binary tree, T), the absolute error bound is

AE(S)=rA E lailwi(a)
i=1

where w(a) is the number of edges in the unique path from the leaf at to the root.

Proof. It suffices to show that the rA error vector Er is given by
(w(al), w(a2),..., w(a,)). When n 2, the error vector is (1, 1). For n _>-2, let T
L ^ R where L and R are respectively left and right binary subtrees with EL and ER as
the rA error vectors associated with the roots of L and R, respectively. Then using
(2.8), we have

ET=(1 +EL, 1 +ER).

By induction, in the error vector EL, the coefficient corresponding to the variable ai in
the subtree L is the index of the node a in L. Clearly the index of the node a in T
equals one plus the index of a of L. Similar results hold true for the right subtree R.
Since {a,..., a,} is the disjoint union of the variables in L and those in R, we get

ET (w(al), w(a,)).

It is easily shown that for a binary tree with n leaves, the sum j=l w(ai) is
minimized by an almost balanced tree. Thus consider the extended parallel sum
algorithm for n 2k+i, 0<i<2k" 1)add al a2,’’" a2i in parallel yielding sums"

2) add these in parallel with the remaining 2k terms. For this algorithm the rA error
vector is (k+l,k+l,...,k+l,k,k,...,k) and this is the best computational
scheme to add n numbers.

The extended parallel sum algorithm or any scheme to minimize the norm of the
r, error vector is closely related to Huffman coding [3]. In fact given a 1, a2," a, all
positive and with potentially different magnitudes we can form the sum with minimal
error bound by adding quantities as if the variables were leaves on a Huffman tree
whose path lengths are obtained from the magnitude of the variables. For positive and
negative variables, the positive and negative items may be summed separately with the
use of two such Huffman trees and then these results summed.

A ROUND-OFF ERROR MODEL 65

Since an arithmetic expression is equivalent to an expression involving a sum of
terms and a term is the product of variables, we consider ways to compute products.
The following theorem is easily established using binary trees and the rule for .,,, given
in (2.11).

THEOREM 2. Let P be the product of n indeterminates al,. a,. Then for any
evaluation mode for P requiring n- 1 multiplications, the absolute error bound is
AE(P) (n 1)lPlr.

This result shows that all evaluation modes to compute the product of n numbers
are errorwise equivalent.

4. Error complexity. The sum and product of n numbers indicate that there is a
certain minimum error incurred in every computational scheme. The minimum error
inherent in a given arithmetic expression is defined in the next paragraph. For an
arithmetic expression E, let F consist of all arithmetic expressions obtained from E by
using the associative, commutative, and distributive laws. Furthermore, with each
member F of F let there be associated a well defined mode of evaluation. For
example, for the expression E a + b +cd, the expressions FI (a + b)+cd, F2
a + (b + dc), and F3 (a + cd)+ b are equivalent to E and there is an unambiguous
mode of evaluation for each F. Thus F, F2, F3 belong to F but E F. It will be
convenient to have E belong to F. Without loss of generality, we assume that a left to
right evaluation is made for any ambiguous subexpression in E. Thus E F1 in the
above example.

The error complexity EC(E) of an arithmetic expression E is defined as the
minimum over F of the error bounds yielded by members of F"

(4.1) EC(E) min {(A.)r, + (M.)rt}.
F6F

The subscripts on the error vectors An and M are to emphasize that they may
differ for the different members of F depending on the mode of evaluation. The results
of 3 show that

and

EC(= aj) (nk + 2i)rA, n=2k+i,

EC(I aj) (n 1)rM.
\i=1

This notion of error complexity is used to compare restructuring algorithms for
arithmetic expressions. A restructuring algorithm is said to be a minimal error
algorithm a if for every arithmetic expression E, the resultant equivalent form a(E)
satisfies the error complexity of E. In the next section we prove some properties of ra
and rt error vectors that result in the discovery of a minimal error algorithm.

5. Invariance of errors under restructuring. We now turn our attention to possi-
ble changes in error bounds when restructuring algorithms are used. Typically
restructuring of an arithmetic expression is done by using the associative, com-
mutative, and distributive laws. The next four theorems indicate the extent to which
restructuring can alter the error bounds for arithmetic expressions.

TI-IEORE 3. The use of the distributive law in a restructuring algorithm for an
arithmetic expression does not change the round-off error bounds for the resultant
expression.

66 VIJAY B. AGGARWAL AND JAMES W. BURGMEIER

Proof. At any stage of a restructuring algorithm the distributive law changes the
mode of evaluation of an arithmetic expression by introducing

E (F + O)= (E F)+ (E G)

where E, F, G are the subexpressions at that stage. We shall show that

(5.1) AE(E (F + G))= AE(E F +E G)

to prove that the error bounds do not change. We first verify that the ra contribution
to both sides of (5.1) is the same. Let A, B, C be the r error vectors for E, F, G. Then
we must show that

(5.2) [A , (B +, C)]. [E ,(F+G)]=[(A ,,B)+,(A ,, C)]. [(E F)+(E G)].

Some identities will shorten the calculations"

(A + B). (E + F) (1. E)+ (1. F)+ (A. E)+ (B. F),

(A ,, B). (E F)= (J. E)(1. F)+ (B. F)(1. E),
and

1.(E.F)=(1.E)(1.F).

The first follows from (2.8) and the definition of the inner product, the second follows
from the lemma in the Appendix and the definition of *a, and the third is a vector
version of multiplication of expressions. Let LHS and RHS denote the left and right
side of (5.2). Also let H F + G and D B +,, C. Then using the three identities,

LHS (A D). (E H)

(A. E)(1. H)+ (D. H)(1. E)

(A. E)(1. (F + G))+ [(B + C). (F + O)](1. E)

(A. E)(1. F)+ (A. E)(1. G)

+ [(1. F)+ (1. G)+ (B. F)+ (C. O)](1. E).

Next let R A ,a B, S A ,a C, Y E F, Z E G. Then again by the identities,

RHS (R + S). (Y + Z)

(1. Y)+ (1. Z)+ (R Y)+(S.Z)

1. (E F)+ 1. (E G)+ (A , B). (E F)+ (A C). (E G)

(1. E)(1. F)+ (1. E)(1. G)+ (A. E)(1. F)

+ (B. F)(1. E)+ (A. E)(1. G)+ (C. G)(1. E).

This is just a rearrangement of the terms appearing in LHS; hence LHS RHS,
proving the invariance of the rA contribution to (5.1). The proof for the contribution
of rt is done in a similar way, using the relations

(M +,, N). (E +F)= (M. E)+ (N. F)

(M ,,, N). (E F)= (E)(F)+ (E)(N F)+ (F)(M E).

These results follow from the definitions of +,, and ,,,. This completes the proof.
Using the identities given above the following results may be proved.
THEOREM 4. The use of the commutative law in a restructuring algorithm for an

arithmetic expression does not change the round-off error bounds for the expression.

A ROUND-OFF ERROR MODEL 67

This may be phrased in terms oj" error vectors as follows.
(A +,, B) (E +F) (B + A). (F + E),

(M +., N). (E +F)= (N +,,, M). (F + E),

(A ,,, B). (E F) (B , A). (F E),

(M *m N)" (E * F)= (N ,,, M). (F E).

THEOREM 5. The use of the multiplicative associative law in a restructuring
algorithm for an arithmetic expression does not change the round-off error bounds for the
expression.

In terms of error vectors this may be stated in the following way.

[A ,,, (B , C)]. [E,(F, G)] [(A *a B)* C]" [(E*F)* O],

[M ,,, (N ,,, P)]. [E (F G)] [(M ,, N),,, P]. [(E F), O].

THEOREM 6. The use of the additive associative law in a restructuring algorithm for
an arithmetic expression does not change the contribution of multiplications to the
round-off error bounds for the expression.

In error vector notation"

[M +,, (N +,, P)]. [E + (F + G)] [(M +, X)+,, nl" [(E + F)+ G].

Theorems 3 to 6 lead to the following corollaries.
COROLLARY 1. Let F be the class of equivalentforms ofan arithmetic expression E.

Then, for any member F of F

MF F ME" E
where MF and ME are the rM error vectors of F and E, respectively.

COROLLARY 2. Let F be an equivalent form of an arithmetic expression E obtained
by using any laws except additive associativity. Then

AF.F=AE.E
where AF and AE are the ra error vectors ofF and E, respectively.

A restructuring algorithm uses the five laws of additive and multiplicative com-
mutativity, additive and multiplicative associativity and distributivity to output an
equivalent form of an expression suitable for a given computing architecture. The
comparison of the absolute error bound for these equivalent forms requires the
derivation of their respective r and ru error vectors. The r error contribution,
(M. E)rlVt, remains invariant under the use of all five laws; the rA error contribution,
(A. E)rA, is changed only by the use of additive associativity.

These two corollaries lead to a simplification of error complexity EC. Applying
Corollary 1 to (4.1) we get

EC(E rM(Mz 1 + r, min (AF" 1).
Fr

The second term is proportional to the minimum norm of the rA error vector. This
allows us to seek a restructuring algorithm a which minimizes IIAII for all arith-
metic expressions E. Such an algorithm is

ALGORITHM re. Let E be any division-free arithmetic expression.
1. Use the distributive law repeatedly to obtain an expression E’ equivalent to E

and consisting of a sum of products.

68 VIJAY B. AGGARWAL AND JAMES W. BURGMEIER

2. Use the extended parallel sum algorithm on E’, yielding the expression a(E).
For example, if E a(b + c + d)+ e(f+ g), then a(E)= ((ab + ac)+ ad)+ (el+ eg).

THEOREM 7. For any division-free expression E, let F be the class of expressions
equivalent to E. Then

IIA()II- min IIAII.
FEF

Proof. Among all possible modes of evaluating E there is one, say F, for which
IIAII is a minimum. In applying step 1 of a to F, assume that parentheses are inserted
so that no use is made of the additive associative law. If F’ denotes this altered form of
F at this stage, then Theorem 3 says that IIAII IIA’II. Step 2 of a is an application of
the results of 3, and there we obtained (in present notation) that
Since IlArll is minimal,]IA()I[is also minimal. Now the terms of a(E) are just a
permutation of the terms of a (F) and hence the same is true of A,,(E) and A,(F). Thus
Ila()[I- [IA()II--IIAII, yielding that IIA()[I is minimal.

6. Two examples
A. We give an example to show that there are arithmetic expressions for which

the equivalent form that minimizes the tree height does not yield the minimum error
bound. Let

E=al+a2+a3a4+asa6aTag+a9’’’a16+ +a65" a128.

There are 8 terms in the expression E and a minimum tree height computation of E,
with height 7, is given by the equivalent form

E’= (... [{(al + a2)+(a3a4)}+((asa6)(a7ag))]+ ").

Another equivalent form E" of E is

E"= (... {(al + a2)+ (a3a4 + (aa6)(a7ag))}+" ")

where the 8 terms are calculated first and then added in a parallel manner.
The corresponding rA error vectors A’ and A" are

A’=(7,7,6,5,4,3,2,1) and A"=3.

(The rt error vectors for E’ and E" are the same.) Thus A’ does not yield the
minimum error bound since IIA’II grows as O(n 2) (n 8 here) whereas IIA"I[grows only
as O(n log2 n).

B. The second example concerns the expression

E1

We evaluate E1 by using the extended parallel sum algorithm (EPSA)on each factor
and then multiply. This requires (n + m-2) additions and one multiplication..An
equivalent form using only the distributive law is

E2 Ui
=1

where PS.A is used on each inner sum and then again on the outc sum. This version
uses mn- 1 additions and mn multiplications. A third equivalent form, using additive
associativity on E2, is

E3 Ul Vl -+- U1 V2 -[-- U1 V3 q-"

A ROUND-OFF ERROR MODEL 69

in which the terms are added in a left to right order. E3 requires the same number of
operations as E2.

By our results E1 and E2 satisfy the same error bound, but the error bound for E3
is considerably larger. This was tested with a variety of Ui, V., m and n. In all cases E1
and E2, agreed to six significant digits, while E3 differed in the third place. (Compu-
tations were done on a 6 digit base 16 computer: rA9X 10-7.) For example,
m- n- 100, Iu, chosen randomly in [0, 2], IVI chosen randomly in [0.5, 1.5] and
both with random signs produced:

Ex=-.317816, E2=-.317813, E3=-.322394.

Note that Ex has 198 adds and 1 multiply, while E2 and E3 have 9,999 adds and
10,000 multiplies!

7. Concluding remarks. Restructuring algorithms produce different equivalent
forms of an arithmetic expression and we have raised the question of round-off error
propagation and accumulation in the evaluation of these equivalent forms. In order to
compare the absolute error bound for different evaluating modes, we have assumed
that no error exists in data or inputs. Furthermore, in order to avoid considering any
specific characteristic of the data or making assumptions about the relative magni-
tudes of inputs, we have done a worst case error analysis of restructuring algorithms.

We have shown that for division-free arithmetic expressions the absolute error
bound can be broken up into two parts, one due to additions and subtractions and the
other due to multiplications. These two parts are completely determined by the rA and
rt error vectors and the expression vector. Different modes of evaluating an arith-
metic expression change the rA and rt error vectors. Since associative, commutative,
and distributive laws form the essential part of a restructuring algorithm, we examined
the invariance properties of rA and rt error vectors under these transformations. This
enabled us to determine the extent to which these error vectors are changed by a
different evaluation mode.

For any numerical problem there are different ways of computing the results. We
defined the error complexity to be the minimum error inherent in the problem,
irrespective of the evaluation mode, thus leading to the concept of minimal error
restructuring algorithms. Such an algorithm has been presented; it transforms every
division-free arithmetic expression into a form whose error bound is the error
complexity of the original expression.

In view of the invariance of the error bound under most transformations used in a
restructuring algorithm, it is clear there are many modes of evaluation which will yield
the error complexity. It is an open problem to find a restructuring algorithm whose
error bound is the error complexity for the expression, and which minimizes compu-
tation time, or storage or some other quantity.

Appendix. We now outline the proof of the addition and multiplication rules for

rA and rt error vectors given in (2.8)-(2.11). The following lemma is used in the
proof.

LEMMA. Let V (/21,/A2,’ /3k), E (e,. , ek), W (w1," Wl) and F
(fl,""", f) be arbitrary vectors. Then

(1. F)(V E)+ (1. E)(W. F)

(+ W, 2+ W, Ok+ W). (eF, ekF)

(, + v, ,+ v,..., ,, + v). (fF., hE,..., f,E).

70 VIJAY B. AGGARWAL AND JAMES W. BURGMEIER

Proof.
(1.F)(V’E)+(I’E)(W’F)=(f,+f2+’" +fl)(l)lel-t-’’" +Vkek)

+(el+e2+ +ek)(W.F)

el(rill + Vlf2 + + rift)+ el(W. F)+ + ek(Vkfl + Vkf2 + + Vkfl)
+ek(W.F)
e1(/7," F)+ el(W. F)+ + ek(k" F)+ ek(W. F)

(+ W). elf + (72 + W). e2F + + (Ok + W). ekF

(+ W, 2+ W,..., Ok + W). (eF, e2F,..., ekF)

and similarly the second part of the equality in the lemma can be proved.
THEOREM A. 1. Let E, F and G be expressions such that G E + F. IfA, B and C

are the ra error vectors for E, F and G respectively, then

C=(I+A,I+B).

Similarly if M, N and P are the rM error vectors for E, F and G respectively, then

P=(M, N).

Proof. Rewriting equation (2.6)for G E +/- F, we have

AE(G)= AE(F)+AE(F)+[1. (E + F)]ra.

Substituting the expression for the absolute error bounds AE(E), AE(F), and AE(G)
given by (2.5’), we get

(C O)rA + (P" G)rM (A E)rA + (M. E)ru + (B F)rA + (N F)r + (1. O)rA.

Equating the coefficients of ra yields

(C. G)= (A. E)+ (B. F)+ 1. (E, F)

and hence C (1 + A, 1 + B). Equating the coefficients of rM yields

P. O (M. E) + (N. F)

so P (M, N).
THEOREM A.2. Let E and F be arithmetic expressions with A and B as r error

vectors andMand N as rM error vectors, respectively. Then

A .B =(i, +B, a+B,..., a +B)

M*,,N=(l+rfix+N, l+rfi2+N,..., 1 +rfik +N).

Proof. Let H E F and AE(H) (D. H)ra + (0" H)rM. We wish to relate D to
A, B and O to M, N. Since

AE(H) (1. F)AE(E)+ (1. E)AE(F) + (1. H)rM,

using (2.7) for H E F, we get

(D H)rA + (O H)r (1. F)[(A. E)ra / (M. E)rM]
(A.I) +(.)[(B. P)rA +(N’P)rM]+ T" (elP, e2P, , ekP)rM
where E (e,. ., ek) as usual.

Since H (exF, e2F,. , ekF) write D (Dx, D2," Dk), where each Di is a

A ROUND-OFF ERROR MODEL 71

vector of length/--the length of F. Equating the coefficients of rA in (A.1) and using
the lemma, we obtain

(D1, D2," Dk)" (elF, e2F, ekF)
(41 - B, 42 -.i- B, 4k + B)" (elF, e2F, ekF).

Consequently, D 4g + B, or D (41 "t- B, 4_ + B, , dk -t- B). Equating
coefficients of rA in (A. 1) yields

O.H=(1.F)(M.E)+(1.E)(N.F)+ 1.(elF, e2F, ekF).

the

Again using the lemma and writing Q (Ol, Q2, Qk), each Qi a vector of length
l, produces

(I)1, Ok)’(elF, ekF)=(rfil+ N, + N).(elF, ekF)
+ 1" (elF,’’’, ekF).

Hence Qi 1 + ffti + N, or

O (1 +rhl+N, 1 + fftk +N).

We now give some properties of the rA and rM error vectors which are easily
established.

While the operations +a, +,,, *a, *,, are not commutative since the order of the
components is important, the following results are true.

THEOREM A.3: (a) For rA error vectors A, B, C we have
(i) (A ,, B),, C A , (B , C)

(ii) A *a (B +a C)- (A *a B) +a (A *a C).
(b) For rl error vectors M, N, P we have

(iii) (M ,, N),,. P M ,,. (N ,,. P)
(iv) (M +,,, N)+m P M+m (N +,. P)
(v) M ,, (N +,,, P)= (M ,,, N)+m (M ,, P).

Note that +, is not associative.

Acknowledgment. We would like to thank the referee for many valuable com-
ments including the connection with Huffman coding.

REFERENCES

[1] R. P. BRENT, The parallel evaluation of arithmetic expressions in logarithmic time, Complexity of
Sequential and Parallel Numerical Algorithms, J. F. Traub, ed., Academic Press, New York, 1973,
pp. 83-102.

[2] W. S. DORN AND D. MCCRAKEN, Numerical Methods with Fortran IV Case Studies, John Wiley,
New York, 1972.

[3] D. E. KNUTH, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley,
Reading, MA, 1968.

[4] P. M. KOGGE, The numerical stability of parallel algorithms for solving recurrence problems, Digital
Systems Lab., Stanford Univ., Stanford, CA, Sept. 1972.

[5] , Parallel solution of recurrence problems, IBM J. Res. Develop., 18 (1974), pp. 138-148.
[6] D. J. KUCK AND K. MARUYAMA, Time bounds on the parallel evaluation of arithmetic expressions,

this Journal, 4 (1975), pp. 147-162.
[7] P. LINZ, Accurate floating-point summation, Comm. ACM, 13 (1970), pp. 361-362.
[8] D. E. MULLER AND F. P. PREPARATA, Restructuring of arithmetic expressions for parallel evaluation,

TR 676, Coordinated Science Lab., Univ. of Illinois, Urbana, 1975.
[9] H. S. STONE, An efficient parallel algorithm for the solution ofa tridiagonal linear system of equations, J.

Assoc. Comput. Mach., 20 (1973), pp. 27-38.

72 VIJAY B. AGGARWAL AND JAMES W. BURGMEIER

10] ,Problems of parallel computation, Complexity of Sequential and Parallel Numerical Algorithms,
J. F. Traub, ed., Academic Press, New York, 1973, pp. 1-16.

11 J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, NJ, 1963.
[12] S. WINOGRAD, On the parallel evaluation of certain arithmetic expressions, J. Assoc. Comput. Mach.,

22 (1975), pp. 477-492.

SIAM J. COMPUT.
Vol. 8, No. 1, February 1979

(C) 1979 Society for Industrial and Applied Mathematics
0097-5397/79/0801-0006 $01.00/0

GENERATING TREES AND OTHER COMBINATORIAL
OBJECTS LEXICOGRAPHICALLY*

S. ZAKS" AND D. RICHARDS’

Abstract. We show a one-to-one correspondence between all the ordered trees that have no + leaves
and nt internal nodes with ki sons each, for 1,. , t, (hence no t (ki- 1)ni) and all the lattice paths in
the (t + !)-dimensional space, from the point (no, nl,..., at) to the origin, which do not go below the
hyperplane x0=tl (ki-1)x. Procedures for generating these paths (and thus the ordered trees) are
presented and the ranking and unranking procedures are derived.

Key words, ordered tree, lattice path, lexicographic order, ranking, unranking

1. Introduction. Motivated by the problem of generating, ranking and unranking
all k-ary trees with n nodes, we solved the analogous problem for all trees with ni
nodes having ki sons each, 1, 2,..., t, and ,no+ 1 leaves (hence no tl (ki- 1)ni).

We establish a 1-1 correspondence between those trees and the integer
sequences a a2... am, n =to n, which have ng occurrences of ki for i= 1, 2,..., t,
and no O’s, such that in each prefix a a_...at, 1 <-_ l<= n, the number of O’s is not
greater than Y’ (k- 1). (number of ki’s in the prefix).

It turns out that there is also a 1-1 correspondence between these sequences and
the lattice paths L Lo LI"" Ln in the (t +.t)-dimensional space, from the point
(no, nl,’’ ", at) to the origin (0, 0,..., 0), which do not go below the hyperplane
Xo tx (ki- 1)xi. These correspondences will be shown in 2.

The algorithm, which lexicographically generates a modified version of the above
sequences, is discussed in 3. The ranking and unranking procedures are the subject
of4.

2. Trees, sequences and paths.
2.1. Ordering of trees. We will deal solely with ordered trees (or planted planar

trees). We will follow the conventions in [5]. LetK (k0," , k,) and N (no," ,
be (t + 1)-tuples of nonnegative integers, such that kt > k,-1 > > ko 0 and no, (ki- 1)n. We are concerned with the set of trees T(K, N) where each tree has ni
nodes with k sons each for 1 <- <- t, and for convenience, there are no + 1 nodes with 0
sons, i.e. leaves. If 1, then we have regular2 kl-ary trees with nl internal nodes.

There are two common ways, found in the current literature, to order k-ary trees
which we generalize to the set T(K, N). Let ITI be the number of nodes in tree T, rr
be the degree of its root, and T be the subtree rooted at the ith son of the root of T.

The ordering given in [4], [5] for binary trees and in [9] for k-ary trees can be
generalized to arbitrary trees as A-order as follows:

* Received by the editors January 18, 1978, and in revised form May 8, 1978.

" Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801. This work was supported in part by the National Science Foundation under Grant NSF MCS
73-03408.

We assume that each step in the path is directed towards the origin, and we use this assumption

throughout this paper.
2 In a regular k-ary tree, each internal node has exactly k sons.

73

74 S. ZAKS AND D. RICHARDS

Two trees, T and T’, are in A-order, T < T’, if
1) ITI<[T’I or
2) TI--IT’I and for some i, 1 <= <-_ rT’ we have

a) T/= T for] 1, 2,..., i- 1 and
b) T < T.

Let PT be the sequence formed by consecutively numbering the nodes (by traversing
T) in post-order and reading them in pre-order. Two trees, T and T’, are in A-order if

PT is lexicographically less than PT’. For binary trees in-order is interchangeable with
post-order and is used in [4]. The proof of this correspondence is analogous to the
proof used in the binary case.

A second ordering is given in [15], [16] for k-ary trees which we generalize to
arbitrary trees as B-order as follows:

Two trees, T and T’, are in B-order, T < T’, if
1) rT < rT’ or
2) rT rT’ and for some i, 1 <= <= rT we have

a) T. T- for/" 1, 2,. i- 1 and
b)

Later we give our interpretation of B-order using sequences. The best known
algorithms for ranking and unranking trees are considerably more efficient when the
trees are in B-order. Therefore, in this paper, we will only be concerned with
generation in B-order.

2.2. Tree sequences and iexicographic ordering. Define A(K, N) to be the set of
integer sequences a =al a2""an that have ni occurrences of the integer ki and
possesses the dominating property. A sequence, a, has the dominating property if the
number of O’s is not greater than ’1 (ki-1). (number of ki’s) for every prefix
al a2. at, 1 <- <- n. The following theorem was proved in [1] (using the reverses of
our sequences).

TI-IZORZM 1. There is a 1-1 correspondence between T(K, N) and A(K, N).
This correspondence is simple to understand and use. Given a tree, T, construct

the sequence aT by labeling each node with its number of sons and reading the labels
in pre-order. The last node is not read since it is always a leaf, and its omission
simplifies matters. This maps a tree to a sequence. The inverse mapping is accom-
plished by building a tree node by node from the sequence aT. Begin by creating a root
with degree a and position a pointer there. In general, process ai by creating a new
son of the node v currently pointed to and move the pointer from v to it. If v has its
requisite number of sons, backtrack to v’s father.

The dominating criterion arises naturally since a tree in T(K, N) has YI (ki-
1)ni + 1 leaves. If the criterion were violated, it would indicate the existence of a
completed tree which does not arise since the final leaf is omitted. The property can
be written as Ell (ai- 1)>0= since the sum of the negative terms is the number of O’s, or
more succinctly as

ai>=l.

This has a simple interpretation" there are not more nodes than the collective number
of sons.

Pre-order search of trees shares with other search methods the property that it
inspects all of a node’s ancestors before inspecting that node. This is enough to insure

GENERATING TREES LEXICOGRAPHICALLY 75

the sequences read are in A (K, N). Breadth-first search is such a search method and is
used in [1], [3]. We will use pre-order exclusively because it simplifies the generation
procedure.

Similar sequences have been studied extensively in relationship to the "ballot
problem" (for example [14]). They have been related to binary trees in [2] and were
independently given for k-ary trees in [3], [15], [16]. An overview of such sequences is
found in [6].

It is vital to note that T< T’ i.e. in B-order if ar is lexicographically less than
at,. This follows from the definitions of ar and B-order. Note that rr and rr, are equal
to a and a respectively. Therefore, if rr < rr,, then ar precedes at,. If rr rr, and
the first i-1 subtrees are equal, then the corresponding prefixes of aT- and aT-, are
equal, since ar is formed in a pre-order fashion. Then the argument recurs on T and
T’i. Therefore, if we generate the sequences of A(K, N) lexicographically, we will
generate the trees of T(K, N) in B-order.

In arranging the sequences of A(K, N) in lexicographic order, as normally
defined, only the relative values of the ki’s are needed. Therefore, since ki/l > ki and
k0 0, we find it convenient to map the sequences of A(K, N) to sequences b
bl b2"’" bn, where b if a,. k.. More formally, b is an element of B(K, N) if it
contains n occurrences of the integer and for every subsequence b b2"" b,
tl kb_--> I. There is obviously a one-to-one correspondence between A(K, N) and
B(K, N) that preserves the lexicographic ordering.

We note that there is also a correspondence between ordered forests and such
sequences. An ordered forest consists of ordered trees which are in turn ordered.
Define F(K, N)in the same way as T(K, N)except that no 1 (ki-1)ni +(f-1),
i.e., F(K, N)= T(K, N) if f-- 1. A(K, N) is defined analogously. If we introduce a new
node v of degree f and connect it to the roots of the f ordered trees, we create one
ordered tree. The correspondence is easily seen if we prefix the sequence a, a 6

A(K, N), with the integer f to get a sequence corresponding to the tree with root v
and note that this sequence now has the dominating property. Our generation and
ranking procedures will work identically on sequences from F(K, N) as from T(K, N),
but we use T(K, N) in our discussion for clarity.

2.3. Lattice paths. Corresponding to these sequences are lattice paths within a
bounded region of (t+ 1)-dimensional space from the point (no, nl,’", n,) to the
origin. Each step of the path is one unit towards the origin parallel to some ith
dimensional axis, and the path may not go below the hyperplane x0 Y’I (k- 1)x. Let
P(K, N) be this set of paths.

In [1] it is shown that there is one-to-one correspondence between B(K, N) and
P(K, N). To map a path to a sequence, let bj be if the jth step of the path is parallel
to the ith dimensional axis. The inverse mapping follows immediately. More formally,
an element of P(K, N) is a sequence of lattice points LoLl’" L,, where L0
(no, nl," n,), Lr (0, 0,. 0) and if bi] and Li-1 (Xo, X1, Xt) then Li
(Xo,"" ", x._l, xj-1, x./,..., x). The relation of ranking and unranking to lattice
paths was first discussed in [12] and [13].

Example. As an example, consider the tree in Fig. 1 which is an element of
T(K, N), where K (0, 2, 3) and N--(4, 2, 1). The corresponding elements from
A(K, N), B (K, N) and P(K, N) are given.

3. Generation of trees. In the preceding section we described a mapping from
B(K, N) to A(K, N) and from A(K, N) to T(K, N). We also showed that the lexico-
graphic order in B(K, N) corresponds to B-order in T(K, N). To generate the next

76 S. ZAKS AND D. RICHARDS

Xo

(3202000)eA(K,N)
(O O 0 0) B(K, N) x

FIG. |.

tree after a given tree T we produce its corresponding sequence b B(K, N) and
generate the lexicographically next sequence b’ and map it to T’, the next tree.

All the sequences of B(K, N) are permutations of each other. If it were not for
the condition that each sequence should have the dominating property, it would be a
simple matter of generating permutations in lexicographic order which has been well
studied [8]. However, we have chosen one such algorithm and adapted it. In its
original form, it can be described as follows" scan the permutation c1 c2"’cn of
{1, 2, , n}, from the right until the first occurrence of ci < Ci/l. Substitute c with the
least cj such that ci>c and]>i and append after it the first permutation of
{c, ci/l,"" ", c,}-{cj} in the ordering. (This is done efficiently by a single exchange
and subsequence reversal.)

Similarly, we scan from the right for the first bi < bi/l and substitute b with the
appropriate bi. And again, we append the first permutation of b*
{bi, b/l, , bn}- {b.}. If it were not for the dominating property, the first permutation
of b* would be 0m’’ 1 ml 2" m’ where S indicates x repetitions of the sequence S,
and there are mi occurrences of in b*. Let d mo-Y.tl mi(k-1). The first permu-
tation of b* is

0d(1 0k1-1)"1(2 0k2-1)m2.’" (t 0k’-i)m’.

To show this, note that the dominating property can be rewritten as +x kb,--<--
n I. Therefore if the first permutation of b*" began with d + 1 O’s, the property would
not hold. The next character must be the smallest nonzero character of b*; otherwise,
some other sequence would precede it. Say it was a 1; then at most kx-1 O’s may
follow before the property is again violated. The argument recurs, establishing the
above permutation. Note that d>0, since the original sequence had the dominating
property and b < bi, where b and bi were interchanged.

We now state the preceding discussion as an algorithm. Note that for termination
is checked before loop entry, it is easily seen to have time complexity O(n) where

ALGORrrHM GENERATE (b). (This algorithm generates the lexicographically
next sequenee after the input sequence b.)

GENERATING TREES LEXICOGRAPHICALLY 77

begin
for] 1 to do m.- 0;

n; sum 0;
while bi-1 >--bi do

begin m, <- rob, q- 1;
if b > 0 then sum <- sum + kb, 1;
ii--1

end;
j -0; bi-1 + 1;
while] 0 do

if m > 0 then j -else <- + 1;
mbi_l mbi-1 -I- 1
bi_l-j;
m m 1;
sums-sum-k + 1 +(if bi- >0 then kb,_-- 1 else 0);
mo mo- sum;
for -0 to do

while mi > 0 do
begin b /"; mi - mi 1; <- +

for <- 1 to k- 1 do
begin b <- 0; - + 1 end

end
end.

This algorithm can be stated more succinctly in the case of k-ary trees, i.e., t 1.
In [16] this is done, but the more convenient reverse B-order was used, where the
precedence relations are merely reversed. Generation and ranking are both done
differently but use sequences from B(K, N).

In [9], [10], k-ary trees are ranked and generated in B-order by use of a mapping
between k-ary trees and binary trees. In [7] binary trees are generated and ranked in
B-order, and the sequence of the level numbers (i.e. the heights)of the leaves read in
in-order is used. The correspondence of these two methods to B-order was established
in [15]. Applying the generating algorithm to B(K, N) as in the example in the end of
the second section, we get the following sequences:

Index Sequence Index Sequence

1010200 12 1210000
2 1012000 13 2001010
3 1020010 14 2001100
4 1020100 15 2010010
5 1021000 16 2010100
6 1100200 17 2011000
7 1102000 18 2100010
8 1120000 19 2100100
9 1200010 20 2101000
10 1200100 21 2110000
11 1201000

4. Ranking and unranking. In this section we compute the function Index (L)
that, given a path L P(K, N), will compute its corresponding position in the lexico-
graphic ordering of P(K, N); also, given an integer w, we construct the path L
P(K, N) such that index (L)= w. As discussed earlier, the paths L L0 L... L,, in
P(K, N) are those lattice paths from the point (no, n,. , n) to the origin which do
not go below the hyperplane Xo (k- 1)x.

78 S. ZAKS AND D. RICHARDS

We make use of the multinomial coefficients

d , 0 if any d, is <0

dl, d2," , d] ldl! d2! d! otherwise

where d= di. The multinomial coefficient has a familiar interpretation as the
number of lattice paths from the point (d, d2,’", d) to the origin. This inter-
pretation gives a combinatorial proof of the following lemma, which is also easily
proved directly from the above definition.

LEMMA 1. If d ".l di and all di are integers, then

Let C(no, nt, n2,"’, nt) denote the number of lattice paths from the point
(no, nl," , n,) to the origin which do not go below the hyperplane Xo t (k- 1)xi.
The following theorem defines these entries recursively, and solves the recurrence
relation.

THEOREM 2. The solution to the recurrence relation

C(no, nl, n2,. ,nt)

is given by

0 if ni < 0

for 1, 2,. , or t,

1 if no /1 nt 0,

0 if no (ki- 1)ni- 1,

C(no, nx,. , nj-1,. , n,) otherwise
i=0

(.)C(no, nl, n2,...,n,)=(n I_ (ki_l)(n

rto, nl, ,nt i=1 no+l, nl, ,ni--1," "’,nt

where n no + n "J" q- nt.
Proof. We show that C(no, nx,’’’, nt), as given by (.), satisfies the recurrence

relation and the boundary conditions. When ni < 0 for 1, 2, , or t, (.) gives the
value 0 by definition. The case no nx nt 0 is taken care of in the same way.
When no-1 (ki- 1)ni- 1 and no ni is <0, (*)can be rewritten as

C(no, nl, n2," ,nt)
(no + 1)! n n,

(ki)ni

from which it is clear that C(no, n 1, n) is 0 for this case. If no, n 1, n, are none
of the above, we prove the recurrence by induction on n. For n 1, (,) is correct. We
assume that it holds for any rn < n, and take n no + nl-I- --nt. By the recursive
definition of C(no, nl, ", n,) we have

C(rto, rtl,..’, rtt) C(rto, rtl,..., rtj-1,-.., nt).
j=o

GENERATING TREES LEXICOGRAPHICALLY 79

For each of the terms on the right, we use (,), by the induction hypothesis, and get

C(no, nl,"’,n,)= (n-1)
1=0 no, hi," ni-l," nt

(ki-l)(n-i)
i=o i= no + 1, na, , ni- 1, , n 1,. , nt

j=0 no,/’/1, ni- 1, , nt

i=l i=o no+l, nl," ",hi--l," .,ni-l,. .,nt)

which, by the previous lemma, gives

C(no, ni, n,)=
no, n, nt i=i no + l, n l, ni-1,

as desired.
This theorem has been previously solved for the 1 case: for kl= 2 it was

solved in [11] and a solution for arbitrary k is found in [14] and [10]. A solution for
Y’ (ki 1)xi is given in [1] usingthe general problem for points on the hyperplane x0

an involved generating function argument.
Given a path LP(K, N), we find its position Index (L) in the lexicographic

ordering of P(K, N), as follows:
THEOREM 3. Let b b b2’’" bn G B(K, N) and the corresponding lattice path

L Lo L1 L, P(K, N), where Li (yio, yia," , yit). Then
n--1 bi+l-1

Index(L)-1+ Y C(yo, yil,"’,yo.-1,’",
=o j=o

where the C(., .,..., .)’s are given by Theorem 2.
Proof. By definition we know that all the sequences that begin with either of

0, 1,... or bl-1 will come before this sequence b, and their number is indicated by
vb-Ithe inner summation ,--o This follows from the definitions of bi, yij and Theorem 2.

Next, we know that all the sequences which begin with bO, bll,. , or b(b- 1)
,b2-1will come before b, and their number is indicated by the summation =o The rest

follows immediately by induction, following this line of argument.
The constant 1 is added so that the indexing will begin with 1 rather than 0.
The time complexity depends on how the C(xo," , xt) are calculated. If storage

is inexpensive or if ranking is done frequently all the values could be stored in
(t + 1)-dimensional array of space complexity O(n*) in time proportional to (t + 1)n*
where n* 1-Ira ni. Using this array, however, allows each ranking to be done with time
complexity O((t + 1)n). If ranking is done infrequently the values of the C(xo,. , x,)
can be calculated as needed in time O((t+l)n). This leads to an O((t+l)2n2)
ranking procedure. Note that for most applications (t + 1) will be small and independent
of n. In [9] a ranking procedure for k-ary trees is given which is O((nk)2) time-bounded,
which is improved to O(nk) in [10] with preprocessing. The best known ranking
procedures [9] for k-ary trees in A-order are O(nk).

To illustrate this procedure refer to the tree and path in our previous example. In
Fig. 2 the lattice points have been labeled with C(xo,. , x,). The path L correspond-
ing to that tree gets the following rank"

Index(L)’- 1+0+12+5+0+2+0+0+0=20.

80 S. ZAKS AND D. RtCHARDS

Xo

As for the unranking procedure, we will follow Theorem 3 in a reverse order. We
are given a number w, and look for a path L such that Index (L)= w. The idea is best
explained by an example: suppose we want to find the 20th sequence in P(K, N)
where K (0, 2, 3) and N (4, 2, 1). Starting at the point (,,. 2, 1) we sum up the
entries in direction 0, 1,... (see Fig. 2) in that order as long as we do not exceed
20-1 19. Here we take 12, which corresponds to making the first move from
(4, 3, 1) to (4, 3, 0), or bl 2. Starting from this point (4, 3, 0), we can sum up the
entries in the directions 0, !," (in that order) as long as we do not exceed 19-12
7. Here we take 5, which corresponds to making the next move from (4, 3, 0) to
(3, 3, 0), etc. This is given more formally as algorithm UNRANK.

ALGORITHM UNRANK (w). (This algorithm returns the b sequence correspond-
ing to the lattice path L having rank w. The rank of the sequence beginning at L is
always u.)

begin

end

u-w--1;
(Y0, yl,’’’, yt)(no, nl,’’’, nt);
|or 1 to n do

begin
(Find the largest / such that sum of entries in
the first/" directions does not exceed u)
/-0;
sums-O;
S C(yo- 1, Yx," , Yt);
while sum + S <- u do

begin sum sum + S; /" + 1;
SC(y0,. ", y-l," ., y,)

end;
bij;
Yi " Yi- 1;
u # u sum;

end

GENERATING TREES LEXICOGRAPHICALLY 81

The proof follows directly from the previous theorem. The space and time
complexity considerations are the same as for the ranking procedure.

Aeknowletlgment. The authors wish to thank Professor C. L. Liu for his
valuable assistance and encouragement during this research.

REFERENCES

I. Z. CHOrNE:O AI’D S. G. MOHANTV, On the enumeration o[certain sets o.f planted plane trees, J.
Combinatorial Theory Ser. B, 18 (1975), pp. 209-221.

[2] N. G. DEBRUIJN AND B. J. M. MORSELT, A note on plane trees, ibid., 2 (1967), pp. 27-34.
[3] D. A. KLArtNER, Correspondences between plane trees and binary sequences, ibid., 9 (1970), pp.

401-411.
[4] G. D. KNOa’r, A numbering system for binary trees, Comm. ACM, 20 (1977), no. 2.
[5] D. E. KNUTH, The Art o]: Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1968.
[6] R. C. REAl), The coding o.f various kinds o[unlabeled trees, Graph Theory and Computing, R. C.

Read, ed., Academic Press, 1972, pp. 153-182.
[7] F. RUSKEY AND T. C. HU, Generating binary trees lexicographically, this Journal, 6 (1977), pp.

745-758.
[8] R. SEDt3EWICK, Permutation generation methods, Comput. Surveys, 9 (1977), pp. 152-154.
[9] m. E. TROJANOWSKI, On the ordering, enumeration and ranking o[k-ary trees, Tech. rep. UIUCDCS-

R-77-850, Department of Computer Science, Univ. of Illinois at Urbana-Champaign, Urbana,
February 1977.

[10] -------, Ranking and listing algorithms for k-ary trees, this Journal, to appear.
11] W. m. WHITWORTH, Arrangements ol m things o" one sort and m things o]’ another sort under certain

conditions o]: priority, Messenger of Math, 8 (1878), pp. 105-114.
12] H. S. WILTS, A unified setting for sequencing, ranking, and selection algorithms.for combinatorial objects,

preprint, Univ. of Pennsylvania, Philadelphia.
[13] S. G. WILLIAMSON, On the ordering, ranking and random generation ol basic combinatorial sets,

Proceedings of the Table Rond6, Combinatoire et Repr6sentation du Groupe Symmetrique,
Strasbourg, France, 26-30 April 1976, Springer-Verlag Lecture Notes in Mathematics No. 579,
Springer-Verlag, Berlin, pp. 309-339.

14] A. M. YAGLOM AND i. M. YAGLOM, Challenging Mathematical Problems with Elementary Solutions,
vo|. 1: Combinatorial Analysis and Probability Theory, Holden-Day, San Francisco, 1964.

15] S. ZAKS, Lexicographic generation o] ordered trees, Theor. Comput. Sci., to appear.
[16] Generating k-ary trees lexicographically, Tech. rep UIUCDCS-R-77-901, Department of

Computer Science, Univ. of Illinois at Urbana-Champaign, Urbana, November 1977.

SIAM J. COMPUT.
Vol. 8, No. 1, February 1979

(C) 1979 Society for Industrial and Applied Mathematics

0097-5397/79/0801-0007 $01.00/0

HEURISTICS THAT DYNAMICALLY ORGANIZE
DATA STRUCTURES*

JAMES R. BITNER"

Abstract. We first consider heuristics that dynamically alter linked lists, causing more frequently
accessed keys to move nearer the "top" of the list. We show that the move to front rule reduces the access time
much more quickly than the transposition rule, then give a "hybrid" of these two rules which decreases the
access time quickly and has low asymptotic cost. We also discuss rules that assume a counter is associated with
each key. Second, we consider rules for binary search trees. The monotonic tree rule performs well only when
the entropy of the probability distribution for key requests is low; otherwise, it does not reduce the access
time. A final class of rules using rotations give nearly optimal performance.

Key words. Data structure, heuristics, self-organizing files, move to front rule, transposition rule,
monotonic trees, heaps

1. Introduction. We consider heuristics that reduce access time in linked lists and
binary search trees by "orgainizing" the data structure, that is, by moving more
frequently accessed keys nearer the "top" of the structure (where searching begins). We
assume that keys are requested according to a fixed but unknown probability dis-
tribution. Thus, the heuristic must dynamically alter the data structure as requests are
made.

We define the expected access time (or cost)of a data structure to be i= pici where
ci is the number of comparisons required to locate key ki, which is requested with
probability Pi. The cost can be significantly affected by location of the keys in the data
structure. For example, consider a linked list of n elements in which key ki is requested
with probability Pi 1/(iHn)where H,, -’i= 1/i (Zipf’s Law). If the order of the keys
in the list is random, the expected access time is (n + 1)/2. However, if the keys are
optimally arranged (in order of decreasing probability), the expected access time is only
n/H n/0n n). In fact, the heuristics we consider will perform close to the optimum,
so substantial savings will be realized.

Previous work with linked lists [1]-[7] has been concerned with permutation rules.
A permutation rule [1] for a list of n elements is defined by {zi: 1 =< =< n}, a set of
permutations over n elements. When the ith element in the list is requested, permu-
tation -i is used to reorder the list. One example is the move to front rule, which moves
the requested key to the top of the list. All keys which it passes over move down one
position. Another example is the transposition rule, which transposes the requested key
with the one above it. If the requested key is already on top, both rules leave the list
unchanged.

Previous results are solely concerned with the asymptotic behavior of these rules.
The formula for the asymptotic cost of the move to front rule is given in [2], [5], [6] and
has been analyzed by Knuth [6, p. 399] when the request probabilities are given by
Zipf’s Law. No simple form for the asymptotic cost of the transposition rule has been
found. Rivest 1 proved the transposition rule has lower (or equal) asymptotic cost than

* Received by the editors April 22, 1977. The major portion of this work was done at the University of

Illinois at Urbana-Champaign as the author’s Ph.D thesis and was supported in part by the National Science
Foundation under Grants GJ-41538 and MCS 77-02705.

Department of Computer Science, University of Texas, Austin, Texas 78712.
We use the phrase "cost of rule x" to mean "the cost of accessing a data structure being modified by rule

X ’"
82

HEURISTICS THAT ORGANIZE DATA STRUCTURES 83

$1 $2 S $3

FIG. 1.1. The two rotations. Here, A and B are nodes. $1, S2 and $3 are subtrees.

the move to front rule for any probability distribution and conjectured the trans-
position rule to have lowest asymptotic cost of all the permutation rules for every
distribution. Yao (see [7]) has shown that if such an optimal permutation rule does exist,
it must be the transposition rule.

In previous work concerning binary search trees, rotations (see Fig. 1.1) have been
used [7], 10] to define analogues to the transposition and move to front rules for linked
lists. The move up one rule uses a rotation to move the requested key up one level, and
the move up root rule successively applies rotations, promoting the requested key until it
becomes the root.

Formulas for the asymptotic cost of the move to root rule have been determined
[7], [10], the former for an arbitrary initial distribution. Allen and Munro [10] have
bounded the cost of the move to root rule, for any probability distribution, by
essentially (2 In 2) times the optimal cost. In contrast, they give a distribution for which
the move up one rule has cost zrx/. Therefore, the asymptotic cost of the move up one
rule is not always less than or equal to that of the move to root rule (as opposed to the
result 1] that the cost of the transposition rule is always less than or equal to that of the
move to front rule).

In our analysis of these heuristics, we assume that any two requests are indepen-
dent and that the request probabilities do not vary with respect to time. Further, we will
not consider the cost of performing the dynamic alteration because the heuristics are
simple and cheaply executed. Therefore, this cost should be small compared to the time
spent accessing the data structure.

Section 2 will compare how quickly the transposition and move to front rules
approach their asymptotic cost and show that for two different measures that the move
to front rule converges much more rapidly. Section 3 will discuss the first request rule,
which has the same behavior as the move to front rule, and 4 will use it to form a
"hybrid rule" that combines the rapid convergence of the move to front rule with the
low asymptotic cost of the transposition rule. Section 5 will consider three rules that use
extra storage associated with each key as a counter. The performance of one of these
rules, the limited difference rule, is nearly optimal.

The final two sections consider binary search trees where each node has storage
associated with it that can be used as a counter. Section 6 considers an intuitively
appealing rule, the monotonic tree rule. However, its cost is shown to be asymptotically
equal to that of a randomly built tree. Section 7 considers a group of rules that give
nearly optimal performance.

84 JAMES R. BITNER

We use In x to denote the natural logarithm of x and log x to denote the base 2 log.
Also, the following standard notations are used: [(n)=O(g(n)) means
lim,_ [(n)/g(n) is bounded,/(n)= o(g(n)) means this limit equals zero, and/(n)=
lq(g(n)) means this limit is bounded, but not equal to zero. Finally, a data structure will
always have n keys k l, ’’’, kn, with request probabilities pl, ’’’, Pn respectively.

2. Rate of convergence oi permutation rules. Rivest 1] considered the asymptotic
cost of permutation rules and found that the cost of the transposition rule is less than or
equal to that of the move to front rule for every probability distribution, This section
takes a different point of view; we consider how quickly permutation rules approach
their asymptotic cost. This is an important problem, because a rule may have very low
asymptotic cost, yet converge so slowly that it is not practically useful. We find that for
two different measures of convergence, the move to front rule converges much more
quickly than the transposition rule. Initially, it will have lower cost, making it the
superior rule if a relatively small number of requests will be made.

The intuitive reason for this is clear. In the initial random ordering, many high
probability keys are far down in the list. Using the move to the front rule, these keys rise
quickly to the top. In contrast, the transposition rule allows keys to rise only one
position per request, and the cost decreases slowly.

cost

number of requests

FIG. 2.1. The overwork is the area between the cost curve and its asymptote (shaded above.)

The first measure of convergence we consider is the overwork, defined as the area
between the cost curve and its asymptote (see Fig. 2.1). Note the "steeper" the cost
curve is, the smaller the overwork will be. Let OVMTF and OVa-R be the overwork of the
move to front and transposition rules respectively. To begin the analysis of the
overwork, we determine the expected cost of the move to the front rule as a function of
time.

THEOREM 2.1 If each initial list is equally likely, the expected cost of the move to

front rule after requests is

1 + 2 E P,Pi + E (P, Pi)2
(1 p, pi

li<in pi + Pi

Proof. We first determine a useful form for E(Cost). If li is a random variable
denoting the level of ki (equal to the number of comparison required to locate it), we

HEURISTICS THAT ORGANIZE DATA STRUCTURES 85

have

(2.1) E(Cost) p,E(l,).

Introduce random variables Aij for /" where

1 if ki is ahead of kj in the list,
Aii= 0 if not.

Since the level of a key is simply one more than the number of keys ahead of it in the list,
li 1 +ji A.i. Substituting this into (2.1) and noting E(A.)= Prob (k ahead of k)
gives E(Cost) 1 += p iProb (k ahead of k). This formula will be frequently
used in the proofs of subsequent theorems.

We now calculate Prob (k is ahead of ki at time t). Two different situations can
cause k to be ahead of ki. First, neither k nor ki was requested in requests and k was
initially ahead of ki. The probability of this is (1-p-pi)’. Second, k’s most recent
request was at time m 1, and k was not requested after time m. The probability for
this is

m=l
(1--p’--Pi)--P’

P’ +Pi
(1--pi--P) P]"

Adding these gives Prob (k ahead of ki at time t), and substituting into the expression
for E(Cost)proves the theorem.

As the last term vanishes, and the first terms give the steady state cost (see [2],
[5], [6]). The last term then measures the speed of convergence. From this formula, we
can calculate the overwork for the move to front rule.

THEOREM 2.2.

OVF= (Pi--Pi)2’<2(p+Pi

Proofi The difference between the cost after requests and the asymptotic cost is
given by the last term in Theorem 2.1. Summing this over 0 gives the over-
work.

COROLLARY 2.1. OV-<n(n 1)/4 for every probability distribution with n > 2.
Proof. Since (p-pi)2/(p+pi)2l and cannot equal 1 for all pairs, we have

OVxv<<,=n(n 1)/4. Further, this bound is the best possible. Consider the
distribution with p e-/K, K (1-e+x)/1 e. By choosing e suciently small we
can make each term arbitrarily close to and the sum arbitrarily close to n (n 1)/4.

The overwork of a rule tells us how significant the initial transient behavior of the
rule is. For example, if we make n (n 1) requests to the move to front rule, the expected
number of comparisons per request will differ from the asymptotic value by at most
The transient behavior of the rule can be safely ignored, and the chain can be assumed
to start in steady state.

No general form has been found for the time-varying cost and overwork of the
transposition rule. These can, however, be calculated for several simple distributions.

TnEOEM 2.3. ffp 1 and p O, 2 n, then

n-1 n2-1
OVuF= and OVx=.2 6

Proof. OVxF is determined by substituting the p’s into the formula in Theorem
2.2. To determine OVr note that if k starts in position i, the overwork is= (1)

86 JAMES R. BITNER

(i- 1)i/2 (the cost for accessing kl as it moves up one position at a time minus 1, the
asymptotic cost). Since kl has probability 1/n for starting in any given position

OVTR--
1 (i- 1)i_ n2- 1

=ln 2 6

THEOREM 2.4. If pl =0 and Pi 1/(n-1), 2-<__i _-<n, then

n-1 n2--1
OVMTF and OVTR

2 6

Proof. OVMTF is determined by substituting the pi into Theorem 2.2. To determine
OVTR, let Ai for 1 <- <= n be a random variable equal to the number of requests that are
made while k is in position i. The cost of accessing the list when k is in position is
n/2 + n i/(n 1). Since n/2 is the asymptotic cost, each request adds a contribution of
n-i/(n-1) into the overwork while kl is in position i. The overwork is then the
expected sum of all these contributions, therefore

.-a n-i
OVTR 2 E(Ai).

i=1 n-1

To calculate E(Ai), note that with probability (n -i)/n, ka is initially below position i,
giving Ai 0. With probability i/n, k is in or above position i. It stays in position until
the key below it is requested (probability 1 / (n 1)). The expected time spent in position

is then n 1. Therefore E(Ai)= (i/n). (n 1) and
.-a n- n2- 1

OVTR (n 1)=. 71
i=1 n-1 n 6

For both distributions, the difference in overwork is substantial: f(n) compared
with (n2). We now consider a more complicated distribution.

THEOREM 2.5. If Pi 1/(iH,), 1 <= <= n and H, ,i= 1/i (Zipf’s Law), then

n(n + 1)(2n + 1) [HC2e,,OVMTF
5n2 (n2+ n +)(H2.-H.)+H. + H(,2)
12 3

where H,, 2i=1 1/i and H(,2) i: I /i2 For large n, OVMTF(--ln 2)n 2 .057n 2

Proof. Substituting the pi’s into Theorem 2.2 gives

):
1=, (i+= (i+ji=1 /’=1

Making the substitution k +j gives

1 l(k-2j)
2 1 (k-2j)2
+--

k 24 k=2 /=1 k 4 k=n+l j=k-n

By expanding the numerators, the result simplifies to that given by the theorem in a
straightforward but tedious manner. (See [7] for details.) To prove the asymptotic
result, note H, ln n, so Hzn- H, In 2n- In n In 2, and at/-d’(2)Zn ..]’-/(2)n
1/(2n)+ O(n-2). [3

A comparison of OVMTF and OVTR for Zipf’s Law is shown in Table 2.1. The
results indicate OVTR f(n3), again, much larger than OVMTF. The values for OVTR
are approximate and were obtained by successively calculating for 0, 1, , T the

HEURISTICS THAT ORGANIZE DATA STRUCTURES 87

TABLE 2.1
The overworkfor a list ofn elements whose probabilities are given by

Zipffs law.

N Move to front rule Transposition rule

3 0.2006
4 0.4463
5 0.7978
6 1.2567
7 1.8272
8 2.5076
9 3:2994

10 4.2031
11 5.2189
12 6.3473
13 7.5882
14 8.9420
15 10.4087
16 11.9884
17 13.6812
18 15.4871
19 17.4063
20 19.4387

0.4579
1.6503
3.9793
7.7514
13.3005

vector consisting of the probabilities for each of the n! orderings of the list after
requests. Initially, every component of this vector is 1/(n!). It is then successively
multiplied by the n n! transition matrix. The cost at time is easily determined from
these vectors. The asymptotic cost is subtracted from each of these costs, and the
resulting differences are summed, giving a good approximation of the overwork.

The second measure of convergence is the number of requests, r, required for the
expected total cost of the transposition rule to become smaller than that of the move to
front rule. The total cost is merely the sum of the costs for the first r requests and tells us
which rule will be cheaper to use for retrieving r requests. Table 2.2 gives some values
for r, assuming Zipf’s Law. Since r increases quadratically with n, this measure also
indicates that the move to front rule converges much more rapidly.

The conclusion is clear: although the transposition rule has lower asymptotic cost
than the move to front rule, it decreases the cost more slowly, making the move to front
rule the better choice if few requests (O(n2)) will be made to the list.

TABLE 2.2
The number of requests, r, required for

the transposition rule to have lower total
cost than the move to front rule. We assume
a list of n elements whose probabilities
satisfy Zipf’s law.

3 6
4 10
5 14
6 20
7 27
10 50
20 212

88 JAMES R. BITNER

3. The first request rule. The first request rule is defined as follows: the first time a
key is requested, it is moved up in the list until it comes to the top or a previously
requested key. After that, it is not moved. Note that the keys occur in the list in order of
their first request, and that after all keys have been requested, the ordering obtained is
the same as if the keys had not been known a priori, and the list had been built by
inserting a "new" key (one requested for the first time) at the end of the list.

The following theorem characterizes the performance of this rule.
THF.OREM 3.1. For any probability distribution over the initial lists, the probability of

obtaining a given final list after any number of requests is the same for the move to front
and first request rules.

Proof. For any sequence of requests ra, ..., rr to the move to front rule the
sequence of requests r:, ..., r to the first request rule produces the same final list.
Since every sequence that produces a given list using the move to front rule has a
corresponding sequence of equal probability using the first request rule, the probability
for obtaining any given list is equal for both rules.

An interesting consequence of Theorem 3.1 is a reasonable situation where the
move to front rule will not reduce the cost. Suppose the keys are not known a priori and
the list is constructed by inserting a "new" key at the end of the list. Clearly, the
resulting steady state distribution will be that of the first request rule, and the move to
the front rule will not decrease the cost (since, by Theorem 3.1, its Markov chain is
already in its steady state).

4. A hybrid rule. A "hybrid" rule that initially uses the move to front rule then
switches to the transposition rule combines the best features of both rules" Initially it
behaves like the move to front rule and has rapid convergence. Asymptotically, it
behaves like the transposition rule and has low asymptotic cost. Determining when to
switch rules is difficult (see [7]) and is the major disadvantage of this rule.

A better hybrid can be obtained by using the first request rule on a key’s first
request, then using the transposition rule on all of its subsequent requests. Because it
does a cost reducing transposition on second and subsequent requests for a key, while
the first request rule alone does nothing, this hybrid converges more quickly than the
first request rule and hence, by Theorem 3.1, more quickly than the move to
front/transposition hybrid.

The first request hybrid rule gives both rapid convergence and lower asymptotic
cost while only slightly increasing the complexity of the algorithm to modify the data
structure. The hybrid rule should be used in the region where both these features are
important (say, l(n) to l’(n) requests). Outside this region, the additional overhead of
this rule is not compensated for.

5. Rules that use counters. In this section, we consider rules that use "extra"
storage associated with each key as a counter. This allows improved performance over
the permutation rules. The obvious rule is the frequency count rule which keeps the keys
sorted by the number of times each has been requested. Asymptotically, this rule gives
the optimal ordering; because of the law of large numbers, if Pl > P2, the probability k
has been requested more times than k2 (and hence is ahead of k2 in the list) approaches
1. In addition, if we have no a priori knowledge about the request probabilities, the rule
always produces the ordering with the lowest expected cost. If k has been requested
more times than k2, then Prob (p > P2) is larger than Prob (pa < pz), and k must be
ahead of k2 in the list with lowest expected cost, and, of course, the frequency count rule
produces this ordering.

HEURISTICS THAT ORGANIZE DATA STRUCTURES 89

The disadvantage of this rule is that the counters grow in proportion to the pi’s and
overflow whatever field is allotted them. When a counter overflows, some method of
reducing the fields must be applied (perhaps subtracting a constant or dividing by 2). If
the fields are small, the cost of this would be prohibitive.

The rate of growth of the count fields can be decreased by storing with the ith key
the difference between the count of the i- 1st key and the ith key. These differences
contain enough information to keep the list sorted by frequency count. Also, since they
grow in proportion to the difference between successive probabilities, they will be
smaller than the frequency counts, and the frequency count rule will take longer to
overflow its fields. Note that this rule can be cheaply executed because each request will
alter only two difference fields.

However, even with this improvement, the rule still requires an unbounded
amount of storage. Our purpose in this section is to define, analyze and compare various
rules that use a limited (and hopefully very small) amount of storage.

5.1. The limited difference rule. The first of these rules is the limited difference rule,
which stores the differences between successive counts but imposes an upper bound (a
parameter of the rule) on their size. A field that has reached this limit is not increased by
subsequent requests, but may, of course, later be decreased. The limited difference rule
is not optimal, but its performance rapidly approaches the optimum as the maximum
difference increases; even small maximum differences give nearly optimal performance
(see Table 5.1). For a list of two elements, this approach is exponential.

TABLE 5.1
Comparison of rules that use counters.

c=0 c=l c=2 c=3 c=4 c=5

Limited difference rule (maximum
difference=c) 3.9739 3.4162 3.3026 3.2545 3.2288 3.2113

Wait c, move to front and clear (exact) 3.9739 3.6230 3.4668 3.3811 3.3285
Wait c, transpose and clear (exact) 3.4646 3.3399 3.2929 3.2670 3.2501
Wait c and move to front (exact) 3.9739 3.8996 3.8591 3.8338 3.8165 3.8040
Wait c and transpose 3.4646 3.3824 3.3576 3.3473 3.3312 3.3272

Asymptotic costs for various rules assuming a nine element list whose probabilities are given by Zipf’s law.
Compare these with the optimal cost which is 3.1814. Cost for the limited difference rule and the wait c and
transpose rule were estimated by simulations consisting of 1,000 requests. The average of 200 trials is shown.

THEOREM 5.1.1. For a list oftwo elements with probabilities a and b (assume b > a),
the difference between the asymptotic cost ofthe limited difference rule and the optimal cost
is

2b (b a)(b/a)C (b a) 2b (b a)
[(b/a)2C+-l] (b/a)+

where c is the maximum difference.
Proof. The behavior of the list can be modeled by a Markov chain with 2c + 2 states"

Ai, 0 <- <- c where the key with probability a is first in the list and the difference is i.

B, 0 <- <= c where the key with probability b is first in the list with difference i.

It is easy to verify that the steady state equations are"

A aA_ + aA,
Ai aAi_ + bAi+x,
A bA2 + aAo+ aBo,
Ao bAx,

Bc bB_ + bBc,
Bi bBi-1 + aBi+,
B1 aB2 + bBo + bAo,
Bo abe,

2_<_i_<c-1,

90 JAMES R. BITNER

and, in addition, Y.i=0 Ai + Y.i=0 Bi 1. We solve this system of equations to get

A0 bA(b/a)c-1, Bo aA(b/a)+1,
Ai A(b/a)-, Bi Ac(b/a)c+i, 1 <= < n,

and A a[1 -(b/a)2+]"
The cost of the list is

(a + 2b) Prob (key with probability a is first in list)
+ (b + 2a) Prob (key with probability b is first)

=(a+2b) Ai+(b+2a) Bi
=o =0

=(b +2a)+
2b(b-a)(b/a)-(b-a)

[(b/a)2+1-1]
Now, if b > a, the optimal cost is the first term in this expression. The difference from the
optimum is then as given in the theorem. 71

Hence the difference from the optimum decreases exponentially with base b/a.
Two observations result from this fact. First, the "flatness" of the distribution (deter-
mined by how close b/a is to one in this case)determines the number of bits required to
distinguish the more probable elements. The flatter the distribution, the more bits will
be required.

A second observation is that since the decrease is exponential, we would expect the
cost to be nearly optimal even for small values of c. The results of a simulation, shown in
Table 5.1, support this conclusion. In addition to nearly optimal asymptotic cost, the
convergence of this rule is also very rapid. Until a difference field reaches the upper
limit, the limited difference rule behaves exactly like the version of the frequency count
rule that uses difference fields. Thus, for this initial segment, the limited difference rule
converges as rapidly as possible. Therefore, both in terms of asymptotic cost and
convergence, the rule is nearly optimal.

5.2. Wait c, move and clear rules. The second class of rules we will study is the wait
c, move and clear rules. These rules associate a field, initially zero, with each key. When
a key is accessed, the corresponding field is incremented. If it exceeds c, the maximum
value, the key is "moved" using the corresponding permutation rule (for example, the
wait c, transpose and clear rule uses the transposition rule), and the field of every key is
reset to zero. The cost of resetting the fields may be very significant. However, if all
fields are stored in the same area (instead of being directly associated with the key), they
can be efficiently reset by zeroing a contiguous area of core. The performance of these
rules is analyzed by the following theorem.

THEOREM 5.2.1. The asymptotic cost of a wait c, move and clear rule with request
probabilities p, , pn equals the asymptotic cost of the corresponding permutation rule
with modified request probabilities (c), fin (C), where i(c) equals

ax:=O ai_l=0 ai+l=0

, (C + al +" + ai-l+ ai+l + an)!
art =0 c!all.., ai-l!ai+l!" an!

c+l a._ ai+ art
Pi P’’’Pi"i Pi+ "’’Pn

(the probability thatk is requested c + 1 times before any other key is requested c + 1 times.)
Proof. Consider the sequence of keys moved by a wait c move and clear rule. Since

all fields are cleared after every move, successive moves are independent, and the move

HEURISTICS THAT ORGANIZE DATA STRUCTURES 91

probabilities do not vary with respect to time. Therefore, the move sequence satisfies
the same assumptions as a sequence of requests. Using the move sequence as inputs
(requests) to the corresponding permutation rule results in the list given by the wait c,
move and clear rule. However, since the probability that a key is an input to the
permutation rule equals the probability that it is in the move sequence, the input
(request) probabilities the permutation rule "sees" are exactly the/i(c) given by the
theorem.

This would complete the proof if every request to the wait c, move and clear rule
caused a move. This is not the case since we must wait after each move while the counts
build up. If this waiting time were dependent on the current state, states with longer
waiting times would have proportionally greater probabilities. Fortunately, this is not
the case. After each move, the counts are reset and hence each state will have the same
expected waiting time.

COROLLARY 5.2.1. For any c, the asymptotic cost of the wait c, transpose and clear
rule is less than or equal to that of the wait c, move to front and clear rule for every
distribution.

Intuitively, a wait c, move and clear rule has lower cost than the corresponding
permutation rule because it has "shifted" the move probabilities to favor the high
probability keys. These now have a proportionally greater chance of being moved. We
prove this for the wait c, move to front and clear rule, then show both rules approach the
optimum as c c, as was the case for the limited difference rule.

THEOREM 5.2.2. For c >-1 the asymptotic cost of the wait c, move to front and clear
rule is less than that of the move to front rule.

Proof. Renumber the pi so that pl --> p2 --> --> pn.

E(Cost)= 1+ pi Prob (kj ahead of ki)
i=1 ji

1 + Y [Pi-(Pi-Pj) Prob (ki ahead of ki)].

The probability that k is ahead of k. using the wait c, move to front and clear rule is
Prob (k is requested c + 1 times before k is requested c + 1 times). If p > pj, this is
greater than Prob (k is requested once before k. is requested once), the probability of ki
being ahead using the move to front rule. Since the wait c, move to front and clear rule
increases Prob (k ahead of ki), it decreases the cost. I-1

THEOREM 5.2.3. As c- o the asymptotic cost o]’ a wait c, move and clear rule
approaches the optimum.

Proof. For the wait c, move to front and clear rule, Prob (ki is ahead of k.) Prob (ki
is requested c + 1 times before ki is requested c + 1 times). As c eo, this approaches 1 if
p > pj and 0 if pi < pi, hence the optimal ordering is approached. Since the cost of the
wait c, transpose and clear rule is smaller than that of the wait c, move to front and clear
rule by Corollary 5.2.1 it also approaches the optimum.

Table 5.1 compares the wait c move and clear rules with the limited difference rule.
Their performance is good (by Theorem 5.2.3 it approaches the optimum), but it is
surpassed by that of the limited difference rule.

Comparing the convergence gives a decisive advantage to the limited difference
rule. The wait c, move and clear rules decrease the cost much more slowly than the
corresponding permutation rule with modified probabilities since a counter must
exceed c for a move to be made. In the worst case, where every key is requested c times
before any key is requested c + 1 times, a move will be done every cn + 1 requests, and

92 JAMES R. BITNER

the convergence will be a factor of l)(n) slower than the corresponding permutation
rule. On the other hand, the best case occurs when the same key is requested + 1 times,
and a move will be made every c + 1 requests. Hence, the convergence must be slowed
by at least a factor of c + 1.

For an idea of the average decrease in convergence, consider n equally likely keys
and c 1. Note that the expected number of requests before a move is made is
maximized by this distribution. The expected number of requests before a key is
requested for a second time equals

L Prob (no key has been requested twice after requests).
i=0

This probability equals the number of sequences of length of distinct keys
n !/((n -i)!) divided by the total number of sequences (n i)

i=o (n -i)! -7 ,-t- 0(.

by [9, eq. 1.2.11 (25)]. Thus, even if c 1, the convergence is slowed by a factor of
fl(x/) over the permutation rules, resulting in extremely slow convergence.

Clearly then, the wait c, move and clear rules are outperformed by the limited
difference rule. Though their asymptotic cost approaches the optimum as c --> , it is still
higher than that of the limited difference rule. In addition, these rules converge much
more slowly than the limited difference rule.

5.3. Wait c and move rules. The third class of rules that use a fixed amount of
storage is the wait c and move rules. These behave like the wait c, move and clear rules
except that when a key is moved, only its field is reset. The wait c and move to front rule
is analyzed in the following theorem.

THEOREM 5.3.1. The asymptotic cost of the wait c and move to front rule is

1 + piDii

where Dii Prob (ki ahead of ki)

P ,(Pi)k L (m+k)(Pi)m)2 (k d- 1) ’pi’"_p, m=O k "Pi @pi(Pi + p.i)(C + 1 k=O

Proof. Neither the count fields nor the relative ordering of two given keys (kx and
ky) is effected by requests for other keys. To determine Dyx Prob (ky is ahead of kx), it
suffices to ignore requests to all other keys and consider a list consisting only of kx and
ky, requested with probabilities (Px/(p + py))(= a) and (py/(Px + Py))(= b). The list is
modeled by a Markov chain with 2(c + 1)2 states:

Aq, 0 <- i, j <: C where kx is first in the list with count and ky has count/’.

Bii, 0 <= i, j <= c where ky is first in the list with count] and k has count i.

(Note that the first subscript is always kx’s count.)
The steady state equations are"

Aii = aAi-l,i + bAi,i-1,

Aoj bAo4-1 + aAci + aBci,

Aio aAi-l,O,

Bii aBi-l,i + bBi,i-,

Boi bBo,j-,

Bio aBi-l,O +bAic + bBic,

HEURISTICS THAT ORGANIZE DATA STRUCTURES 93

for 0 < i, j =< c and

Aoo aAco + aBco, Boo bAoc + bBoc.
Before solving for the steady state probabilities, we make two observations: First,

it is easily seen that if this chain leaves a given state, then later returns, the number of
transitions made in the meantime must be a multiple of c + 1. Such a chain is said to be
periodic with period c + 1. (All previous chains have been aperiodic, i.e. their period was
one.)

A chain which is periodic does not converge to its steady state distribution in the
sense that lim,_, Pt(x)= p(x), where Pt(x) is the probability of being in state x after
transitions and p(x) is the steady state probability of state x. However, since this chain is
irreducible, the ergodic theorem holds (see [8]). This states that
lim,_, (l/t) i=0 P,(x)= p(x). Thus, the chain asymptotically spends a fraction equal to
p (x) of its time in state x, and if we observe the chain at a random time it has probability
p(x) of being in state x. If c, is the expected cost at time t, lim,_, (1/t)i=oCi
Y’.x p(x)c (x)where c (x)is the cost of state x. The cost converges to the asymptotic cost in
this sense. Note that the asymptotic cost is still the steady state probability of a state
times its cost summed over all states; only the strength of convergence has been
changed.

The second observation is that we must wait in each state of the two element chain
while keys other than A and B are being requested. However, since key requests do not
depend on whether A is ahead of/3, or the count of either key, these requests are
independent of the state, and hence the expected waiting time is the same for each state.
Therefore, the steady state distribution will give Prob (A ahead of/3).

We now solve the steady state equations. By adding pairs of equations, we can
verify Aq + Bii 1/(c + 1)2. This corresponds to the intuitive fact that asymptotically,
every pair of count fields (without regard to the order of the list) is equally likely.
Substituting this relation gives

Or, equivalently,

Aq aAi-l.i + bAi,i-1

Aoi bAo.j-1+
(c + 1)

forO<i,j<-_c,

for O<j <_-c,

Aio aAi-l,O for 0 < _-< c,

a
Aoo (c + 1)"

Aii= aAi-l,i + bA,i_ for 0 -<_ i, j <= c,

1
A_ 1,i (C -b 1)2 for 0 _-<] <- c,

Ai,-I 0 for 0=< =< c.

Extending these recurrences to hold for all i, j-<0 will not affect the Aij we are
interested in. The recurrence can then be solved using generating functions. Define

F(x, y)= E ’. Aqxiy i.
i=0 /=0

94 JAMES R. BITNER

Substituting for Aq gives

F(x, y) axF(x, y) +
(c + 1)(1- y) - by F(x, y)

and

(a i) (F(x,y)= (c+1/2(1-y 1-
1 a

y (ax + by
ax-by (c+1)2 0

Using the binomial theorem gives

a
F(x, y)=

(c + 1) i=0
Y ’)(i=o k=O ()(ax)i-k (by)k)

a ko(j)(c + 1)2 Y. a
=oi=o k

J-kb kxJ-kyi+k"

Now substitute i’ for j- k and j’ for + k and then drop the primes;

a
F(x,y)=(c+l)--i= i=0Y k

a

Therefore

a (i+k) ibAii (c + 1)"k=O k
a

Prob (A ahead of B) is then

Aij=
i=0 j=O

a . (i+k)(C + 1)2
(c-k + 1)b k

k=0 i--0 k
a.

Substituting this into the formula E(Cost)= 1 +E/pi Prob (k/ is ahead of ki) and
recalling that a and b were originally px/(px + py) and py/(px + py) finishes the proof.

The following two theorems help to compare the wait c and move to front rule with
the previous rules. First, we show it does have lower asymptotic cost than the move to
front rule. Then we show its cost does not approach the optimum asc -+ oo.

THEOREM 5.3.2. For c >--1 and any set of request probabilities except the uniform
distribution or a distribution with a key ofprobability one, the wait c and move to front rule
has strictly lower cost than the move to front rule.

Proof. (Note that for the distributions cited above, therules have equal cost.) Let
a pJ(p + Pi) and b Pi/(.P + Pi). Consider

a
(5.3.1) Prob (ki ahead of k/)- Prob (k, ahead of ki)

for the wait c and move to front rule.
We show that if p >p and pi : 1, then (5.3.1) is positive.

By Theorem 5.3.1, (5.3.1) equals

a (c_k+l)(m+k)[a,,,bk_akb,,,].(c + 1)2 k=0 ,,=0 k

The terms where k m vanish. Consider the remaining terms in pairs where the (k, m)

HEURISTICS THAT ORGANIZE DATA STRUCTURES 95

term is paired with (m, k). These equal

(c_k+l)(m+k)[ab kb" () ,,,b
k

-a]+(c-re+l) m+km [akb -a

(m k)(m + k’[a,,,bk akb,,, > O.,, m /

Adding all the pairs together and multiplying by a/(c + 1)2 gives (5.3.1). Hence (5.3.1)
is positive.

Since (5.3.1)is positive, Prob (ki ahead of kj)> a, which is Prob (ki ahead of kj) for
the move to front rule. Using the argument from Theorem 5.2.2 then shows the wait c
and move to front rule has lower cost.

An intuitive explanation of the theorem is as follows" Previously, the wait c, move
and clear rules decreased the cost by altering the probability that a key is moved from
the request probabilities to a more favorable distribution. The wait c and move to front
rule does not do this; since a key is moved after every (c + 1)st request for it, the move
probabilities remain unchanged in the sense that a key requested with probability pi will
account for a fraction of the total number of moves equal to Pi. If successive moves were
independent, the cost would be thesame as the move to front rule. However, this is not
the case. Consider any two keys, ki and ki. After ki has been moved (assume pi > Pi), its
count is set to zero. Asymptotically, kj’s count is uniformly distributed over 0,1, , c.
After k. has been moved, its count is zero, and ki’s count ranges uniformly from zero to
c. These two cases are obviously symmetric with the roles of ki and kj reversed. Clearly,
in the case where ki has been moved, the next move will occur sooner because the count
of ki (the more probable key) is closer to causing a move. Therefore, the probability that
ki is ahead of ki is increased because we must wait longer for the next move in states
where ki is ahead of k..

Before proving the next theorem, we provide an intuitive interpretation of the
formula given in Theorem 5.3.1. Rewriting, we get

a (k) ibk
(c+l)2 .. i+

i=0 j=0 k=0 k
a

where we consider kx and ky and a p,,/ (px + py), b py/(px + py).
At a random time, any count pair (i’,]’) is equally likely (probability 1 / (c + 1)2). Let

c i’ and] c -]’ (the number of requests until a given key is moved). For the count
pair (i’,]’), we calculate the probability that k,, is moved before ky. Clearly any sequence
of requests where kx is requested times and ky is requested k times (for any k <),
followed by a request for kx will cause kx to be moved first. Thus the probability for
moving kx is a k=0 (i+kk)aibk" Multiplying by 1/(c + 1)2, the probability of this point,
and summing over all points gives the probability kx is moved, which equals the
probability it is ahead of ky.

THEOREM 5.3.3. Except]or the uniform distribution and distributions having a key of
probability one, the wait c and move to front rule does not approach the optimum as c

Proof. Choose any two keys kx and ky with p,, > py and p, : 1. For some large c,
consider a grid of points {(i/c, ffc) for 0 _-< i,/" _-< c } where the pair (i/c, ffc) corresponds
to the states where the chain has counts and]. As requests are made, the point
representing the chain’s state has probability px/(p, +py)-a of moving 1/c in the
x-direction and probability pr/(px+py)=b of moving 1/c in the y-direction. As
c-oo, these transitions become smaller and smaller, and the point moves in the
x-direction with velocity a and in the y-direction with velocity b. (The time scale must

96 JAMES R. BITNER

FIG. 5.3.1. Points in the shaded region reach the y boundary first.

be readjusted so that c requests are made per unit time.) If the chain begins in the
shaded region in Fig. 5.3.1, it reaches the y 1 boundary before the x 1 boundary and
causes ky to be ahead of kx.

If we begin observing the chain at a random time, every point of the grid is equally
likely. Since the shaded region has area b/(2a), Prob (k ahead of kx) b/(2a)=
py/(2px) > 0, as c . Therefore, the cost does not approach the optimum.

COROLLARY 5.3.1. Renumber the keys such that pl >= p2 >= pn; then as c -, the
cost of the wait c and move to front rule approaches

2

1+, -Pi
Pi

Proof. From the proof of Theorem 5.3.3, Prob (ki ahead of ki)= pi/(2pi) if] > i.
Substituting this into

E(Cost) 1 + ,i [Pi + (Pi-Pi) Pp]
(see Theorem 5.2.2)proves the corollary. 1-1

The wait c and transpose rule has not yet been exactly analyzed. The results of a
simulation of this rule are shown in Table 5.1 along with exact values for the wait c and
move to front rule. The cost of these rules is higher than both the wait c, move and clear
rules and the limited difference rule. (Of course, from Theorem 5.3.3, we know it
cannot approach the optimum as the other rules do.) Also, since the wait c and move
rules make a move every c + 1 requests, on the average, they have faster convergence
than the wait c, move and clear rules, but slower than the limited difference rule. Again,
the limited difference rule is superior in both convergence and asymptotic cost.

6. Monotonic tree rule. The monotonic tree rule keeps the tree ordered so that the
most frequently requested key is the root of the tree. Both subtrees are recursively
ordered in the same manner. (This property is the same as that required for a heap, see
Williams 11].) This property can be easily maintained as requests are made; rotations
are used to successively promote the requested key until itbecomes the root or until its
count is less than or equal to that of its father.

Asymptotically, the most probable key will be the root (by the law of large
numbers, it will be requested the most times), and each subtree will be recursively
ordered by the probabilities. The worst case cost for this asymptotic tree (called a

HEURISTICS THAT ORGANIZE DATA STRUCTURES 97

monotonic tree)can be very high. Suppose key ki has probability pi and the lexico-
graphic ordering of the keys is k < k2 <" < kn. If Pl > P2 > P3 >" 3> Pn, the skewed
tree shown in Fig. 6.1 will result. If the pi are approximately equal, this tree has much
higher cost than the optimal tree, which is more balanced. The following theorem shows
how large this difference can be.

Oo

FIG. 6.1. A worst case monotonic tree.

THEOREM 6.1 (Melhorne [12]). The ratio between the cost of a monotonic tree and
the optimal tree may be as high as n/(4 log n) for trees with n nodes.

This theorem depends on a very unfavorable choice for the probabilities and only
gives an idea of the worst case performance of monotonic trees. We consider how these
trees perform "on the average" by assuming the probabilities are randomly chosen in
some way. The first method of randomly choosing the probabilities assumes we have a
fixed set of probabilities {101, Pn} and that they are randomly assigned to the n keys
with each of the n! assignments being equally likely. The following theorem gives the
expected cost for a monotonic tree in this case.

TIqEOREM 6.2 (Knuth [6, p. 432]). Given n keys and n probabilities (pl >- p2 >--" >-
pn), ifeach of the n! assignments ofprobabilities to keys is equally likely, the expected cost
of a monotonic tree is [2 i= niPi]- 1, where Hn Y,i= 1/i.

We now determine upper and lower bounds for this cost, showing it is largely
determined by the entropy, H =- -= P log p of the distribution.

THEOREM 6.3. Given n keys and n probabilities, if each of the n! assignments of
probabilities to keys is equally likely, the expected cost of a monotonic tree (COSTMoN)
satisfies:

(2 In 2)H f(n <- COSTMoN =< (2 In 2)H + 1

where f(n)= 2 In An + 1 (2/An) =1 el/ [1/(i!)+/-/1 and An 2i= el/i’ Further,

f(n)<3-2y+
2(a 1)[y + In n

n+l

where y 0.577 is Euler’s constant and a (e 1)2 2.953. For large n, f(n) is bounded
by 3 23’ 1.846.

Proof. (Upper bound). Consider

1
(2 In 2)H + 1 COSTMoN 2 Y’. p(ln --+ 1-H).

i= Pi

98 JAMES R. BITNER

Since px ->- P2 -->" Pn, we have Pi <--- 1/i and In 1/pi >- In i. Therefore

(2In 2)H+ 1-COSTMoN=>2 p(ln i+ 1-Hi).
i=1

Since In + 1 >= Hi, the sum is nonnegative, proving the upper bound.
Further, this is the best possible upper bound of the form aH+b. For the

distribution pl 1 and pi 0 for > 1, we have H 0 and COSTMoN 1. Hence b ->_ 1.
For the uniform distribution, H log n and COSToN is (2(n + 1)/n)H,, -3 (see Cor.
6.1). Asymptotically COSToN 2 In n, forcing a -> 2 In 2. Thus (2 In 2) H + 1 is the
best possible bound.

(Lower bound). Consider the function

(2 In 2)H- COSTMoN.
We first find the distribution that maximizes it. Consider any k and let Pk X and

Pk/1 c -x. Given that these two probabilities must sum to c and Pk => Pk /1, we find the
choice of x that maximizes (6.1). Function (6.1)is equal to

(6.2)
(-2 In 2)[x log x +(c -x) log (c --x)]--HkX --Hk+l(C --X)

+ terms independent of x and c.

Differentiating with respect to x and simplifying gives

21n .c X +
x k+l’

which has a zero at x0 cel/k+l/(1 +elwhich is the maximum. (Note to the left of
xo, (6.2) is strictly increasing, to the right, strictly decreasing.)

Therefore the choice

1/k+1ce c
(6.3) Pk 1 + e 1/k+l and Pk+l 1 q- e 1/k+

maximizes (6.2). The distribution in which all the Pi satisfy (6.3) must maximize (6.1).
Consider any other distribution. By increasing or decreasing some Pi (whichever moves
it closer to x0) we increase (6.2) and hence (6.1). Therefore this distribution cannot be
the maximum.

To determine the distribution satisfying (6.3), note
1/k+l

Pk+a e Pk.

Therefore

for i= 1,-.., n.

To determine pl, we use Yi"=x pi 1, giving

Pl 1/ ,
e /i! =--I/A,,

i=1

Therefore pi eX/i!/Ar,. We now determine (2 In 2)H COSToN for this distribution.
Substituting for the pi’s and simplifying gives

(6.4) 2 In A,, + 1-
2 y.. el/i + Hi-..=

the f(n) given in the statement of the theorem. To derive an upper bound, we first use

HEURISTICS THAT ORGANIZE DATA STRUCTURES 99

the Taylor’s series expansion for eX to give

1
A.= e x/i!= E E

i=1 =o (i)

1 1
n + .=E -ft. (i)i=1

1 1
2
j=l i=1

-<n+ E =n+(e-1)2.

Let a (e- 1)2 2.953, The expression in (6.4) is less than

2 In (n +a)+ 1
2

E ea/i +Hi
/’/-’1-O i=1

<-2 In (n +a)+1-2 E Hn +a i=1

2
2 In (n +a)+ 1- [(n + 1)H,, n].

n -k- o

We then use the inequalities ln(n+a)<lnn+a/n, 1/(n+a)>l/n-a/n2,
1/(n + a)> 1/(n + 1)- (a- 1)/(n + 1)2, and Hn > In n + y to give that the expression in
(6.4)

2a (1 a-l)<-2 In n ++ 1-2
n n + 1 (ii2 (n + 1)(In n + y)+ 2 n

2(a-1)[y+lnn]
=3-23,+

n+l

For purposes of comparison, we give the cost of the optimal tree.
THEOREM 6.4 (Bayer[19]). Given n keys with probabilities pl, , p,, the cost ofthe

optimal tree (COSToeT) satisfies
H log H log e + 1 <- COSToPT <- H + 1,

where H =-Yi= pi log pi.

Comparing Theorems 6.3 and 6.4 shows that the monotonic tree rule will perform
nearly optimally when the entropy is small. In this case, there will be several high
probability keys, and these will be correctly placed near the root of the tree. For high
entropy distributions, this crude heuristic does poorly; the keys have nearly equal
probability, and now the important concern is the shape of the tree, not the location of
the keys with highest probability. In this case, the monotonic tree differs significantly
from the optimum.

We are also interested in the expected cost of a random tree, which is built by
successively inserting the n keys, with each of the n! insertion sequences being equally
likely.

THEOREM 6.5. Given n keys and n probabilities, if each of the n! assignments of
probabilities to keys is equally likely, the expected cost of a random tree is
2((n + 1)/n)H, 3 for any set of probabilities.

100 JAMES R. BITNER

Proof. Let p(ki) for 1 _-< _-< n be random variables denoting the probability chosen
for ki and let li denote the level of ki. We have

E(Cost)=E(p(ki)li) E(p(ki)li).
i=1 i=1

Since the insertion sequence (and hence li) does not depend on p(k), these two random
variables are independent and

E(Cost)- E(p(k,))E(li) -1 E(l).
i=l H

Now ki will be an ancestor of k if and only if k occurs in the insertion sequence before k
and before any key that is between k and k in the ordering on the keys. The probability
of this is 1/(i-jl+ 1). Therefore since E(li) 1+Prob (ki is an ancestor of k)we
have

i- 1 Z 11
=1+ + L

and

() H+H_/, g 1
i=1 i=1

2(n + 1)

This quantity is the same as that derived by Hibbard [13]. However, he assumed
that the keys were equally probable, and our result holds for any set of probabilities as
long as they are randomly assigned to the keys.

COROLLARY 6.1. For any set ofn probabilitiesp, ,p that are randomly assigned
to n keys, the expected cost of the monotonic tree is less than or equal to the expected cost of
a random tree.

Proof. Since the monotonic tree cost is 2 i-= Hip- 1 and H < He <" < H,,
clearly the maximum cost for all sets of probabilities with pl ->- p2 >-" >-- p, will be given
by p- 1/n. Substituting pi 1/ into the formula for the monotonic tree cost gives
(2(n + 1)/n)H,- 3, the random tree cost. fi

We compare these three costs for several distributions. The first is the geometric
distribution, Pi r/R, r < 1, <-_ <-_ n, where R (r- r"+)/(1- r). Substituting into the
formula for the monotonic tree cost gives

rn+l r 1.
r 1] 1=1

If n is large, this is approximately (2/r) In (1/(1 r))- 1, a constant, as compared with
(2(n + 1)/n)Hn-32 In n for a random tree. Thus, the rule provides substantial
savings over a random tree.

The entropy for this distribution is

1 r
H log- log r.

1-r 1-r

Table 6.1 compares COSToPT with COSTMoN. Note that for small r, the distribution
approaches pl= 1, p =0 for i> 1, and COSToPTCOSTMoN. As r- 1, the dis-

HEURISTICS THAT ORGANIZE DATA STRUCTURES 101

TABLE 6.1
A Comparison of COSTopT and COSTMoN.

COSTopT COSTMoN % Increase

0.3 1.376 1.378 0.12%
0.4 1.540 1.554 0.94%
0.5 1.766 1.773 0.39%
0.6 2.020 2.054 1.72%
0.7 2.331 2.440 4.67%
0.8 2.746 3.024 10.10%
0.9 3.577 4.117 15.10%

Trees with 50 nodes were considered. COSTo,T was approximated by
constructing the optimal tree for each of twenty randomly chosen assignments
of probabilities to keys and averaging the costs.

tribution approaches the uniform distribution and COSToPT/COSTMoN 2 In 2. Note,
however, that even if r .9, COSTMoN is still within 15% of the optimum.

The second distribution we consider is Zipf’s Law. Here,

HCOSTMoN Hn 1 In n
H.

where

To calculate COSToPT, we first find H. We have

1 .In
H lg H" +7 i=1 i(ln 2)"

Using the approximations i=1 In i/i (ln n)2/2 and H. ln n gives

COSToPT -log In n + (In n)2 In n

2(ln 2)(ln n) 2(ln 2)"
Therefore COSTMoN (2 In 2) COSToPT for large n, which is to be expected since
H -+ oo as n -+ oo. However, COSTMoN is approximately half of (2(n + 1)/n)H, 3, the
cost of a random tree. Table 6.2 compares these costs for Zipf’s Law and n 100. Here,
the expected cost of the monotonic tree is only 15% greater than the optimum. Thus,

TABLE 6.2
The performance of monotonic trees.

Zipf’s law
English
letters # # 2 # # 4 -# Average

Random cost 5.15 7.26 7.50 7.27 7.33 7.63 7.40
Optimal cost 3.32 4.10 3.93 4.16 4.06 3.96 4.04
Monotonic tree cost (Exact) 3.77 4.91 4.18 5.32 4.68 4.20 4.66
Increase over optimal 13.6% 19.7% 6.5% 27.9% 15.1% 6.0% 15.1%

The distributions considered were the probabilities for the English letters and five others that were.generated
by choosing a random ordering of 100 keys whose probability were given by Zipf’s Law.

102 JAMES R. BITNER

for both distributions, the expected cost of the monotonic tree is significantly smaller
than that of the random tree.

We now consider a second method of selecting the key probabilities which has been
studied by Nievergelt and Wong [14]. Here we are given a probability density, f(x), and
the key probabilities are chosen with respect to that density. We drop the requirement
that our choices must sum to one, so instead of probabilities, we consider key weights.
The cost of a tree is now i--1 wili where w is the weight of ki. A theorem by Nievergelt
and Wong [14] computes the expected costs of the optimal and random trees for this
case.

THEOREM 6.6 (Nievergelt and Wong [14]). If n key weights are independently
selected from a density function f(x with finite mean Ix, the expected cost of the optimal
tree equals Ixn log n + O(n), and the expected cost ofa random tree equals (2 In 2)Ixn log
n+O(n).

Nievergelt and Wong found the cost of the monotonic tree to be (2 In 2)Ix
n log n + O(n) for the uniform distribution and conjectured this to be the cost for all
distributions. We first derive a general form for the cost, then prove this conjecture.

THEOREM 6.7. If n key weights are independently chosen from a density function
f(x) with finite mean Ix, the expected cost of the monotonic tree is

[()] nl n-- I_)2Ix nil,,-1 1 2 yf(y)F(y dy

where F(x) xo f(y) dy.
Proof. Let w be the weight chosen for k and

1 if ki is an ancestor of k,
Ai= 0 if not.

(Note that w and Ai are not independent.) Since the level of ki equals 1 + Y.i Ai,

E(Cost)= E wi 1+ a =n+ Z E(wAi).

To determine E(wAi)= y Prob (wiAii y) dy, note that Aii can only be 0 or 1, and
if Aii= 0 the only y having nonzero probability is y 0. Since this will be multiplied by
y 0, the case with Aii= 0 can be ignored and

E(wiAii)= [y Prob (wi y and Aii= 1) dy.

To determine Prob (w y and Aii= 1) note that k will be an ancestor of k if and
only if wi> w and w is greater than the weight of each of the]i-i]-1 m keys
between k and k in the ordering on the keys. The probability that w y is/(y) dy. We
then chose an x y for wi. Any specific x is chosen with probability f(x) dx. For this x,
we must chose the]i -j]- 1 m keys between k and k to have weight less than or equal
to x. The probability for this is F(x). The product of these is then integrated over x y,
giving

Prob (w y and A 1)= (yg(x)F(x) & dy

1 -F(y)+

m+l

since dF(x)/dx f(x) and F(o) 1.

HEURISTICS THAT ORGANIZE DATA STRUCTURES 103

Then

E(wA)= - dy.

Note that this quantity depends only on m, and not the values of and]. Since there are
2(n m 1) distinct ordered (i,]) pairs having a given value of m,

._2

E(Cost) nix + 2(n m 1)
m+l

dy

n-2 n -(m + 1) I_ "-2n-m-ll)),n+anix + 2 Y’. yf(y) dy 2 Y yf(y)F(y dy
m=o m+l ,,,=o m+l

=2ix nH.-x- -1 -2 y/(y)F(y dy.

To prove this cost is asymptotically (2 In 2) Ixn log n, we need the following lemma.
LEMMA 6.1. For any density function f with finite mean Ix,

,,1 n -___/ yf(y)F (y) dy o (n log n).
i=1

Proof. First note that for any i-> 1,

[y/(y)F’ (y)1-< Yf(Y

Hence Lebesque’s Dominated Convergence Theorem (see [15])applies and we have

since

Now,

(6.5)

lim yf(y)F’ (y) dy yf(y)}i_, F’ (y) dr 0

lim F (y) 0 if F(y) < 1 and /(y) 0 if F(y) 1.

1 n_______il yf(y)F’(y)dy<n 1
,=x ,=x7 Y[(Y)F’(y)dy"

We now choose N such

I yf(y)F’ (y) dy < e for -> N.

Putting this in (6.5) gives that the right-hand side of (6.5)

Nlll n-1 e N-1 IX+ nlt<n y/(y)Fi(y)dy+n 5". -<n Y.. n
i=1 i=N i=1 i=N

Since H,, < In x + 1, we have the above expression

<n (In (N- 1)+ 1)Ix + ne (In (n 1)+ 1).

104 JAMES R. BITNER

Therefore

n (ln (N 1) + 1)x + ne (ln (n 1) + 1)
n log n

(ln (N 1) + 1
+ e(ln (n- 1)+ 1)

log n (log e)(ln n)

(ln (N 1) + 1) e e
4-4-

log n log e (log e)(ln n)"

We can make the first and third terms arbitrarily small (say, less than e) by choosing n
sufficiently large. Therefore,

n--I

<2+ e
n log n

for n > N’. Therefore the limit of this ratio is zero as n + ee and the lemma is proved.
THEOREM 6.8. Ifn keys have their weights chosen according to any density function

with finite mean x, the expected cost of a monotonic tree is (2 In 2) txn log n + O (n),
asymptotically equal to the cost of a random tree.

Pro@ The cost of a monotonic tree is

[()] ’n-iI2Z nil,,-1 1 2 yf(y)F (y) dy.
i=1

Since the first term is asymptotically equal to (2 In 2)n log n and the second is
o(n log n), the leading term in the asymptotic cost is (2 In 2) xn log n.

We now show that the cost-.of a monotonic tree is less than or equal to that of a
random tree, proving that the cost of a monotonic tree equals (2 In 2) xn log n + O(n).
The method we are using to select key weights choses n weights independently from a
density function. An equivalent method first selects a set of n weights from an
n-dimensional density function. (This function can be constructed so that the pro-
bability of choosing a given set equals the probability of obtaining it (in any order) from
n selections from the original function.) We then choose a permutation of the set. By
Corollary 6.1, the expected cost of a monotonic tree is less than or equal to that of a
random tree for any such set, proving the theorem.

The majority of the results concerning monotonic trees are discouraging. This
method performs well only when we are guaranteed that the key probabilities will differ
significantly from the uniform distribution (i.e., have low entropy). This is not the case in
the situation described by Nievergelt and Wong (Bayer [19] has shown that the
expected entropy of a randomly chosen probability distribution is log n- In 2, which is
nearly log n, the maximum entropy) and the performance is asymptotically the same as
randomly built trees. This conclusion is substantiated by simulations run by Walker and
Gottlieb 16] which showed the monotonic tree rule to perform very poorly.

7. Single and double rotation rules. The previous methods have used the fact that a
rotation moves a certain node up in the tree, ignoring the fact that it also moves two
(possibly large) subtrees. The following rules achieve superior performance by
considering these subtrees in deciding whether to apply a notation. The limited single
rotation rule applies a rotation at a node on the search path for the requested key if the
number of accesses to nodes which will be moved up by the rotation exceeds the number
to those which will be moved down. Note that this will reduce our estimate (based on the

HEURISTICS THAT ORGANIZE DATA STRUCTURES 1()5

B

S $2 $3 $4

FIG. 7.1

accesses we have seen)of the expected cost of the tree. For example in Fig. 7.1, we
perform a rotation to promote A if w(A)+ w(S1)> w(B)+ w(C)+ w(S3)+ w(S4). We
promote C if w(C)+ w(S4)> w(B)+ w(A)+ w(S1)+ w(S2). Here, w(A), w(B) and
w(C) are the number of times A, B and C respectively, have been requested, and w(Si)
is the number of times any node in Si have been requested. Since all this information is
available at node B, the rotations can be efficiently done during the search for the
requested key.

Note that a rotation at one node may cause other nodes to become "unbalanced";
after promoting node B in Fig. 7.1, rotations may be possible at both A and C. The total
single rotation rule applies additional rotations to correct all "imbalances" caused by
rotations along the search path.

TABLE 7.1
The performance of the limited single rotation (LSR

and total single rotation (TSR rules.

Zipf’s Law
English
letters # # # # 4 # Average

Random cost
Optimal cost
LSR cost
Increase over
optimum

Average number of
rotations/request

Average over the last 100
requests

TSR cost
Increase over
optimum

Average number of
rotations/request

Average over the

5.15 7.26 7.50 7.27 7.33 7.63 7.40
3.32 4.10 3.93 4.16 4.06 3.96 4.04
3.44 4.33 4.14 4.46 4.28 4.20 4.28

3.55% 5.46% 5.31% 7.29% 5.42% 5.98% 5.89%

0.111 0.199 0.204 0.199 0.197 0.200 0.200

0.033 0.041 0.040 0.039 0.034 0.038
3.41 4.33 4.11 4.41 4.22 4.17 4.25

2.93% 5.57% 4.57% 6.02% 3.92% 5.27% 5.07%

0.118 0.220 0.219 0.217 0.209 0.213 0.215

last 100 rotations 0.040 0.048 0.044 0.036 0.036 0.041

A simulation was run to determine the cost of various rules. Fifty trees were randomly generated, and the cost
and other statistics were recorded after 500 requests. The probability distributions we considered were the
English letters and five others that were generated by choosing a random ordering of 100 keys whose
probabilities were given by Zipf’s Law.

106 JAMES R. BITNER

Table 7.1 compares these two rules. Similar simulations have been run by Baer
[17]. The total single rotation rule has a slightly lower cost and does surprisingly few
more rotations. However, there is much more overhead associated with a rotation in the
total rotation rule. Since imbalances can propogate throughout the tree, either a pointer
to a node’s father must be maintained or we must stack the nodes encountered during
the search for the requested key. Table 7.1 also shows how much work the rules require
after many requests; after an initial period to "organize" the tree, both rules require
very few rotations.

A

FIG. 7.2. The inside subtrees of node A are darkened.

A weakness of these rules is that they do not consider the "inside" subtrees (the
right subtree of a node’s left son, or the left subtree of its right son, see Fig. 7.2). A
rotation can promote either "outside" subtree, but the inside subtrees remain at the
same level. This can lead to very poor trees that are still "stable" in the sense that no
rotations can be performed. Figure 7.3 shows an example. This tree is stable as long as
the weight of a node is less than or equal to that of its father.

FIG. 7.3

While the worst case performance for such a distribution is quite bad, a simulation
suggests the average case is acceptable. Consider probability distribution where pl
50 48 2 3 49
1275, P2 1--, P25 1275, P26 1275, P27 1275, P50 1275. The tree shown in Fig.
7.3 is stable for this probability distribution. Yet, after 500 requests the limited rotation
rule reduced the cost to 4.7593, a mere 3.06% increase over the optimal cost of 4.6180.

HEURISTICS THAT ORGANIZE DATA STRUCTURES 107

A

C

$2 $3

A

S2 $3

FIG. 7.4. The two double rotations. In either case, key B has been requested.

We can get a superior rule by also using the two transformations (called double
rotations) shown in Fig. 7.4. These allow the promotion of inside subtrees. The double
rotation rule applies a rotation at any node on the search path if it reduces the cost of the
tree. Both single and double rotations are considered. The criterion for applying a single
rotation has already been discussed. The condition for applying the "upper" double
rotation shown in Fig. 7.4 is 2w(B)+ w(S2)+ w(S3)> w(C)+ w(S4) and that for the
"lower" double rotation is similar.

Table 7.2 shows the cost of the double rotation rule, which is within 3.84% of the
optimum, and the total number of rotation required per request (counting both single
and double rotations) is very close to the averages for the limited rotation rule and the
total rotation rule.

However, after many requests, fewer rotations are required than for either single
rotation rule. In fact, the average over the last 100 requests was .027 single rotation
(one every 36 requests) and .008 double rotations (one every 129 requests).

More complicated rules are possible. Bruno and Coffman [18] have considered an
extension of the double rotation rule that can promote a node any number of levels by
using a sequence of rotations. They, however, were concerned with an algorithm to
build a nearly optimal tree from a set of known key probabilities and used this set of
transformations to reduce the cost of the initial tree. Every final tree in their simulation
was within 5 percent of the optimum, and the average.was within 2.6%.

108 JAMES R. BITNER

TABLE 7.2
The performance of the double rotation (DR) rule.

Zipf’s Law
English
letters # # # # 4 # Average

Random cost 5.15 7.26 7.50 7.27 7.33 7.63 7.40
Optimal cost 3.32 4.10 3.93 4.16 4.06 3.96 4.04
DR cost 3.40 4.29 4.06 4.32 4.23 4.09 4.20
Increase over
optimum 2.35% 4.62% 3.45% 3.80% 4.11% 3.22% 3.84%

Average number of single
rotations/request 0.074 0.129 0.129 0.127 0.126 0.126 0.127

Average over last
100 requests 0.029 0.027 0.025 0.028 0.028 0.027

Average numbers of double
rotations/request 0.037 0.082 0.081 0.082 0.079 0.080 0.081

Average over last
100 requests 0.007 0.007 0.008 0.007 0.009 0.008

See Table 7.1 for explanation

This suggests further rules, where we consider promoting the requested node
levels for 1, 2, ..., k, where k is a parameter of the rule. Note that the single
rotation rules have k- 1,, and the double rotation rule has k- 2. Increasing k will
increase the work the rule must do, but will result in decreased retrieval times. The
results of Bruno and Coffman suggest that the retrieval time will not be greatly
improved by increasing k beyond 2, while the increase in the complexity of the
algorithm to execute the rule would be substantial.

The double rotation rule appears to be the best of these three rules. It has better
performance than the limited single rotation rule (the cost averaged within 3.84% of the
optimum). In addition, fewer rotations per request are required; using the double
rotations allows the tree to be altered more efficiently.

8. Conclusion. We first discussed several heuristics for dynamically organizing
linked lists. Analysis of the asymptotic behavior of the move to front rule and
transposition rule has been done by Rivest [1], who showed the transposition to be
always superior. We considered how quickly rules organize the data structure and
found the move to front rule superior in this respect. A hybrid rule was then defined
which had the fast convergence of the move to front rule and the low asymptotic cost of
the transposition rule.

If the data structure has space for a count field to be associated with each key, the
frequency count rule, which is optimal, can be used. However, since this rule eventually
overflows any fixed size field, we considered rules that use a bounded amount of storage.
The best of these is the limited difference rule. Its performance is not optimal, but
approaches the optimum as the upper bound on the difference fields is increased. This
upper bound need not be too large; even for small bounds, the performance is nearly
optimal.

Other rules that use counters are the wait c, move and clear rules and the wait c and
move rules. Both classes are an asymptotic improvement over the corresponding
permutation rule. However, their asymptotic cost is greater than that of the limited
difference rule, and their convergence is very slow.

Next, we examined several methods for dynamically organizing binary search
trees. The first was the monotonic tree rule. The worst case performance of this rule was

HEURISTICS THAT ORGANIZE DATA STRUCTURES 109

already known to be very poor. To evaluate this rule in an average case, we considered
two different methods of randomly choosing probabilities for the keys.

The first method assumes we are given a set of n probabilities and randomly assign
them to the keys. For this case, the expected cost of a monotonic tree (COSTMoy) was
shown to satisfy

(2 In 2)H f(n <_- COSTMoN _-< (2 In 2)H + 1

where f(n) is bounded by a small constant and H is the entropy of the probability
distribution. This shows that the monotonic tree rule performs well only when the
probability distribution has low entropy. Zipf’s Law and the geometric distribution
were considered. For both, the monotonic tree rule obtained significant decreases in
cost over a randomly built tree.

The second method assumes that the weights of the keys are chosen according to an
arbitrary density function. In this case, the performance was shown to be asymptotically
the same as a random tree. This agrees with the results from the first method; entropy of
a randomly chosen distribution of n probabilities is very high [19] (log n -log 2, nearly
log n, the maximum).

We then discussed rules with lower cost than the monotonic tree rule. Simulations
showed that the cost of the limited single rotation rule averaged within 5.89 percent of
the optimum. The total single rotation rule reduced the average cost to 5.07 percent of
the optimum, and the double rotation rule averaged approximately 3.84 percent of the
optimum. Though the double rotation rule must check for both single and double
rotations, it averaged one rotation every 36 requests and one double rotation every 129
after the initial period when the tree is being "organized". Compared with the limited
single rotation rule, the double rotation rule does less work after the initial period. It
then appears to be the best choice of the counter rules.

Acknowledgment. I wish to thank E. M. Reingold for his help in researching and
writing this article and D. L. Burkholder for the proof of Lemma 6.1.

REFERENCES

[1] R. L. RIVEST, On self organizing sequential search heuristics, Comm. ACM, 19 (1976), pp. 63-67.
[2] P. J. BURVILLE AND J. F. C. KINGMAN, On a model]’or storage and search, J. Appl. Probability, 10

(1973), pp. 697-701.
[3] W. J. HEYDRICKS, The stationary distribution of an interesting Markov chain, Ibid., 9 (1972), pp.

231-233.
[4] ,An extension ofa theorem concerning an interesting Markov chain, Ibid., 10 (1973), pp. 886-890.
[5] J. McCA3E, On serial files with relocatable records, Operations Res., 12 (1965), pp. 609-618.
[6] D. I. KNUTH, The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA, 1973.
[7] J. R. BITNER, Heuristics that dynamically alter data structures to reduce their access time, University of

Illinois Report UIUCDCS-R-76-818, July, 1976 (Ph.D. thesis).
[8] W. FELLER, An Introduction to Probability Theory and its Application, John Wiley, New York, 1968.
[9] D. E. KNUTH, The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, MA, 1973.

[10] B. ALLEN, AND I. MUNRO, Self-Organizing binary search trees, 17th Annual Symposium on
Foundations of Computer Science (1976), pp. 166-172.

[11] J. W. J. WILLIAMS, Algorithm 232mHeapsort., Comm. ACM, 7 (1964), pp. 347-348.
[12] K. MELHORNE, Nearly optimal binary search trees, Acta Informat., 5 (1975), pp. 287-295.
13] T. N. HIBBARD, Some combinatorial properties ofcertain trees with application to searching and sorting, J.

Assoc. Comput. Mach., 9 (1962), pp. 16-17.
[14] J. NIEVERGELT AND C. K. WONG, On binary search trees, Information Processing 71, vol. 1,

North-Holland, Amsterdam, (1971), pp. 91-98.
[15] W. RUDIy, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
[16] W. A. WALKER AND C. C. GOTTLIEB, A top-down algorithm]’or constructing nearly optimal

JAMES R. BITNER

lexicographic trees, Graph Theory and Computing, R. C. Reid, ed., Academic Press, New York,
1972, pp. 303-323.

[17] J. L. BAER, Weight balanced trees, National Computer Conference t975, pp. 467-472.
[18] J. BRUNO AND E. G. COFFMAN, Nearly optimal binary search trees, Proc. IFIP Congress 71 (1971).
19] P.J. BAYER, Improved bounds on the costs ofoptimal and balanced binary search trees, MAC Technical

Memo-69, November, 1975.

SIAM J. COMPUT.
Vol. 8, No. 1, February 1979

(1979 Society for Industrial and Applied Mathematics
0097-5397/79/0801-0008 $01.00/0

TOTAL ORDERING PROBLEM*

J. OPATRNY?

Abstract. The problem of finding a total ordering of a finite set satisfying a given set of in-between
restrictions is considered. It is shown that the problem is NP-complete.

Key words, algorithms, computational complexity, total ordering, NP-completeness

1. Introduction. In the design of circuits it can be desirable to arrange input and
output pins in such a way that a particular pin is located between two specific pins. The
problem of arranging pins along an edge can be mathematically formulated as follows:
given a finite set of elements S and a set of ordered triples R $ S S (the set of
"in-between" restrictions), does there exist a total ordering of S such that if (a, b, c) R
then either a <b and b <c or c <b and b <a?

In this paper the time complexity of the problem of finding a total ordering of a set $
satisfying a given set of in-between restrictions is investigated and it is shown that the
problem is NP-complete. It implies that, unless P NP, the problem of finding a total
ordering is inherently hard. The time complexity of the above total ordering problem
has been an open problem proposed by R. Karp.

2. Preliminaries. In this section the basic definitions are presented and the Total
Ordering Problem is stated.

DEFINITION. A partial ordering of a set S is a relation between elements of S,
denoted by <, satisfying the following properties for any elements a, b, c in S:

i) Ifa<bandb<cthena<c.
ii) Ifa<bthenba.
iii) a a.

A partial ordering of S is called a total ordering of S if for any two distinct elements a, b
in $ either a <b or b <a.

DEFINrrION. The Total Ordering Problem (TOP) is the following: given a finite set
S and a set of ordered triples R __. S $ $, determine whether there exists a total
ordering of S such that for any element (a, b, c) in R either a < b, b < c or c < b, b < a
(we say that such an ordering satisfies R). A solution for TOP would be an algorithm
which takes an instance (S, R) of TOP and outputs true if and only if there exists a total
ordering of $ satisfying R.

DEFINrrION. NP is the set of all languages for which there is a polynomial time
bounded nondeterministic recognition algorithm.

A language Lo is NP-complete if Lo is in NP and existence of a polynomial
deterministic algorithm to recognize L0 implies that for every L in NP we can effectively
find a polynomial deterministic algorithm to recognize L.

DEFINITION. A language L is polynomially reducible to language Lo if there is a
deterministic polynomial algorithm which will convert each string a in the alphabet of L
into a string b in the alphabet of L0 such that a L if and only if b L0.

DEFINrrION. A hypergraph is an ordered pair H =(V, E) such that V is a
nonempty finite set and E is a nonempty system of subsets of V. The elements of V are
called the edges of H. The rank of hypergraph H is max {lie[l: e E} where Ilel[denotes
the number of elements in e.

* Received by the editors September 15, 1977.

" Computer Science Department, Concordia University, Montreal. This research was done at the
University of Alberta with the support of The National Research Council of Canada.

111

112 J. OPATRNY

The 2-colorability Problem is the following: given a hypergraph H (V, E)of rank
3, determine whether there exist sets VB, VR of blue, red color vertices respectively
such that VB (-I VR and Vn f3 e # J, VR 0 e # for any edge e in E.

DEFINITIOY. The 3-satisfiability Problem is the following:
Given a Boolean expression B in conjunctive normal form with at most 3 literals

per clause, determine whether there exists an assignment of l’s and O’s to variables in B
such that for any variable x the value of x Y 0, x + Y 1 (where is the complement
of x) and the value of B is 1. (We say that B is satisfiable if there exists such an
assignment.)

3-satisfiability is NP-complete [4]. It is implicit in [6] that 2-colorability of
hypergraphs of rank 3 is NP-complete.

3. Results. Consider first the following Simple Total Ordering Problem (Simple
TOP), Given a finite set S and a set of ordered triples R

_
S S S, determine whether

there exists a total ordering of S such that for any element (a, b, c) in R, a < b and b < c.
Therefore, given an instance (S, R) of simple TOP it is known for any (a, b, c) in R

that a <b<c while for any (a, b, c) in R in an instance of TOP there are two
possibilities: either a < b < c or c < b < a. Since an element of R in an instance (S, R)
defines precedence requirements on elements of S, Simple Ordering Problem can be
reduced to Topological Sorting Problem [5, p. 262].

LEMMA 1. An instance (S, R) of Simple TOP can be solved in time 0 (lls[I / IIR II).
Proof. Let (S, R) be an instance of Simple Total Ordering Problem. Let R’=

{(a, b), (b, c)" (a, b, c) R}. Then each element of R’ defines a partial ordering of S and
a total ordering of S satisfying R’ (or its existence)can be found using topological sort
algorithm in time proportional to (IISII + [[R I[)15, P. 2621.

Thus, if TOP is hard, the hard part of finding a solution to an instance (S, R) of TOP
would be to find for each (a, b, c) in R the "orientation" of it (i.e. whether a < b < c or
c < b < a) such that the resulting instance of Simple TOP has a solution. It will be shown
the problem of 2-colorability of hypergraphs can be polynomially reduced to TOP. In
the reduction we will associate with each edge of a hypergraph in-between restrictions
such that the problem of assignment of a color to a vertex in the edge will be equivalent
to assignment of an orientation to the corresponding in-between restrictions.

LEMMA 2. Given a hypergraph H of rank 3 with n edges we can construct in O(n)
steps S, R with the following property. H is 2-colorable if and only if there exists a total
ordering of S satisfying R.

Proof. Let H (V, E) be a hypergraph of rank 3,

V={sl, s2," ,sn}, E=EIUE2,

E1 {(ai, bi, ci)" a,, bi, Ci V, 1 <= j},

E2 {(di, el)" di, ei V, 1 <- <- m}.

Let X, Yx, Y2,’" ", Yi be symbols not in V. Construct set R as follows:
(i) (ak, Yk, bk), (Yk, X, Ck) are in R for each k, 1 -< k -< j.
(ii) (dk, X, ek) are in R for each k, 1 <- k -< m. Let S V U {X, Y1, Y2," YJ}. It

will be shown that there exists a total ordering of S satisfying R if and only if hypergraph
/-/is 2-colorable.

a) Assume that H is 2-colorable. Let VB
_

V, VR c_ V be the set of vertices of
blue, red color respectively, such that V (’1 VR QS, VB fq e # QS, VR f3 e # Q5
for every edge e in E.

TOTAL ORDERING PROBLEM 113

Let f be a function on S defined as follows:
(i) f(X)- O.
(ii) if vertex si Vn, where 1 =< =< n, then f(si) i; else f(si) -i
(iii) for every i, l<=i<=j, f(Yi) is defined as follows: if sign(f(ai))=

sign (f(bi)) then

else

f(Yi) min {f(a,), f(b,)} + 1 / (i + 1)

f(Yi) -sign (f(ci))/(i + 1).

Clearly, f is a one-to-one function that assigns a rational number to each
element of S. If each edge contains vertices of both colors, then the assignment
of real numbers of Yi, 1 _<-i _<-j satisfies all restrictions in R and, therefore, f
defines a total ordering of S satisfying R.

b) Assume that an instance (S, R) of TOP has a solution. Assign colors to vertices
in V as follows:
If s < X in a solution of (S, R) then vertex S is in Vr else S is in VR.
Since it is not possible for any i, 1 =< -< j that

and bi<X and ci<X, or

and bi>X and ci>X

and similarly it is not possible for any i, =< =< m that

and ei<X, or

di >X and ei > X

no edge of E is a subset of VR or VB.
Therefore, H is 2-colorable.

THEOREM. TOP is NP-complete.
Proof. Consider the following nondeterministic algorithm to solve a given instance

(S, R) of TOP.
(i) Assign nondeterministically an orientation to each element of R and thus

transform the problem into an instance (S, R’)of Simple TOP.
(ii) Use algorithm from Lemma 1 to solve (S, R’).

Clearly, the nondeterministic algorithm above solves (S, R) in polynomial time. There-
fore, TOP is in NPo

By Lemma 2, 2-colorability of hypergraphs of rank 3 is linearly reducible to TOP.
Therefore, NP-completeness of 2-colorability problem [6] implies NP-completeness of
TOP problem.

The reduction of 2-colorability of hypergraphs into TOP is linear and, further-
more, there is a simple correspondence between colors in a hypergraph and orientations
of in,between restrictions. Similarly, 2-colorability of hypergraphs is useful in demon-
stration of NP-completeness of other problems [3], [6]. An important advantage of
2-colorability problem is the symmetry of both colors which is not the case of l’s and O’s
in the 3-satisfiability problem.

To illustrate the difference we give below a reduction of 3-satisfiability into TOP:
Given a Boolean expression

B (a, + b, + c,). (a2 + b2 + C2) (a] -Jr bj q- Cj)

(dl + el)" (d2 q- e2) (d., + e.)

114 J. OPATRNY

construct set R’ as follows:
Let F, X, S1, $2,’",S,,,, V1, VE,’",V, rl, YE,’",Y’, Z1, ZE,’",Zj, U,
U2," , U. be new symbols.

(i) (ak, Vk, bk), (Vk, X, Zk), (Uk, Yk, Ck), (Yk, X, F), (Zk, X, Uk) R’ for every k,
l<_k<_j.

(ii) (dk, Sk, ek), (Sk, X, F) R’ for every k, 1 <_- k <- rn.
(iii) (q, X,) R’ for every variable q in B where t is the complement of q.
It can be shown similarly as in the proof of Lemma 2 that there exists a total

ordering of symbols in R’ satisfying R’ if and only if Boolean expression B is satisfiable.
Set R’ contains 5j + 2m restrictions while set R from Lemma 2 contains 2j + m

restrictions.

Acknowledgment. I would like to thank Dr. V. Chvatal for a simplification of the
proof of the main lemma.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] S. A. COOK, The complexity oftheorem-provingprocedures, Third Annual ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1971, pp. 151-158.

[3] V. CHVATAL AND G. THOMASSEN, Distances in orientations ofgraphs, Research report STAN-CS-75-
511, Stanford University, Stanford, CA, 1975.

[4] R.M. KARP, Reducibility among combinatorialproblems, Complexity of Computer Computations, R. E.
Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[5] D. E. KNUTH, The Art of Computer Programming, Vol. I, Addison-Wesley, Reading, MA, 1968.
[6] L. LOVASZ, Covering and coloring of hypergraphs, Proc. 4th S-E Conference, Combinationa, Graph

Theory, and Computing, 1973, pp. 3-12.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802-0001 $01.00/0

LOWER BOUNDS ON SYNCHRONOUS
COMBINATIONAL COMPLEXITY*

L. H. HARPERf AND J. E. SAVAGEt

Abstract. Synchronous combinational complexity, a measure of the size of logic circuits without races,
is investigated in this paper. The first author has presented a method for obtaining an O(n log n) lower
bound to synchronous combinational complexity and has shown that this bound applies to "almost all"
Boolean functions in n variables. However, he could not constructively exhibit functions to which the lower
bound applied (although Wolfgang Paul did produce an example). In this paper we weaken and extend the
hypothesis of the lower bound so that a larger class of functions satisfies it and apply it to the determinant
and marriage functions of GF(2).

Key words, complexity, logic circuits, synchronous circuits, determinant, marriage problem

1. Introduction. Combinational complexity or the circuit size of Boolean
functions plays a fundamental role in theoretical computer science. It provides a lower
bound to the time to compute functions on Turing machines 1], [2] and on the space-
time product on simple general-purpose computers [1] so that a large combinational
complexity implies that a function is computationally complex. In fact, we believe
combinational complexity to be the most promising tool with which to show that NP-
complete problems [3], [4] are of exponential complexity. Unfortunately, however, it
has not been possible, except under certain special conditions, to derive nonlinear
lower bounds to the combinational complexity of functions. Nevertheless, much of
general interest has been learned about the subject, as seen in the survey article [5]
and in the full account given in [6]. Exponential lower bounds have been derived for a
few functions which have the ability to encode all Boolean functions over a slightly
smaller set of variables [7], [8]. However, most research on the complexity of Boolean
functions has concentrated on the development of techniques for bounding the
combinational complexity of simple, explicitly defined functions. The marriage
function [9] is an example of such functions and is investigated in this paper.

In search of improved methods for bounding combinational complexity, Harper
[10] has studied synchronous combinational complexity, a measure that is related to
combinational complexity but one that highlights the structure of circuits, as seen
below. (Lupanov [11] has developed asymptotic bounds on the synchronous
combinational complexity of the most complex Boolean functions on n variables.)
Harper has shown in a nonconstructive manner that Boolean functions exist which
have synchronous combinational complexity that is fl(n log n), where n is the number
of variables of the function. Wolfgang Paul in an unpublished manuscript has demon-
strated that a function which uses several levels of indirect addressing does satisfy
Harper’s condition for an D,(n log n) lower bound. In this paper we weaken and
extend Harper’s condition so that it can be applied to two interesting functions, the
determinant and marriage functions modulo 2.

The paper has five sections. In 2, we define synchronous and standard
combinational complexity while in 3, we derive the principal result, a lower bound to
the synchronous combinational complexity of a function in terms of the number of its

* Received by the editors August 10, 1976, and in final revised form February 23, 1978.

" Department of Mathematics, University of California, Riverside, Riverside, California 92502. This
work was supported in part by the National Science Foundation under Grant GJ 42907.

Division of Engineering, Brown University, Providence, Rhode Island 02912. This work was
supported in part by the National Science Foundation under Grants DCR72-03612 and MCS76-20023.

115

116 L.H. HARPER AND J. E. SAVAGE

subfunctions. Applications are studied in the fourth section, and the last section is
devoted to comments and conclusions.

2. Synchronous combinational complexity. An n-logic circuit (or simply a circuit)
is a directed labeled, acyclic graph with node labels that are either loolean variables
from {x,...,x} or Boolean functions from a basis f={hi:{0, 1}"’{0, 1}} (see
Savage [6]). A basis has fan-in r if n =< r and for some i, n r. Nodes that are labeled
with variables are called source nodes and have no edges directed into them. The
others are called computation nodes and have edges directed in and generally have
edges directed out as well. To each node v we associate a Boolean function fo. If v is a
source node, ’ is a projection operator and otherwise it is defined recursively by the
composition of its node label h with the n functions associated with nodes from which
it has incoming edges. The depth of a node in a circuit is the length of (number of
elements on) the longest path from that node to source nodes. A circuit is said to
compute a function f: {0, 1}n - {0, 1}", where f (fl, f2," fro) and fi: {0, 1}n - {0, 1}
if there exist nodes in the circuit whose associated functions are the igunctions {f}. The
combinational complexity of f relative to a basis lq, denoted Ca(f), is the minimum
number of logic elements needed to compute it with a circuit over f. The depth of a
circuit is the length of its longest path. The delay complexity of f relative to f, denoted
by Da(/), is the depth of the smallest depth circuit for f over f.

A logic circuit is synchronous (it is an s-circuit) if for each logic element the length
of each path from that element to a source node is the same and the length of all paths
from inputs to outputs are the same. If a circuit is not synchronous it can be made so by
introducing delay elements. The synchronous combinational complexity (or s-complex-
ity) of a Boolean function f relative to a basis lq, denoted Ch (f), is the minimum
number of logic and delay elements needed to compute it with an s-circuit. Source
nodes in an s-circuit are said to be at level 0 and nodes with paths of length from
source nodes are said to be at level 1. It is fairly easy to see that s-complexity is a crude
measure of the area occupied by a circuit that is placed on a rectan,guiar grid.

3. A lower bounding method. Let jr: {0, 1}" {0, 1}" and let A
_

{1, 2,..., n}.
Then, a sublunction oI’ on A is a function/c1’,7’ for some ci {0, 1},/’ A. Let z,(/’, A)
denote the number of distinct sub]unctions o]’f on A and let

ave log: z(f, A)

denote the average of log: z,(/’, A) over subsets A of {1, 2,. , n } of cardinality a with
a uniform distribution. A Boolean function g: {0, 1}" - {0, 1} is dependent on variable
xi if there exist values for its remaining variables such that a change in xi causes a
change in g.

LEMMA 1. Let g: {0, 1} {0, 1} be dependent on variables with indices in B where
b IBI. Then,

ave log2 , (g, A) -< b) n- b)2k < 11 k(k (k
1 n---+l

if 2ab/(n a b + 1) < 1.
Proofi There are 2’ distinct Boolean functions h" {0, 1}’{0, 1}. Since a sub-

function of g on A depends only on variables in A fiB, log2 z,(g,A)<-_2k where

There are ()sets a of cardinality a and-’---\k/\/(t](n-b]a-k which have kk lA fqBI.

SYNCHRONOUS COMBINATIONAL COMPLEXITY 117

elements in common with B. The first upper bound follows directly from these facts.
The ratio of two consecutive binomial coefficients is

c

j+l j+l

and the ratio of two terms in the sum is

(b-k) (a -k)
<-R0(k +1) (n -a -b + l +k)-

It follows that the average is bounded above by

2ab
(n-a-b+l)"

Y. (Ro)k <_-----

() k--0 1-- R0

since Ro<l. [3
We are now prepared to derive the principal result of the paper, a lower bound to

the synchronous combinational complexity of a function in terms of the number of its
subfunctions.

THEOREM 1. Let f be a basis offan-in r and let 0 < 3 < 1. Iff {0, 1} {0, 1} and
Dn(f)>-_L [log,(n-a + 1)/(2a +)] then

(f) >-- (1 6)L ave log2 (f, A).

Proof. Let {gl, g2,""", gt} be the p Boolean functions associated with nodes in
level of an s-circuit for f, where gi" {0, 1}n {0, 1}. Let g" {0, 1}" {0, 1}P be defined by
g- (gl, g2,""", gp). It follows that

P

(1) ,(f, A)<-_ v(g, A) <- l-[v(g,, A)
i=1

because we can write f as the composition of h: {0, 1}p {0, 1} with g, namely,

f h g, from which it is clear that f has no more subfunctions over A than g. The
second inequality given above is trivial.

Applying logarithms to (1), taking averages, and using the additivity of expec-
tations, we have the following inequality

P

ave log2 u(f, A)-<_ E ave log2 ,(gi, A).
IAI ’= IAI

Let bi be the number of variables on which gi depends and let b maxi (bi). Then,
applying Lemma (1) we have

(2) ave log2 ,(f, A)<-p/(1-R)

when R < 1 where

R =2ab/(n-a-b+l).

Since the functions {gl, , gp} correspond to nodes at level and since f has fan-in r, it
follows that none .of these functions depend upon more than r variables, that is, b <-rt.

118 L. H. HARPER AND J. E. SAVAGE

Since R is an increasing function of b, if

t(n-a+l)r_<_
2a+/

then the condition R < 8 will be met. Let L be the largest integer satisfying this
condition. If L <= Dry(f), then every s-circuit for f will have at least L levels and from (2)
at least (1- 8)avelAl=a log2 v(f, A) nodes at each level. From this we have the desired
conclusion. I3

We now apply this theorem to two important problems.

4. Allflie.ations. Given a graph with p x p adjacency matrix X (xi), the mar-
riage problem is to find a p p permutation matrix P (,ri) which maximizes

X. P rix
i,i

where denotes integer addition. The maximum is denoted re(X). In [9] we examine
m0(X)= m(X) modulo 2 which is a Boolean function and too(X):{0, 1}"-{0, 1}
where n p2. In that paper we show that if A covers entries in X that form a
permutation matrix P*, such as the elements on the diagonal, then the number of
subfunctions ,..o,..o"1’’=-" is at least 2 where is the number of entries in A (the
complement of A) which lie in the upper right-hand quadrant of X after X has been
permuted so that elements of P* lie on the main diagonal. If a IAI then

2
Erd6s and Rnyi [12] have shown that if a =p log p +p where (p) is any

growing function of p, then the fraction of the sets A which do not cover a permu-
tation approaches zero with increasing p. Combining this result with the above we
have the following.

THEOREM 2. Let f be a basis of]an-in r. Then,

C (mo)-> (1 o(1)) log2 n

where n =p2 is the number of variables of mo.
Proof. For all but a vanishingly small set of sets A, log2 v(mo, A)>= where is

given by (3). It follows that the average of this quantity is greater than or equal to
(1 o (1))t. The conclusion follows from the observation that m0 depends on each of its
n =p2 variables so that D(mo)>-logrn >-L for 8 o(1). 1,1

A similar result applies to det D: {0, 1}p {0, 1} which is the determinant of a
p x p matrix D =(dii) over GF(2). Suppose that A covers a permutation of D such as
the main diagonal. Set to 1 the values of all variables in A or A which lie below the
diagonal. LetA be A restricted to the elements above the diagonal.

Then two subfunctions det a,j=c,j a,j=c;DI, det DI,,az which dffer n an element (u, v)
A are different because one (c’,o 1)contains Ii#u,o d, in its ring-sum expansion
while the other (c,,o =0) does not. Thus, detD restricted to A has at least 2’
subfunctions for 1/2(IA]- (a p)) 1/2(p2 + P 2a). Again applying the Erd6s and
R6nyi result we have the following theorem, the proof of which parallels that of
Theorem 2.

THEOREM 3. Let f be a basis offan-in r. Then,

C (detD)>_- -(1 o(1)) log2n
Z

where n p2 is the number of variables of det D.

SYNCHRONOUS COMBINATIONAL COMPLEXITY 119

5. Comments and conclusions. We have shown that lower bounds to the
synchronous combinational complexity of functions can be derived in terms of
the number of subfunctions which they contain. The method has been applied to the
marriage function and the determinant function, both modulo 2. These two binary
functions have multiple inputs and a single output.

Lower bounds of the order n log n can be derived for a number of n-input,
multiple output binary functions such as Boolean matrix-matrix multiplication, the
Fourier transform function and binary addition and multiplication. For each case it is
sufficient to show that the cardinality of the range of the function in question is at least
2n, a >0, so that s-circuits have widths at least an, and to show that the delay
complexity of the function is on the order of log2 n. To restate the result for binary
addition: if a binary adder is laid out on a rectangular grid, most of the area (which is
O(n log n)) occupied by the circuit may consist of wires because there exist binary
adders with O(n) logic elements.

Symmetric Boolean functions on n inputs and the (symmetric) n-input, n-output
binary sorting function have linear s-complexity because they can be realized by s-
circuits that have a small neck through which passes the binary representation for the
number l’s among their inputs.

Synchronous combinational complexity and the structure of circuits which it
highlights may prove helpful in developing strong lower bounds on the standard
combinational complexity of Boolean functions.

Acknowledgment. The authors express their sincere appreciation to several
referees whose suggestions have improved the clarity of this paper.

REFERENCES

[1] J. E. SAVAGE, Computational work and time on finite machines, J. Assoc. Comput. Mach., 19 (1972),
pp. 660-74.

[2] N. PIPPENGER AND M. FISCHER, Relations among complexity measures, IBM Res. Rep. RC6569,
June 1977. (See [6, Chap. 5].)

[3] S. A. COOK, The complexity of theorem-proving procedures, Proc. Third ACM Symp. on Theory of
Computing, 1971, pp. 151-158.

[4] R. KARP, Reducibility among combinatorial problems, Complexity of Computer Computations, R. E.
Miller and J. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[5] M. S. PATERSON, An introduction to Boolean function complexity, Ast6rique, to appear; also Stanford
Univ. CS Rep. STAN-CS-76-557.

[6] J. E. SAVAGE, The Complexity of Computing, Wiley-Interscience, New York, 1976.
[7] A. EHRENFEUCHT, Practical decidability, Rep. Cu-Cs-008-72, Dept. of Computer Science, Univ. of

Colorado, Boulder, 1972.
[8] L, J. STOCKMEYER AND A. R. MEYER, Inherent computational complexity of decision problems in

logic and automata theory, Lecture Notes in Computer Science, Springer-Verlag, New York, 1977.
[9] L. H. HARPER AND J. E. SAVAGE, On the complexity of the marriage problem, Advances in Math., 9

(1972), pp. 299-312.
[10] L. H. HARPER, An n log n lower bound on synchronous combinational complexity, Trans. Amer. Math.

Soc., to appear.
[11] O. B. LUPANOV, On networks of functional elements with delays, Systems Theory Res., 23 (1973),

pp. 43-83.
[12] P. ERDOS AND A. RINYI, On random matrices, Publ. Math. Inst. Hung. Acad. Sci., 8 (1963), pp.

455-461.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802-0002 $01.00/0

ON THE PARALLEL EVALUATION OF
MULTIVARIATE POLYNOMIALS*

LAURENT HYAFIL"

Abstract. We prove that any multivariate polynomial P of degree d that can be computed with C(P)
multiplications-divisions can be computed in O(log d. log C(P)) parallel steps and O(log d) parallel
multiplicative steps.

Key words. Arithmetic complexity, parallel computation

1. Introduction. We prove that any multivariate polynomial P of degree d that
can be computed with C(P) multiplications-divisions can be computed in
O(log d log C(P)) parallel steps and O(log d) parallel multiplicative steps. This result
has to be compared with the best known lower bound of max (log d, log C(P)). (See for
instance [1] for exposition).

If we apply this result to the parallel inversion of a matrix n n, it shows the
existence of an algorithm in O(logE n) parallel steps: by Cramer’s rule, the inverse of an
n n matrix is a set of quotients of polynomials of degree n and of complexity
O(nEsl) (determinants). Such a result was already known by a method specific to this
problem [2]. This specific method uses O(n4) processors whereas our method uses
O(ngn) processors.

2. Definition. For RI, RE," , R, K(x, xE, , xn), C*(R,E, , R,) will
denote the minimum number of scalar multiplications-divisions necessary to compute
R, RE,’ , R, given K Xl, xE," , x).

A program/3 will be called homogeneous of degree d if:
(a) For any additive operation of/3, Pi- Oi / Ri, Oi and Ri are homogeneous

polynomials of the same degree d;
(b) /3 has no division;
(c) For any multiplication Pi Oi Ri of/3, O and Ri are homogeneous and the

degree of P is d.
If P, PE, , P, K[Xl, xE, , x], Cd(P1, P2, , P,) will denote the mini-

mum number of nonscalar multiplications necessary to compute P1, P2, , P, with a
homogeneous program of degree d.

3. Statement o[the results.
THEOREM 1. Let be an homogeneous program computing homogeneous poly-

nomials in n indeterminates PI, P2,’" "., P, of degrees <-_d with Ca(Px, P2,""", Pro)
multiplications. Then there exist two sets of homogeneous polynomals

U()=(Ui) for l _i <-_I where I <-_n +Ca(P1, P2, Pro);

V(o) (V/,i) for 1 <=i <-_land 1 <-] <=A where A is the number of operations
satisfying"

d<(a) -=deg (U)<-_Ed/3 for l <=i <-I.

(b) deg(V,i)<-_for l <-i<-_I, I_<-]-<A.

(c) If 7computes fi (l <-_i <-_A) and d/3 <-_deg (fi)<-_d then f =E-- U.V,.

* Received by the editors October 6, 1977, and in final revised form June 20, 1978.

" Compagnie IBM France, Centre Scientifique, 36 Avenue Raymond Poincar6, 75116 Paris, France.

120

MULTIVARIATE POLYNOMIALS 121

(d) Cd(Ui)<=fd(Pl, e2, ,P,,) for l <-i<=L
(e) Ca(,j)<-Ca(Pa, P2, ,P,,) for l <-i<-_I, l <-j<-h.
Proof. Let L(P1, P2,’", P,,) be the minimal number of operations of a homo-

geneous program which computes PI, P2, ,em with Ca (P1, P2, , P,,) multi-
plications.

The proof is by induction on L(PI, .P2,. , P,,,).
The case L(P1, P:,’", P,,)-<A being obvious assume Theorem 1 is true for

L(P1, P:,’’ ", P,,)=<h and consider a set of polynomials P1, P2,"" ", P,, such that
L(P1, Pz, , P,,,) h + 1.

The homogeneous program awhich computes P1, Pz, , P, in h + 1 operations
has a last operation which can be assumed to be Pa f f, without loss of generality. Let
ag" denote the program a without this last operation.

We denote by V/and V for 1 _-<] _-< I, polynomials of V(a’) corresponding to f and
f’:

if deg (f)_-> d/3 then f= X=I U.V.,
if deg (f’)>- d/3 then f’= X[=I UiV.

Case 1:P1 f+ f’. We first show that

Cd(P, P:, P,,,)= C(f, f’, P, P,,).

It is obvious that

Cd(f, f’, P2,""", Pro) <- Ca(P, P2, P,,,).

Assume Ca(f, f’, P2, ", P,,,) < Ca(P1, P2, , P,,).Since we can obviously build a
homogeneous program which computes P1, P2," ", P,, in Ca(]:,f’, P2,’" ", P,,,)
multiplications, we have a contradiction.

Since Ca(f, f’, P2, P)= Cd(Pt, P2, P.) then L(f, f’, P2, P.)=
and we can apply the induction hypothesis to f, f’, P2,""", P. obtaining two sets of
polynomials U(’) and V(W’) satisfying the above conditions (a) to (e).

Since the last operation of is P =f+f’ andP E= U(V + V.)we can define
U(W) and V(W) from U(W’) and V(’) by

u()= u(’),

V()= V(’) C] { V,x +l]for 1<_-]<-I}, where V.,x+ V.+ V for l<-]<-I.

It is obvious to check that U(W) and V() satisfy the above conditions (a) to (e).
Case 2: P f x f’. It is obvious that

Cd(P, P2, Pro) <- Cd(f, f’, P2, P.,)+ 1

and since if Cd (P1, P2," P,.)< Cd(f, f’, P2," P,,,)+ 1 were true an immediate
contradiction would appear, we have Cd(Pi, P2, P,.)= Cd(f,.f’, P2, P.,)+ 1
and L(f, f’, P2,. , P.,)= A. We can apply the induction hypothesis to f, f’, P2," ,
obtaining two sets of polynomials U(W’) and V(W’) satisfying the above conditions (a)
to (e). We consider the following cases:

(a) deg(P)<d/3. If we take U(t’)= U(W’) and V()= V(W’)
{V,x+ll <=] -<I} where V..+I =0 for 1 -<] -<I, U() and V(Xa) obviously satisfy the
above cOnditions (a) to (e).

(fl) deg (f) >- d/3. P=ff’=’.= U.(Vf), and we choose U(W)= U(") and
V(W)= V(’)1.3 { V,x+ I1 -<] <-I} where V.,,+ Vf if deg (U.Vf)_-< d, 0 otherwise
for 1<=]<-I. U() and V() obviously satisfy conditions (a) to (d). To establish

122 LAURENT HYAFIL

condition (e), we use the induction hypothesis"

c(v,.)<- c(f, f e,,
Hence Ca (V.f’) <- Ca (f, f’, Pz, , P,,,) + 1 and

for 1 --<j =<L

Cd(V.f’)<= Cd(P1, Pz, P.,).

(30 deg (f’) _-> d/. The same proof as in (/3) holds by permuting f and f’.
(6) deg (f) < d/ and deg (f’) < all3. We have d/ <-_ deg (P1) < 2d/, having

assumed (or), (fl), (y) do not hold. We take U(9)= U(a%’)t.J{U+i}
with U,/ Pl. I + 1 satisfies" I + 1 <-_ n + Cd (P1, P:, , P.,) since we know I _-< n +
Ca(f, f’, P:," ", P.,) and Cd(.f, f’, Pz," ", P.,) Cd(P, P2," "’, P.)- 1. We take
U(a) U(a’) I,.J { Vi,x+l[1 _-<] I} I,J {Ut+l,kll -- k -<h + 1}with Vi+l,h+ 1 and V/,i =0
for i=I+l andj#h+l or i#!+l andf=h+l. With such a choice U() and
V() satisfy conditions (a) to (e). 1

In order to establish Theorem 2 we first show:
LEMMA 1. Let P be a homogeneous polynomial of degree <=d in n indeterminates,

then P can be computed in (1/log2 3- 1) log2 d parallel multiplicative steps, and in

log2 d]1+1og2 3-1 ([logz [Ca(P)+ n]] + 1) parallelsteps.

Proof. The proof is by induction on d. For d 1, the proof is trivial. Assume it is
true for d’ < d, and we prove it for d’= d.

From Theorem 1 we know that" P Y’.[=I U/V/with I <-_ n + Ca(P) and U and Vj
are homogeneous polynomials which satisfy for 1 =< j _<- I:

(a) deg (U.)_-< 2d/3.
(b) deg (V.) -< 2d/3.
(c) c(u,.)<_- c(P).
(d) Ca(V.)= Ca(P).
Applying the induction hypothesis shows that U and V. (1<-]<-_I) can be

computed in less than (1/(1og2 3-1)) log2 (2d/3) parallel multiplicative steps
log2 (2d/3)/(log2 3- 1)([log: [Ca(P)+ n]] + 1) parallel steps.

To compute P, we compute in parallel U and V. for 1 <-/" _<-I multiply U by V. in
one parallel multiplicative step and sum up in [logz (I)] _-< [log2 [n + Ca(P)]] additive
steps. Summing the total number of steps gives the announced result to compute P. I-I

LEMMA 2. Let P be a multivariate polynomial of degree d and P, P:, , Pa the
homogeneous terms ofP then

Ca(P, P2, Pa) < [d(d- 1)] 2

2
C*(P).

Proof. The proof given in [3] consists in first eliminating division using Strassen’s
transformation [4] then in separating homogeneous components in every intermediary
result.

THEOREM 2. A polynomial P of degree <-_ d in n indeterminates which can be
computed with C*(P) multiplications-divisions can be computed with no more than
[(1/[1og2 3-1]) log2 dq parallel multiplicative steps, and than

logzd d(d-1))ZC.(P)+n]+l]+ [logz d][1 +
[logz 3-1]][lgz [(2

parallel steps.

MULTIVARIATE POLYNOMIALS 123

Proof. To compute P in parallel, we compute in parallel each of the d homogeneous
components of P:P1, P2,’", Pa and then add them in parallel in [log2 d] additive
steps. The result is then deduced immediately from Lemmas 1 and 2. I-!

4. Acknowledgments. Many thanks to A. Borodin for helpful corrections on the
first draft of this paper.

REFERENCES

[1] A. BORODIN AND I. MUNRO, The Computational Complexity ol Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

[2] L. CSANKY, Fast parallel matrix inversion, this Journal, (1976), pp. 618-628.
[3] L. HYAFIL, The power ofcommutativity, 18th F.O.C.S. Conference Proc., 1977, pp. 171-174.
[4] V. STRASSEN, Vermeidung yon Divisionen, J. Reine Angew. Math., 264 (1973), pp. 184-202.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802-0003 $01.00/0

A NEW REPRESENTATION OF THE
RATIONAL NUMBERS FOR FAST EASY ARITHMETIC*

E. C. R. HEHNER" AND R. N. S. HORSPOOL:I:

Abstract. A novel system for representing the rational numbers based on Hensel’s p-adic arithmetic is
proposed. The new scheme uses a compact variable-length encoding that may be viewed as a generalization of
radix complement notation. It allows exact arithmetic, and approximate arithmetic under programmer
control. It is superior to existing coding methods because the arithmetic operations take particularly simple,
consistent forms. These attributes make the new number representation attractive for use in computer
hardware.

Key words, number systems, number representation, rational arithmetic, p-adic numbers, radix
complement, floating-point

1. Introduction. "It’s very illuminating to think about the fact that some--at most
four hundredJyears ago, professors at European universities would tell the brilliant
students that if they were very diligent, it was not impossible to learn how to do long
division. You see, the poor guys had to do it in Roman numerals. Now, here you see in a
nutshell what a difference there is in a good and bad notation." (Dijkstra 1977)

We consider that a good scheme for representing numbers, especially for
computers, would have the following characteristics.

(a) All rational numbers are finitely representable. This requires that the
representation be variable-length.

(b) The representation is compact. It should require less space, on average, than
the fixed-length schemes commonly used in computers. Since the numbers provided by
a fixed-length representation are not used equally often, compactness can be achieved
by giving frequently-occurring numbers short encodings at the expense of longer
encodings for less-frequent numbers.

(c) The addition, subtraction, and multiplication algorithms are those of the usual
integer arithmetic. The division algorithm is as easy as multiplication, and it proceeds in
the same direction as the other three algorithms. This property is important for the
storage and retrieval of variable-length operands and results.

Although the desired representation is variable-length, there is no implication that
operations must be performed serially by digit. Just as data can be retrieved and stored d
digits at a time, so the arithmetic unit can be designed to perform operations d digits at a
time. By choosing d to be large compared to the average length of operands, we can
obtain the speed of a fixed-length design together with the ability to handle operands
that are not representable in a fixed length (Wilner 1972).

2. Background. Before we present our proposal, we shall briefly review
representations in common use. (For their history, see (Knuth 1969a).)

Almost universally, the sequence of digits

di’" d3 d2 dl do
is used to represent the nonnegative integer

n = dib

* Received by the editors November 18, 1977, and in final revised form June 19, 1978.

" Computer Systems Research Group, University of Toronto, Toronto, Ontario, Canada MSS 1A4.
School of Computer Science, McGill University, Montreal, Quebec H3A 2K6.

124

m NEW REPRESENTATION OF THE RATIONAL NUMBERS 125

where b (the base) is an integer greater than one (usually two or ten), and each digit di
represents an integer in the range 0-< di < b. As a rule, we do not write leading 0s. We
must break the rule, however, to represent zero (if we follow it, there is nothing to
write).

There is no direct representation of negative integers in common use. Instead we
prefix a unary operator to the representation of positive integers. The combination of
"sign and magnitude" is indirect because, to perform arithmetic, we may first have to
apply some algebraic transformations. If asked to add two numbers, we first examine
the signs to determine whether to use the addition or subtraction algorithm; if we are
using the subtraction algorithm, we compare the magnitudes to determine which is to be
subtrahend, and which minuend. With a direct representation, if asked to add, we
simply add. The radix complement representation is direct in this sense, but it includes
only a finite subset of the integers.

Rationals are commonly represented by a pair of integers" a numerator and
denominator. In this form, multiplication and division are reasonably easy, but addition
and subtraction are relatively hard, and normalization is difficult (Horn 1977). When
addition and subtraction are wanted more often than multiplication and division, a
representation that makes the former easier at the expense of the latter would be
preferable. For this reason, we usually restrict our numbers to a subset of the rationals
known as the "fixed-point" or "floating-point" numbers. By inserting a radix point in a
sequence of digits (fixed-point), or indicating by means of an exponent where a radix
point should be placed (floating-point), we represent those rationals such that, in lowest
terms, the denominator divides some power of the base. In this form, addition and
subtraction are, after alignment of the radix point, the same as for integers. With a
variable-length representation, a major difficulty with the usual division algorithm is
that it proceeds from left to right, opposite to the direction of the other three algorithms.
To simplify retrieval, processing, and storage, all algorithms should examine their
operands find produce their results in the same direction.

The left-to-right division algorithm gives us a way of extending the fixed/floating-
point representation to include all positive rationals: an infinite but eventually repeat-
ing sequence of digits can be finitely denoted by indieating the repeating portion. On
paper, the repeating portion is sometimes denoted by overscoring it; for example,
611/495 1.234. A minor annoyance is the fact that representations are not unique;
for example, 0.9 1. and 0.49 0.5. A major annoyance is that further arithmetic is
awkward: addition normally begins with the rightmost digit, but a sequence that
extends infinitely to the right has no rightmost digit.

The usual representation of nonnegative integers can be extended in various ways.
The base may be negative (Songster 1963), or even imaginary (Knuth 1960). In the
"balanced ternary" representation (Avizienis 1971), the base is three, and the digits
represent the integers minus-one, zero, and one. Our extension, which we now present,
is in quite a different direction.

3. Constructing the representation. To construct our representation, we shall
follow the approach of Hensel’s p-adic arithmetic (Hensel 1908, 1913). Hensel begins
with the usual representation of nonnegative integers, that is, a sequence of digits

d3 d2 d do. Each digit d represents an integer in the range 0 < d < b, where the
base b is an integer greater than one. He then constructs the representation of other
numbers (all rationals, some irrationals and some imaginary numbers (Knuth 1969b))
by means of arithmetic. We shall limit ourselves to rational numbers, and give a finite
representation of them that is implementable in computer hardware.

126 E. C. R. HEHNER AND R. N. S. HORSPOOL

3.1. Addition, subtraction and multiplication. For the addition and subtraction
algorithms, we adopt the usual algorithms for positive integers, with one qualification.
When subtracting a digit of the subtrahend from a smaller digit of the minuend, rather
than "borrow" one from. a minuend digit some distance away, we "carry" one to the
immediately neighboring digit of the subtrahend. For example,

22004
315 2 6

23478

beginning at the right, we subtract 6 from 4 to get 8 with a carry; then, rather than
subtracting the 2 in the next position, we subtract 3 from 0 to get 7 with a carry; etc.
Whether we "carry" or "borrow" is inconsequential; the important point is that we
affect only the immediately neighboring digit, not a digit an arbitrary distance away.
This form of subtraction is usual in circuit design; it is crucial to our number represen-
tation.

We now construct minus-one by subtracting one from zero.

..0 0 0 0
0 0 0 1

...9999

Beginning at the right, the subtraction algorithm generates a sequence of 9s. Though
the sequence is unending, it is repetitive, and can be specified finitely. We shall use a
quote (quotation mark) to means that the digit(s) to its left is (are) to be repeated
indefinitely to the left. Twenty-five, for example, is represented by 0’25 or by 0’025 or
by 00’25. The first of these is called "normalized"; in general, a representation is
normalized when it is as short as possible. A table of normalized representations of
integers follows; each entry specifies the usual representation together with our
representation.

0: 0’
1: 0’1 -1: 9’
2: 0’2 -2: 9’8
3: 0’3 -3:. 9’7

9: 0’9 -9: 9’1
10: 0’10 -10: 9’0
11: 0’11 -11: 9’89

For brevity on the written page (the abbreviation is inapplicable in computer
memories), we make the convention that when no quote appears in a number, 0’ is
assumed to be appended to its left. Thus the positive integers take their familiar form.

The reader may verify, with examples,, that the addition and subtraction algorithms
work consistently throughout the scheme. This is no surprise to anyone familiar with
radix complement arithmetic, for the similarity is apparent. The rule for negation is the
radix complement rule: complement each digit (in decimal, change 0 to 9, 1 to 8, 2 to 7,
etc.) and then add one. (Negation can be performed more simply; for example, in binary
starting at the right, leave trailing 0s and rightmost 1 alone, flip the rest.) The definition
of radix complement is made in terms of a fixed-size space available for storing numbers
in computers (the "word"); for example, if w bits are available for encoding integers,
two’s complement is defined by performing arithmetic modulo 2’. We prefer to define it

A NEW REPRESENTATION OF THE RATIONAL NUMBERS 127

independent of space constraints, and to view the fixed-size scheme as a truncation of
p-adic numbers to w bits. Radix complement is often preferred in computers because of
its nice arithmetic properties; our finite representation of p-adic rationals enjoys these
properties without suffering from the wasted space and overflow problems inherent in a
fixed-length representation.

The usual multiplication algorithm need not be altered for use with negative
integers. For example, multiplying minus-two by three, either way round, yields the

9’8 3
3 *9’8

9’4 24
27

27

9’4

3.2. l)ivision. Before we present the division algorithm, let us look at a simple
example. Since 9’ represents minus-one, we may expect division by 3 to give 3’ as the
representation of minus-one-third. Let us test the consistency of this representation
with our arithmetic. To negate, we first complement, obtaining 6’ (since 6’ is double 3’,
it represents minus-two-thirds); then we add one, obtaining 6’7 as our representation
ot one-third. Subtracting 3’ from 0’ also produces 6’7. MUltiplying 6’7 by 3 yields 1,
confirming its consistency.

0’- 1 9’ (minus-one)
9’+ 3 3’ (minus-one-third)

complement of 3’ 6’
or 3’. 2 6’ (minus-two-thirds)

6’+ 1 6’7 (one-third)
or 0’-3 =6’7

6’7.3=1

We now present the division algorithm by means of an example. For the moment,
we restrict ourselves to integer dividends and divisors, and further to divisors whose
rightmost digit is nonzero and relatively prime to the base. (Two integers are relatively’
prime if and only if their only common divisor is 1. In decimal, the divisor’s final digit
must be 1, 3, 7, or 9.) We shall remove all restrictions shortly.

For our example, we divide 191 by 33. The rightmost digit of the result, do, when
multiplied by the rightmost digit of the divisor, 3, must produce a number whose
rightmost digit is the rightmost digit of the dividend, 1. Our restrictions ensure that
there is exactly one such digit" do * 3 must end with 1, therefore do 7. We subtract
7 33 from 191; ignoring the rightmost digit, which must be 0, we use the difference in

place of the dividend, and repeat.
191+33=127
-231
9’6
66

9’6
33

9’6

desired result.

128 E. C. R. HEHNER AND R. N. S. HORSPOOL

When the difference is one we have seen before, we can insert the quote, and
stop.

Like multiplication, the division algorithm produces each digit by table look-up.
Compare this with the left-to-right division algorithm: a "hand calculation" requires a
guess that may need to be revised; a "machine calculation" requires repeated subtrac-
tion to produce each digit of the result.

The right-to-left division algorithm is well-defined only when the divisor’s final
digit is relatively prime to the base. For example, an attempt to divide 1 by 2 in decimal
fails because no multiple of 2 has 1 as its final digit. Therefore, the means presented so
far enable us to represent only a subset of the rationals: those rationals such that, in
lowest.terms, the denominator has no factors that are factors of the base. Compare this
with the fixed/floating-point representation; it represents those rationals such that, in
lowest terms, the denominator has only factors that are factors of the base. The two
representations are, in a sense, complementary; combining them, we are able to
represent all rationals. We allow a radix point, whose position is independent of the
quote, or an exponent, as in scientific notation. For example,

12’34 / 10 12’3.4
12’3.4 / 10 1234
1234 / 10 1.2’34
1.2’34 / 10 .12’34
.12’34 / 10 .21 ’234

The last example is probably best written with an exponent, and suggests that the more
appropriate machine representation uses an exponent rather than a radix point. This
requires a normalization rule: when normalized, the mantissa’s rightmost digit is not 0.
Thus 12’300E2 becomes 12’3E5, and 120’E2 becomes 012’E3. All rationals except
zero have a unique normalized representation.

To divide two arbitrary integers in decimal, we must first "cast out" all 2 and 5
factors from the divisor. These factors can be determined, one at a time, by inspecting
the divisor’s final digit. A 2 is cast out by multiplying both dividend and divisor by 5;
similarly, a 5 is cast out with a multiplication by 2. The generalization to arbitrary
(rational) operands is now easy.

4. Binary is Ieautitul. Base two, a common choice in computers for circuit reasons,
has two important advantages for us. First, it is a prime number. Since it has no factors,
there is no "casting out"; division of two normalized operands can always proceed
directly. Second, multiplication and division tables are trivial. This advantage for
multiplication is well-known; the right-to-left division algorithm is a true analogue of
multiplication, so the same advantage applies. At each step, the rightmost bit of the
dividend remaining

(a) is the next bit of the result, and
(b) specifies whether or not to subtract the divisor.

For example, dividing 1 (one) by 11 (three) proceed as follows.

1/1 1=0 1’1
-11

1’0

A NEW REPRESENTATION OF THE RATIONAL NUMBERS 129

1, Dividend 1. Its rightmost bit 1. Therefore
(a) Rightmost bit of result 1.
(b) Subtract divisor, and ignore rightmost 0.

2. Dividend remaining 1’. Its rightmost bit 1. Therefore
(a) Next bit of result 1.
(b) Subtract divisor, and ignore rightmost 0.

3. Dividend remaining 1’0. Its rightmost bit 0. Therefore
(a) Next bit of result = 0.
(b) Do not subtract divisor; ignore rightmost 0.

4. Dividend remaining 1’ as in step 2. Therefore insert quote. Result 01’1.

$. Radix conversion algorithm. The algorithm for converting the representation of
a positive integer from one base to another is well-known. The given integer is
repeatedly divided by the base of the new representation; the sequence of remainders
gives, from right to left, the digits of the new representation. For example, converting
eleven from decimal to binary

11=2,5+1
5=2,2+1
2=2,1+0
1=2,0+1

gives 1011. The algorithm is usually considered to terminate when the quotient is zero;
if it is allowed to continue, an endless sequence of 0s is produced.

Let us apply the algorithm to a negative integer. For example, converting minus-
eleven from decimal to binary

-11=2,-6+1
-6=2,- 3+0
-3=2,-2+1
-2=2,- 1+0
-1=2,-1+1
-1=2,-1+1

gives 1110101, which is the p-adic form. Note that the remainders must be digits in
the new base. By recognizing a repeated state of the computation, we are able to insert a
quote and arrive at our finite representation 1’0101.

If we begin with a fraction, we must allow the quotients to be fractions. We then
need an extra criterion to make the algorithm deterministic. For example, converting
one-third to binary, we might begin either with

1/3=2,-1/3+1

or with

1/3 2, 1/6+0.

To produce a result without a radix point, the original fraction, and each quotient
fraction, in lowest terms, must have denominators that are relatively prime to the new
base. The implied criterion is that the denominator must remain unchanged.

1/3=2,-1/3+1
-1/3=2,-2/3+1
-2/3=2,-1/3+0

130 E. C. R. HEHNER AND R. N. S. HORSPOOL

When a quotient is obtained that has appeared before, a cycle is recognized. Placing the
quote accordingly, we have produced the binary representation of one-third, namely
01’1. Thus the usual radix conversion algorithm naturally produces our representation.

in the preceding examples, we began with numbers in their tamiliar decimal
representations" sign-and-magnitude, numerator/denominator. If we begin instead
with our representation, the algorithm remains the same for rationals (without radix
points) as tor positive integers. For example, beginning with 6’7 (one-third in decimal),
we see that the rightmost digit is odd, therefore the rightmost binary digit is 1.

(6’7-1)+2=3’
3’- 1)/2 6’
6’-0)+2 3’

The division by two is performed as a multiplication by five, discarding the rightmost
digit of the result, which is 0. In general, when converting from base bi to base b2, a
finite number of rightmost digits of each quotient is sufficient to determine the next digit
of the result if all factors of b2 are factors of b l.

6. Properties of the proposed number system. Excluding the radix point or
exponent, the general form of our representation is

The number represented is

n/rn, d,b . d,b ’/(O 1)
i-----0 i=n+l

where b is the base of the representation. To justify this formula, we shall break the digit
sequence into two parts: the digits to the left of the quote will be called the "negative
part", and the digits to its right will be called the "positive part". The positive part was
our starting point for the construction of the representation.

d,, do = dib i.
i=0

The negative part can be found as follows.

Therefore

dn+,’’’ dn+x’ dn+m’"dn+l’+dn+m’"
rn zeros

=dn/,... d,,+’*b+ dibi-’-.
i=n+l

d,,+, d,,/a’ Y’. d,b’-"-X/(b ’’-1).
i=n+l

Putting the positive and negative parts together, we find

d,,+,,,.., d,,+l’d,,.., do d,,+,,,.., d,,+l’ * b"+l + d,,.., do
and hence we obtain the above formula.

From the formula, we see that sign determination is trivial. If both positive and
negative parts are present, we merely compare their leading digits. Assuming the
representation to be normalized, d,+,, d,.

A NEW REPRESENTATION OF THE RATIONAL NUMBERS 131

If dn+,, < d,,, the number is positive.
If d,+,, > dn, the number is negative.

If one part is absent, the sign is given by the part that is present. If both parts are absent,
the number is zero.

The formula can be used to convert from our representation to numera-
tor/denominator representation, if one so desires. For example, in decimal 12’7
7-120/99= 191/33; in binary 01’1= 1-010/11= 1/11 (one-third). From this
formula, we can also derive an easy method for converting to a right-repeating decimal
expansion (or binary expansion). Simply subtract the negative part from the positive
part with their leading digits aligned and the negative part repeated indefinitely to the
right.

12’345 345- 121.21 223.78

123’45 45-12.312 32.687

43’21= 21-43.43 =-22.43

The opposite conversion can be performed by reversing the steps.

2.34 2-34’ 56’8

The above paragraphs suggest two comparison algorithms. The first is to subtract
the comparands, then determine the sign of the result. The second is to convert the
comparands to right-repeating form, then perform the usual digit-by-digit comparison.
The first has the advantage that it is a right-to-left algorithm, but the second may have
an efficiency advantage.

7. Length oI representation. When two p-adic rational numbers are added,
subtracted, multiplied, or divided, the result is an infinite but eventually repeating
sequence of digits. For termination of the arithmetic algorithms, and for finite
representation of the result (placing the quote), one must be able to recognize when the
state of the computation is one that has occurred before. In a hand calculation,
recognition poses no problem: one merely scans the page. The analogous approach for
machines requires the arithmetic unit to contain some associative memory. Each state
of the computation is compared (associatively, in parallel) with all stored states; if a
match is found, the operation is complete, otherwise the state is stored and the
operation continues. The resulting digit sequence must be checked for normalization.

A method of recognizing the repeated state that requires storing only one state, t
the expense of possibly delaying recognition by a few digits, is the following (Brent
1978). If the states are Sl, S2, S3,’", then test (Sx vs. S2), (S2 vs. S3, S4), (S4 VS.

SS,’’’, SS), etc., until a match is found. Again, the resulting digit sequence must be
normalized.

7.1. Length Bounds. An alternative method of implementing the arithmetic
algorithms is as follows"

(a) calculate a bound for the length (number of digits)of the result;
(b) calculate a correct, though not necessarily minimal, length for the negative

(relSeating) part;
(c) produce a sufficient number of digits to ensure that a repetition of the length

calculated in (b) has occurred;
(d) normalize the result.

This approach obviates the need to recognize a repeated state. However, the complex-
ity of our formulae for the length bounds makes the approach unattractive.

132 E. C. R. HEHNER AND R. N. S. HORSPOOL

The bounds are summarized in Table 1. The notation used in the table is the
following.

b: the base of the representation
pi: the length of the positive part (i.e. the number of digits to the right of the quote)

in the base b representation of xi
n" the length of the negative part (i.e. the number of digits to the left of the quote)

in the base b representation of x
4: Euler’s b function; (m) is defined, for positive integer m, as the number of

positive integers not exceeding m that are relatively prime to m.

+ 2

x2

x3----x

X2

TABLE
Length bounds.

p3 <- MAX(p1, p2)+ na + 2
n3 is a divisor of LCM (n l, n2)

P3 <--/91 -I" P2 q- n3+
n3 is a divisor of LCM (nl, n2)

fpl+p2+n3+1 if P2 <- n2
P3 <-Pl P2 -I- na + if n2 < P2 <- Pl

I.n + if Pl, n2 < P2
n3 is a divisor of LCM (nl, tb(xz(b"2-1)))

7.2. Allroximatioa. Our representation provides a service that is unavailable to
users of fixed-length floating-point hardware: exact results. As arithmetic operators are
applied repeatedly during a computation, this extra service may begin to cost extra" the
length of representation of the results may tend to grow. As the lengths grow, storage
costs increase; as the lengths become greater than the number of digits that a data path
or arithmetic unit can accommodate at one time, processing time increases. Mny users
do not require perfect accuracy, and are unwilling to pay extra for it.

Users of fixed-length floating-point hardware have their accuracy and expense
chosen for them by the computer designer. The designer’s impossible task is to choose
one accuracy and expense (amount of storage per number) to satisfy all users at all
times. Some designers give their users a choice of two accuracies (single and double
precision); it seems preferable to allow each user to choose any accuracy, from none to
complete.

For reasons ot mathematical cleanliness, we prefer not to provide approximate
versions of the addition, subtraction, multiplication, and division operators, but to
provide a separate approximation operator. Two possible (and ideal) forms of this
operator are:

(a) Given a number n, and a number of digits d, n @ d a number that is closest to
n and whose representation has no more than d digits.

(b) Given a number n, and a tolerance t, n @ a number in the range n + nt
whose representation is shortest.

The second form has the advantage that its specification is independent of represen-
tation. In either form, the problem of finding a "closest" or "shortest" result is a hard
one; in practice, a reasonably close or short result is easy to obtain, and acceptable. One
method is to convert the number to right-repeating torm (using the algorithm in 6) and
then truncate the result. For example, 12’34.567 is first converted to 22.445 78 and this

A NEW REPRESENTATION OF THE RATIONAL NUMBERS 133

may be approximated to 0’22.4458, to 0’22.446, or to 0’22.45, etc. In general, if the
final truncated result has k digits to the right of the radix point, then it is easy to show
that the error introduced by the approximation is less than b-k where b is the base of the
number system. This form of approximation corresponds to the first style of approxi-
mation operator given above.

The role of the numerical analyst has traditionally been to analyze the accuracy
(error) provided by the manufacturer, and to design algorithms which make the best use
of this accuracy (i.e., whose final result is most accurate). With our proposal, the
numerical analyst’s role will be to choose approximations that make a computation as
cheap as possible, while achieving the desired accuracy. Correctness proofs will be
facilitated by making the chosen approximations explicit.

7.3. Compactness. We would like to compare the computing expense of solving a
sample of numerical problems using .a fixed-length floating-point representation with
the expense using our representation. To make the comparison, it would be unfair to
use existing programs, since they are designed to run on existing floating-point
machines. We should proceed as follows.

1. Ascertain the accuracy achieved by each of the existing programs for floating-
point.

2. Write programs for our representation that achieve the same accuracy as
cheaply as possible. This requires numerical analysis that has not yet been
developed.

3. Compare the cost of running the programs on their respective machines.
Even then, the comparison will be biased in favor of fixed-length floating-point, since its
users are not given the option of more or less accuracy. Needless to say, we have not
made the desired comparison.

We have, however, tested our representation on integer data (Hehner 1976). Our
sample was a large, well-known compiler (XCOM, the compiler for XPL (McKeeman
1970)). The integer constants in the program require, on average, 5.7 bits each. A
complete trace of the values of all integer variables and integer-valued array elements
during an execution of the program (compiling itself) revealed that they require, on
average, 6.4 bits each. There are some essential overhead costs associated with the use
of variable-length data items. To be easily accessible, the data items may need to be
addressed indirectly. Furthermore, memory compactions may be necessary with data
items dynamically changing in size. Even when these costs are taken into account, there
is a 31% saving compared to a 32-bit fixed-length encoding. (The cost is measured as a
space-time product, since space is being traded for time when using a variable-length
encoding.) Therefore, for this data, our representation is significantly more economical
than a well-known standard.

8. Conclusion. The representation of the rational numbers presented in this paper
has several appealing properties. Given the usual representation of the positive
integers, it is, in a genuine sense, the natural extension to the rationals. The algorithms
for addition, subtraction, and multiplication are those of the usual integer arithmetic;
the division algorithm is truly the analogue of multiplication.

The complexity of rational arithmetic in numerator/denominator form has not
been reduced by our representation, but it has been redistributed and its character has
changed. For humans, the problems of detecting a repeated state and normalization
have the character of a pattern-match. If they can be solved economically for
computers, then we believe rational arithmetic with programmer-controlled accuracy
will become an attractive proposition.

134 E. C. R. HEHNER AND R. N. S. HORSPOOL

The notation introduced in this paper may be generalized in several directions. For
integer base b > 1, the digit set.can represent any b integers that are all different modulo
b (balanced ternary is a special case). The base need not be a positive integer. And the
representation can be used for rational power series. Krishnamurthy has considered the
use of a fixed-length truncation of p-adic numbers with the result that arithmetic is exact
within a limited range (Krishnamurthy 1977).

Acknowledgments. We thank Art Sedgwick and Bill McKeeman for their interest
in and comments on this work. We especially thank Don Knuth for informing us of
previous related work.

REFERENCES

A. AVIZIENIS (1971), Digital Computer Arithrhefic A Unified Algorithmic Specification, Proc. Symposium
on Computers and Automata, Polytechnic Press, Polytechnic Institute, Brooklyn, NY.

R. BRENT (1978), communicated via D. E. Knuth.
EDSGER W. DIJKSTRA (1977), An interview with prof. dr. Edsger W. Dijkstra, Datamation, 23, no. 5, p. 164.
E. C. R. HEI-INER (1976), Computer design to minimize memory requirements, Computer, 9, no. 8, pp. 65-70.
K. I-IENSEL (1908), Theorie der algebraischen Zahlen, Leipzig-Berlin.

(1913), Zahlentheorie, Berlin-Leipzig.
B. K. P. HORN (1977), Rational Arithmetic]’or Minicomputers, MIT Press, Cambridge, MA.
D. E. KNUTH (1960), An Imaginary Number System, Comm. ACM, 3, pp. 245-247.

(1969a), Seminumerical algorithms, The Art of Computer Programming, vol. 2, Addison-Wesley,
Reading, MA.

(1969b), Ibid., 4.1, ex. 31, p. 179.
E. V. KRISHNAMURTHY (1977), Matrix processors using p-adic arithmetic]’or exact linear computations,

IEEE Trans. Computers, C-26, pp. 633-639.
W. M. MCKEEMAN, J. J. HORNING AND D. B. WORTMAN (1970), A Compiler Generator, Prentice-Hall,

Englewood Cliffs, NJ.
G. F. SONGSTER (1963), Negative base number representation systems, IEEE Trans. Computers, EC-12, pp.

274-277.
W. T. WIENER (1972), Design of the BI700, Proceedings of AFIPS 1972, FJCC vol. 41, AFIPS Press,

Montvale, NJ, pp. 489-497.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics

0097-5397/79/0802-0004501,00/0

MAXIMUM FLOW IN PLANAR NETWORKS*

ALON ITAI" AND YOSSI SHILOACH*

Abstract. Efficient algorithms for finding maximum flow in planar networks are presented. These
algorithms take advantage of the planarity and are superior to the most efficient algorithms to date, If the
source and the terminal are on the same face, an algorithm of Berge is improved and its time complexity is
reduced to O(n log n). In the general case, for a given D > 0 a flow of value D is found if one exists; otherwise,
it is indicated thatno such flow exists. This algorithm requires O(n2 log n) time. If the network is undirected a
minimum cut may be found in O(n log n) time. All algorithms require O(n)space.

Key words, algorithm, network flow, planar graph

1. Introduction.
1.1. Basics. A directed flow network N (G, s, t, c) is a quadruple, where:
(i) G (V, E) is a directed linear graph;
(ii) s and are distinct vertices, the source and the terminal respectively;
(iii) c :E R / is the capacity function (R / denotes the set of nonnegative real

numbers).
Henceforth, n and m denote the number of vertices and edges respectively
and u v denotes a directed edge from u to v.

A function f: E R / is a flow if it satisfies:
(a) the capacity rule: f(e)<=c(e) Ve E;
(b) the conservation rule:

IN (f, v)= OUT (f, v) Vv V-{s, t}.

Where IN (f, v)= t,:,--vm f(u v) is the total flow entering v; and OUT (/, v)=
.,iw:o.-.w.if(v w) is the total flow emanating from v.

The flow value Ill is defined by

OUT (f, s)-IN (f, s).

A flow is a maximum flow if Ill If’l for any other flow f’.
1.2. Results. Ford and Fulkerson [6] stated and proved the Max Flow-Min Cut

theorem and established the technique of augmenting paths for finding a maximum
flow. Edmonds and Karp [5] provided the first polynomial algorithm (O(nm2)), based
on finding shortest augmenting paths. By using auxiliary graphs, Dinic [3] managed to
reduce the time bound to O(n2m) (see also [4]). By the method of preflows Karzanov
implemented Dinic’s algorithm in 0(/’/3) time [9]. Note that when m O(n) all these
algorithms require O(n 3) time [1].

A flow network N (G, s, t, c) is planar if G is a planar graph. (See [7, Chap. 11]
for the properties of planar graphs.) In this paper we discuss the problem of finding/a
maximum flow in planar networks.

Section 2 deals with (s, t) planar networks (s and are on the same face of G).
Berge 12, p. 190] proposed an algorithm to find a maximum flow, a straightforward
implementation of which requires O(n2) time. Here, an O(n log n) implementation is
presented. It is also shown that O(n log n) is a lower bound to any implementation of

* Received by the editors February 7, 1977, and in revised form July 6, 1978.

" Department of Computer Science, TechnionNIsrael Institute of Technology, Haifa, Israel.
Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, israel.

135

136 ALON ITAI AND YOSSI SHILOACH

Berge’s algorithm. (An O(n log n) algorithm to find a minimum (s, t)-cut for this case
appears in [-8, p. 151]; however, this algorithm does not produce the flow function
itself.)

In 3, for D > 0 we find a flow of value D in a directed planar network if such a flow
exists, otherwise we indicate this fact. This algorithm requires O(n 2 log n) time.

In undirected graphs, let u-v denote an undirected edge between the vertices u
and v. A flow network is undirected if the graph is symmetric, i.e. if u v E then also
v u E and c (u v)= c (v - u). In this case G is considered to be undirected (each
pair of directed edges u v and v u is replaced by the undirected edge u-v with the
same capacity).

In 4, we present an O(n 2 log n) algorithm for finding a minimum (s, t) cut in an
undirected planar network. Thereby, a maximum flow in an undirected network may be
found in O(n2 log n) time.

The Appendix contains an alternative proof of the validity of Berge’s algorithm.

1.3. Data structures. Throughout the paper we assume that the graph G has a fixed
planar representation.

The graph is represented by incidence lists, i.e. each vertex v has a list Ev of all the
edges to which v is incident (edges of the form u v or v - w).

FIG.

The set Eo is represented by a circular list corresponding to the circular clockwise
ordering of the edges around v (see Fig. 1). Each edge e Eo has a unique successor
edge succo(e) in Eo. The lists Eo are used to find successor edges. In the course of the
algorithm some edges are deleted from the network. The deletion of an edge from Ev is
deferred to the time it is traversed when looking for a successor edge. At this time the
predecessor edge is known; consequently, singly linked lists suffice. Each edge induces a
linear order on E as follows:

eo e, ei succo(eg_); 1,..., IEol- 1.

2. Maximum tlow algorithm on (s, t) planar networks. This sections deals with
(s, t) planar networks, i.e. s and belong to the same face, and can be connected by an
edge without violating the planarity. Without loss of generality, s E, (otherwise it
may be added with zero capacity). We also assume that s is incident with the exterior
face.

P (Vo, , Vk) is a directed (Vo, Vk)-path if vi-1 vi E, 1, , k. A path is
simple if all its vertices are distinct. Let P:=(S=Vo,’’’,Vk=t) and P2
(S=Uo,’’’,Ue=t) be two simple (s,t) paths. P: lies above P2 if vi=u,i=
0,. , r, Ur+I Vr+l and v,- Vr+l precedes v, u,+: in the linear order of Eo, induced by
Vr- Yr. (If r 0 then the order on Es is induced by s.)

The "lies above" relation is a full anti-symmetric order relation on the set of all
simple (s, t)-paths. Hence, it has a unique maximum the uppermost path. (See Fig. 2.)

MAXIMUM FLOW IN PLANAR NETWORKS 137

FIG. 2. The uppermost path appears in bold]ace.

2.1. Berge’s algorithm. If s and are on the exterior face, maximum flow may be
found by Berge’s algorithm. The algorithm starts by pushing as much flow as possible
through the uppermost path. Thereby, at least one edge becomes saturated. Such an
edge is deleted, and the process is repeated using the uppermost path of the resultant
graph.

The algorithm uses the residual capacities" res (e)= c (e)-f(e), where f denotes the
flow found thus far by the algorithm.

Let P be an (s, t) path, an edge eB P is a bottleneck if res (eB) Minee res (e).
The bottleneck value is res (eO).

BERGE’S ALGORITHM.
1. Initialize: set 1;

start with zero flow"
for all e E set fo(e) 0, res (e) c (e).

2. Find the uppermost path P/, if none exists then stop.
3. Let eft be a bottleneck of P/.
4. Increase the flow by res (e/) units along P/"

f/-l(e)+ res (eft) if e P/f(e) f_ (e) otherwise

res(e)=c(e)-f(e).
5. Delete the bottleneck e/ from G.
6. Seti=i+landgoto2.

The algorithm is illustrated in Fig. 3.
A proof of the validity of Berge’s algorithm can be found in [2]. See the Appendix

for an alternative self-contained proof.
A straightforward implementation of Berge’s algorithm (even step 4 alone)

requires O(n2) time for the network of Fig. 4. (Note that all the algorithms mentioned in
the introduction require O(n 2) time for this network.)

Let I(e) and L(e) denote the index of the first and last uppermost paths in which the
edge e participates. The following lemma reveals a useful property of Berge’s
algorithm; its proof follows from Lemma 2.5 below.

LEMMA B. If e participates in any uppermost path then e participates in all the paths
between Pt(e) and PL(e).

CO,OLtAR. Let e E and I(e)<-i<-L(e) then f(e)=
The proof follows immediately by induction on using Lemma B.

2.2. The modified capacity method. We propose an O(n log n) implementation of
Berge’s algorithm. To this end, we use modified capacities instead of residual capacities.

138 ALON ITAI AND YOSSI SHILOACH

10

The capacities are depicted above the edges"

The uppermost path P Residual capacity Bottleneck

(s, vl, v2, v3, t) (3, 1, 4, 3) vl v2 1
2 (s, v, v4, v, v3, t) (2, 1, 3, 3, 2) v v4 2
3 (s, v4, v2, v3, t) (2, 2, 2, 1) v3 3
4 (s, v4, t) (1,2) s’*v4 4
5 (s, vs, t) (2,2) vs’>t 6

FZG. 3

Letf denote the flow after finding the ith uppermost path, then the modified capacity
is defined by M(e)-Ife)-zl+c(e). Note that the modified capacity of each edge
receives a value once in the algorithm and is not updated (in contrast to the residual
capacity which is updated in each iteration). The flow at each iteration, is not found
explicitly for each edge only its value, If l, is found.

ALGORITHM M.
1. Initialize" set [foM[0; PoM ;i 1.
2. Find the uppermost path pM, if none exists then go to 7.
3. For epM-Pz, set M(e)=c(e)+lfxl.
4. Find a bottleneck eM Pi. M(eM) Min,,M(e); set [fM M(eM).
5. Delete eM from E.
6. Seti=i+landgoto2.

’ Veices

FIG. 4

MAXIMUM FLOW IN PLANAR NETWORKS 139

7. Find the flow of each edge" set

0 if e does not belong to any uppermost path,
(e)

/’e) l-Ife)-I otherwise.

Algorithm M as applied to the network of Fig. 3 is illustrated in Fig. 5.

10

Modified capacities
uppermost path of the path The bottleneckThe

(s, vl, re, v3, t) (3, 1, 4, 3) vl v2
2 (s, v, v4, v2, v3, t) (3, 2, 4, 4, 3) v v4 2
3 (s, v, v2, v3, t) (4, 4, 4, 3) v3 3
4 (s, v4, t) (4, 5) s v4 4
5 (s, v5, t) (6, 6) v5-’) 6

l(e) L(e) f(e) l(e) L(e) f(e)

s vl 1 2 2 v3 ") v 0
s v 3 4 2 v3 3 3
s -’> v5 5 5 2 v4 v2 2 3 2
l) I)2 V4 V5 0
V V 2 2 v4 4 4
VZ’-> V3 1 3 3 V5- 5 5 2

t- s 0

FIG. 5

The following lemma shows that the two algorithms are equivalent.
LEMMA 2.1. Letf be the flow found in the ith iteration of Berge’s algorithm. Let

P,..., P be the uppermost paths found in Berge’s algorithm, P,...,P the
uppermost paths found by algorithm M. If each P has a unique bottleneck e then

i) k=l,
ii) P =P]
iii) e=e I fori=l,...,k.
iv) f f7
Proof. By induction on i. If 1 then since both P and P are the uppermost

path of the same graph G, P P.

140 ALON ITAI AND YOSSI SHILOACH

At this point, for each e P1M, res (e)=c(e)=M(e). M(e)=Min,e,i,M(e)=
Mine,’ res (e) res (e).

Therefore, eM is the unique bottleneck of P, i.e. e elM. Also, If l-
res (e)= If[.

Suppose the lemma is valid for all] < i. At this stage, the graph is the same in both
algorithms, since by the induction hypothesis the same bottlenecks have been deleted.
Both P and pM are the uppermost path of the same graph; therefore pM p.

For e P
res (e) c (e) f/_ (e) (from corollary to Lemma B)

c(e)- (IfL [-[fY(e)-1 l)

=M(e)-If-l.

Since for the edges e PP pt, res (e) and M(.e) differ only by a fixed value--l/-x I,
M(e)=MinepT,M(e)=M(eM). The equality eM=e follows from the hypothesis
that e is the unique bottleneck of P.

Furthermore,

Ifl If- 1+ res (e)= I-, l+ (M(e)-[f_ [)= M(ef)= M(eM) IfUl.
Q.E.D.

If a path Pi has more than one bottleneck, Berge’s algorithm does not specify which
bottleneck is chosen. Therefore, for any choice of the bottlenecks in Algorithm M there
is a corresponding choice in Berge’s algorithm such that the sequences of paths,
bottlenecks and flow values are identical in both algorithms. Since both algorithms find
the same flow, and Berge’s algorithms finds a maximum flow, we have:

THEOREM 2.1. The modified capacity method (Algorithm M) finds a maximum
flow.

In order to determine the time complexity of Algorithm M, we must first specify
how the uppermost paths, the bottlenecks and the indices l(e) and L(e) are found.

2.3. Finding uppermost paths. Let Pi_ (s Vo," , v t) be the (i- 1)st
uppermost path. Deleting a bottleneck vj--> vi+ from P_ breaks it into two paths: ps
from s to vi and pt from Vi+l to t.

Algorithm U below constructs P by continuing PS until it meets Pt (P1 is found by
connecting P= (s) and P’= (t).) To this end, we conduct a partial depth first search
from vi until we reach a vertex of P’.

ALGORITHM U
1. P ps, v vi
2. Let e u --> v be the edge in Pi which enters v (if v s then e --> s).
3. If Eo {e} then (v is a deadend)

if v s then stop (no (s, t) path exists).
Otherwise, (backtrack) set v u; delete e from G and Pi;
go to 2. (See Fig. 6a.)

4. Let e’= succo(e). If e’ enters v (e’ is in the wrong direction)delete e’ and go to 3.
(See Fig. 6b.)

5. (In this case e’= v --> w.) If w Pi 12 pt then include e’ in P, set v w and go to 2.
(See Fig. 6c.)

MAXIMUM FLOW IN PLANAR NETWORKS 141

6. If w P’ (the desired path has been found) include e’ in Pi; delete the edges
from vj+l to w along pt; add the remaining edges of Pt to Pi, and
stop. (See Fig. 6d.)

7. (w P). Delete the edge e’ and the edges Pi between w and v; Set v w and go
to 2. (See Fig. 6e.)

Note that I(e) and L(e) can be found in Algorithm U as follows: Whenever an edge
e is included in P (step 5 or 6) set I(e) i. If an edge e is deleted in the ith iteration then
set L(e)= i- 1; if e is not deleted L(e) gets the index of the last uppermost path.

Vj/I

i"

ue v

FIG. 6a

W Vi+l

FIG. 6b

FIG. 6c

FIG. 6d

Vi+l
w u O

FIG. 6e

FIG. 6

142 ALON ITAI AND YOSSI SHILOACH

2.4. A validity proof of Algorithm U. An edge e incident with the exterior face is

left-exterior (l.e.) if it is either incident only with the exterior face, or it is incident also
with another face but the exterior face is on its left hand side (see Fig. 7).

Whether an edge is I.e. depends also on the planar representation of G; we choose a
particular representation in which --> s is 1.e.

FIG. 7. The I.e. edges appear in boldface.

A path is I.e. if all its edges are I.e. The above definition implies the following
lemma:

LSMMA 2.2. If U --> V is an I.e. edge and v --> w succo (u --> v) then v --> w is also l.e.
The proof follows immediately from the definition of I.e.
LSMMA 2.3. Let G be the graph resulting after finding the path Pi. IfP and P’ are

I.e. in Gi-x then P is l.e. in Gi.
Proof. If Pi (s) and the edge s --> w is added to Pi then s --> w succ,(t --> s) and

therefore is I.e.
Assume that P is a nontrivial path, and u --> v is its last edge. When an edge v --> w is

added to Pi, v --> w succo (u --> v) and by Lemma 2.2, v --> w is also I.e. The algorithm
may delete edges but if an edge is I.e., then the deletion of other edges does not change
this property.

The edges of Pt added to P (at step 6) are I.e. since pt was I.e. in Gi-1. Q.E.D.
COROLLARY. Every path Pi found by Algorithm U is l.e. in Gi.
.Proof. By induction on i. For 1, P (s), Pt (t) and the premise of Lemma 2.3

holds. In general, assume that Pi-x is 1.e. Deleting the bottleneck of P-I yields
P, PtP_ which are also l.e. and by Lemma 2.3 P is also 1.e. Q.E.D.

LEMMA 2.4. ff Vx, V2, 123 and v4 are on the exteriorface in this cyclic order then every
(v, Va)-path and every (rE, v4)-path have a common vertex.

Proof. Assume to the contrary that Px and P2 are disjoint (vx, v3)- and (vz, v4)-
paths. Add a vertex v5 in the exterior face and the edges v5-> v, 1, , 4. Then the
resulting graph is both planar and contractible to Ksa contradiction (see Fig.
8). Q.E.D.

FIG. 8

MAXIMUM FLOW IN PLANAR NETWORKS 143

LEMMA 2.5. Eevery edge deleted by Algorithm U cannot participate in any
subsequent uppermost path.

Proof. Edges are deleted in four places:
i) (step 3). The vertex v is a deadend and no (s, t)-path can pass through v;

therefore, e u v is useless (Fig. 6a).
ii) (step 4). Let e’= w v. Since e s Pi, is an 1.e. edge, (corollary to Lemma 2.3).

e’ succv(e) and therefore e’ is incident with the exterior face. Since Pi-1, s,
v, w and are on the exterior face in this cyclic order. Thus, by Lemma 2.4,
every directed (s, t)path which uses w v must cross itself. This property is not
changed when edges are deleted. Therefore, any subsequent (s, t)path
containing v w is not simple and is not uppermost (Fig. 6b).

iii) (step 6). If edges are deleted in this step then Vj/l w and w is incident with
three l.e. edges. Consequently, w is an articulation point separating the deleted
edges from the vertices s and t, and any (s, t) path which uses any of the deleted
edges is not simple (Fig. 6d).

iv) (step 7). Since the edge v - w is an I.e. edge then w is an articulation point and
there is no simple (s, t)-path through any vertex x which belongs to the directed
cycle closed by v w, (Figure 6e). Q.E.D.

The above lemmas yield:
THEOREM 2.2. If there exists an (s, t)-path then Algorithm U finds the uppermost

path.
Proof. If there exists an (s, t)-path there exists an uppermost path. By Lemma 2.5

after deleting edges there still exists an (s, t)-path. In this case the algorithm terminates
in step 6 and a path is returned. By the corollary to Lemma 2.3 this path is I.e. It is easy
to see that any I.e. (s, t)-path is uppermost. Therefore, the path is the uppermost path of
the resultant graph. Since by Lemma 2.5 only useless edges are deleted, this path is also
the uppermost path of the initial graph. Q.E.D.

At this point we wish to make a few observations. Algorithm U finds the uppermost
paths and can be used both in Berge’s Algorithm and Algorithm M. The validity of
Berge’s Algorithm does not depend upon the method by which the uppermost paths are
found. However, since by a proper choice of bottlenecks every method yields the same
sequence of uppermost paths, Algorithm U may be used to prove properties of Berge’s
Algorithm, in particular Lemma B above.

ProofofLemma B. It suffices to prove that if e Pi, e Pi+l, then e Pj for > i. If e
is the bottleneck of P then it is deleted by Berge’s Algorithm and cannot participate in
any subsequent uppermost path. Otherwise, e is deleted by Algorithm U, and by
Lemma 2.5 cannot participate in any subsequent uppermost path. Consequently, e Pi
for >i. Q.E.D.

Note that Lemma B is a property of Berge’s Algorithm, not of Algorithm U.
Therefore, it may be used to show the equivalence of Berge’s Algorithm and Algorithm
M.

2.5. Efficient implementation of Steps 5-7 of Algorithm U. To obtain an
O(n log n)algorithm, Steps 5-7 must be implemented efficiently.

Step 5. In this step we should identify the new vertices (those vertices which have
not appeared in P or any previous uppermost path). To this end, on initialization (step 1
of Algorithm M)we mark vertices s and as old and all other vertices new. Step 5 should
be:

5. If w is new, then" include e’ in P,
mark w old, set v w and go to 2.

144 ALON ITAI AND YOSSI SHILOACH

The paths Pi and P’ are represented as follows:
Every vertex belongs to at most one of the paths Pi or pt. Every vertex x has one pointer
field. If x P then the pointer points to its predecessor in P; if x Pt then it points to its
predecessor in P.

Steps 6, 7. Here we should determine whether an old vertex w is in pt or P. This is
done by backtracking along the back pointers. If w P then the backtracking from w
stops when we encounter vj/l and the backtracking from v stops when s is met. If w P
then When backtracking from w, s is encountered and when backtracking from v, w is
encountered. If the backtracking is done from v and w in parallel and stopped when the
first terminating condition is met, the number of edges processed is at most twice the
number of edges deleted in Steps 6 and 7.

LEMMA 2.6. The number of edge traversals in Algorithm M (insertions to an
uppermost path, deletions from the graph and backtracking) is proportional to the number
of edges.

Proof. Each edge may be inserted and deleted at most once. An edge is traversed at
insertion or deletion, and at backtracking. From the previous discussion, the total
number of edge traversals caused by backtracking is at most twice the number of
deletions, and thus it is also linear. Q.E.D.

2.6. The complexity of Algorithm M. In order to find a bottleneck efficiently, we
use a priority queue. A priority queue 10] is a data structure to which we may insert or
delete an element in O(log q) time (q is the number of elements in the queue), and find
the minimum in constant time. We keep the modified capacities of the edges of the
current Pi and Pt, in the same priority queue. Edges are inserted to the priority queue,
when added to Pi in Steps 5 and 6 of Algorithm U. Whenever an edge of the graph is
deleted, it is deleted also from the priority queue (provided it was there). Each edge is
inserted and deleted at most once. Therefore, there may be at most m edges on the
queue, and the entire deletion and insertion time is O(m log m)-O(n log n). By
Lemma 2.6 this bound also dominates the execution of the entire algorithm. Consider.
the graph of Fig. 9. The c’s are the bottlenecks. In any implementation of Berge’s
Algorithm they are found in an increasing order. Therefore, Berge’s Algorithm may be
used to sort {cl, , cn}. Hence, Berge’s Algorithm (in any implementation which uses
comparisons to find the bottleneck) requires at least O(n log n) time.

a, c ca ._,-, c _...,._ ,
". C Max C

FIG. 9

3. Finding a flow in a general planar network.
3.1. Preliminaries. Let N be a general planar network (i.e. s and are not

necessarily on the same face) and let D R /. We wish to find a flow f of value D in N.
Algorithm G, described below, finds f if it exists, otherwise, the algorithm terminates
indicating that there is no such flow. The algorithm requires at most O(n 2 log n) time.
The Max Flow-Min Cut theorem [6] implies that such a flow exists iff D -< C--the value
of a minimum cut. However, we did not find an O(n log n) algorithm to determine C in
a general directed planar network. In 4 we present an O(n2 log n) algorithm to find a
minimum cut in an undirected planar network.

A function f: E - R/ is a pseudo-flow if it satisfies the conservation rule. Since the
capacity rule is not necessarily satisfied, a pseudo-flow is not necessarily a flow. An edge

MAXIMUM FLOW IN PLANAR NETWORKS 145

e is over-[lowed (with respect to a pseudo-flow [) if f(e)<c(e).If e u-> v, then
denotes the edge v--> u. We make use of two coiaventions concerning the edges e, :

i) If e E then also E (may be added with zero capacity).
ii) If a flow (pseudo-flow) passes through e, no flow passes through (i.e. if f(e) >

then f() 0).
Let fl, f2 be pseudo-flows; the pseudo-flows [1 +/2 and 1’1-12 are defined by:

(f +A)(e)= Max {0, A(e)-A(g)+/-(fz(e)-f2(g))}.

Therefore, if for example, fl(e)= 3, f2($)= 5, then

(A +f2)(e) 0, (fl A)(e) 8,

(A +f)(g)= 2, (k-A)(a)= o.

3.2. General planar flow algorithm. Algorithm G starts with an initial pseudo-flow
the value of which is equal to D.

At each stage we pick an over-flowed edge x -> y and construct a new pseudo-flow
of the same value. The new pseudo-flow satisfies the capacity rule for the edges which
satisfied it before, as well as for the edge x --> y.

ALGOrU:HM G.
1. Find a shortest (s, t)-path, P.
2. Let f be the pseudo-flow obtained by pushing D units of flow through P.
3. Choose an over-flowed edge e0 x -> y. If none exists stop--[is a legal flow of

value D.
4. Let N’ (G’, x, y, c) where G (V, E’), E’ E- {e0, 0}

and

0 if [(e)>c(e),
c’(e)= c(e)-f(e) if c(e)>--f(e)>O,

c(e)+f(g) otherwise (f(e)= 0).

Find a flow [’ in N’ such that I[’1 [(eo)-c(eo). If none exists then stop, there
exists no flow of value D in N.

5. Set/’(o) If’l; f=f+f; go to 3.

3.3. The validity and complexity of Algorithm G. In this section we prove the
following theorem:

THEOREM 3.1. Let N be a general planar network and D R+.
i) If there exists a]tow of value D in N then Algorithm G finds one.
ii) If there exists no such]tow then Algorithm G terminates indicating this fact (at

step 4).
iii) Algorithm G requires at most O(n 2 log n) time.
First, we show that the algorithm always terminates.
LEMMA 3.i. Let p denote the number of edges of the path P (found in Step 1),

then the number of iterations ol Algorithm G is bounded by p.
Proof. From the definition of c’ it follows that if an edge e satisfied the capacity rule

for f, then after updating [in Step 5 the rule is still satisfied, i.e.

if f(e) <- c (e) then (f+f’)(e) <- c (e).

Moreover, after the execution of Step 5, the edge eo also satisfies the capacity rule
(f(eo)<=c(eo)). Consequently, after each iteration the number of over-flowed edges
strictly decreases. Since there are at most p such edges, the number of iterations is
bounded by p. Q.E.D.

146 ALON ITAI AND YOSSI SHILOACH

The proof of the theorem depends on the following lemma.
LEMMA 3.2. If D <--_ C then in Step 4 there exists a]tow f in N’ of value:

If’l =f(eo)-c(eo).
Proof. Let fo be a flow of value D in N. Define f*= fo _f. f, (* restricted to

E’) is a flow in N’: Since Ill- I1 D, f* satisfies the conservation rule at s and as
well as for all the other vertices. The capacity rule is satisfied because of the definition
of c’.

Since f* satisfies the conservation rule at x, the value of f, is"

f’ f*() -/’*(e) (fo() f()) (fo (e) f(e))
fo()+f(e)-fo(e) >- f(e)_fo(e) >=f(e)- c (e) > O.

Since N’ has a flow, the value of which is at least f(e)-c (e), it also has a flow f’ of
value f(e)- c (e). Q.E.D.

Proof of Theorem 3.1.
i) If D =< C then there exists a flow of value D in N. By Lemma 3.2 the algorithm

terminates at Step 3, when no over-flowed edges exist, i.e. the final f is a flow.
Since throughout the algorithm the value of f is not changed, at termination,
flow of value D is found.

ii) If D > C then the algorithm cannot terminate in Step 3. Since by Lemma 3.1
the algorithm is finite, it terminates in Step 4, indicating that no flow of value D
exists.

iii) We bound the execution time of each step.
Step 1. requires O(m) O(n) time;
Step 2. O(p) <- O(n) time;
Step 3-5. are executed at most p times. On each iteration, Step 3 requires at
most O(1) time.

In Step 4 a flow f’ of value f(e)- c(e) is required. To find f’, N’ is augmented by the
vertex xs and the edge xs -, x of capacity f(e)-c (e).

Let]:max be a maximum flow from x to y. If Ifmaxl f(e)- c(e) then the desired flow
is fm. restricted to E’. Otherwise, [.maxl<f(e)<c(e), there exists no flow f’, and the
algorithm immediately terminates.

In N’, x and y are on the same face. Hence, there exists a planar representation of
the augmented network, in which x and y are also on the same face. Therefore, we may
use Algorithm M to find]:max in O(n log n) time. Consequently, Step 4 requires
O(n log n) time.

Hence, the complexity of Algorithm G is O(pn log n)<- O(n log n). Q.E.D.
Note that in some cases a shorter initial path can be found by adding edges of zero

capacity.

4. Finding a minimum (s, t) cut in an undirected planar network. In this section we
present an O(n 2 log n) algorithm for finding a minimum (s, t)-cut in an undirected
planar network.

Henceforth, we assume that G is triconnected. Otherwise, the graph may be
triangulated in linear time using zero capacity edges. (Every triangulated planar graph
with more than three vertices is triconnected.) The value of a minimum (s, t)-cut
obviously does not change by this process. The minimum cut of the original graph
consists of the original edges which participate in a minimum cut of the new graph.

Since G is triconnected, it has a unique dual Ga (X, A), [11, Chap. 3]. Ga is also
triconnected. LetF and denote the set of faces of G and Ga respectively. There exists
a 1-1 correspondence between the elements of V , E A andF X (see Fig. 10).
Let a a e E denote the dual of a e A. The length of an edge a e A is defined by:

l(a)=c(aa).

MAXIMUM FLOW IN PLANAR NETWORKS 147

e2 e5

%

%

e8

FIG. 10

Let qs and pt denote the faces in Ga which correspond to s and respectively.
Henceforth, we assume that ps is the exterior face of Ga. The following lemma is
intuitive; however its formal proof is tedious, and therefore, omitted.

LEMMA 4.1. If C is a minimum (s, t) cut then Ca ={a[aa C} is a cycle of
minimum length enclosing q,.

Let :s , ., , and let II (= ’1,""", k ,ft) be a shortest (:, :t)-path in
Ga. Let ai i-1-:i for 2,. , k.

Let An denote the set of all edges of Ga which have exactly one endpoint on 1-I. An
edge :-:i A is H-left if it precedes ai+l in the linear order around :i induced by ai.

(See 1.3.) The edge ’-’ is H-right if it succeeds, ai+l in this order. Two vertices ’o,
:k+l and two edges n0 ’o-’ and ak+ k--k+ are added to Gd (see Fig. 11) to
make this definition meaningful also for the edges which are incident with ’ :x and
=’.

r-right edges

FIG. 11

148 ALON ITAI AND YOSSI SHILOACH

Note that since Ga is triconnected no edge is both H-left and H-right. A i-cycle is a
simple cycle which uses exactly one H-left and one H-right edge and its H-left edge is
incident with :i, (see Fig. 12).

FIG. 12

It is easy to see that every ’i-cycle (i 1,. , k) encloses
LEMMA 4.2. Let Cbe a shortest cycle enclosing ct. Then there exists a i-cycle ofthe

same length.
Proof. The proof follows immediately from the fact that II is a shortest (’*, ’) path

and therefore a subpath of II between and any ’j is a shortest (:, ’j) path. Moreover,
every cycle enclosing q must intersect II. Q.E.D,

(This argument does not work in directed graphs.)
The previous lemma implies that in order to find a minimum cycle enclosing c we

may find for each 1,. , k a minimum : cycle. The shortest of these k cycles is a
minimum cycle enclosing qt. In order to find minimum ’-cycle we use the following
construction.

Let da be the directed graph obtained from Ga in the following manner: Every
H-left edge r/is directed from : to r/. Every H-right edge : r/is directed from r/to. All the other edges -r/are replaced by two edges : r/and

LEMM, 4.3. Let II. If i is a shortest simple nontrivial directed path from to

itself in da, then the corresponding undirected edges in Ga form a shortest -cycle.
Proof. It can be easily verified from the definition of a that if a directed path from

’ to itself uses more than one H-left edge or more than one H-right edge, then it crosses
itself and therefore it is not a shortest :-cycle. Q.E.D.

Finding a minimum -path for a given is therefore equivalent to finding a shortest
nontrivial (’i, :i)-path in a. This can be done in O(m log n)= O(n log n) time and
therefore the entire algorithm requires at most O(n2 log n) time.

$. Conclusions. We have presented an O(n log n) algorithm to find a maximum
flow in an (s, t) planar network. The algorithm was programmed and compared on (s, t)
planar networks with Berge’s and Dinic’s algorithms. On networks which exhibit
Dinic’s O(n 3) behavior, the special purpose algorithms (Berge’s and ours) were
superior.

The tests were also conducted on random data. Since it was unclear how random
(s, t) planar graphs can be algorithmically constructed, the algorithm was tested on
several (s, t) planar graph with random capacities. For these networks the results were
less clear cut. The performance of our algorithm and Dinic’s were about the same;
however there were differences on different networks. Berge’s algorithm was superior
to both.

This behavior is explained by two observations:
i) The number of augmenting paths found by Dinic’s algorithm was much less

than the upper bound.

MAXIMUM FLOW IN PLANAR NETWORKS 149

ii) The priority queue involves considerable ouerhead.
In the general case the value of a maximum flow is equal to that of the minimum

cut. We have presented an O(n 2 log n)algorithm to find the minimum cut in an
undirected planar network. Using this algorithm and Algorithm G a maximum flow in
an undirected planar network may be found in O(n2 log n) time.

We have not found an O(n2 log n) method to find the value of the minimum cut for
the directed case. However, since Algorithm G indicates whetherD is less than or equal
to the value of the maximum flow, if the capacities are integers it may be used to find the
maximum flow. However, this method requires log Y-,E c (e) iterations of Algorithm G,
and hence its complexity is a function of the size of the capacities, as well as the number
of vertices. Nevertheless, if the capacities are all small integers the method is superior to
the existing algorithms.

Appendix. A validity proof of Berge’s algorithm. Let f be a flow in N
(G, s, t, c), G (V, E); then the graph G is defined by:

G (V, Er), Er {e" e E and, f(e) > 0}.

Let P (s Vo,’", Vk t) be the uppermost path of G, and eh th 3h+1 for h
0,. , k- 1. Let/" be a maximum flow such that

k k

(A.1) ., f(e) >- , f’(eh) for any maximum flow
h-,-1 h=l

L.MMA A. 1. Let eB be the bottleneck ofP then f(eh) >---- C (e), (h 0,. k 1).
Proof. Assume to the contrary that r is the first index such that [(e,)< c(en). Then

(A.2) f(eh)< c(e) for h r, r + 1,. ., k 1.

We prove (A.2) by induction on h. By hypothesis it is true for h r. Assume it holds
for h =r,r+ 1,... ,j-1.

If [(ej)>=c(e) then [(ej)>f(e,) and therefore there exists an (s, vi) path P1 in Gr,
which does not pass through e,. Since OUT (f, v,)>f(e,) there exists a (vr, t) path P2 in
Gr, which does not pass through er. By Lemma 2.4, P1 crosses P2; let x be their common
vertex (see Fig. 13).

FIG. 13.

Let P3 be the path in G, constructed from the subpath of P2 from v, to x and the
subpath of P1 from x to vi. P3 is a (v,, vi) path in Gr. Let P’ denote the subpath of P from
v, to vi. The edge e, belongs to P’ but not to P3, therefore, P’ P3. By the induction
hypothesis the edges of P’ are not saturated. Thus, we may divert flow from P3 to P’. The
resultant flow f’ violates (A.1), this completing the proof of (A.2).

To complete the proof of the lemma, let P2 be a (vr, t)-path in Gr; then by diverting
flow from P2 to P, (A. 1) is violated. Q.E.D.

150 ALON ITAI AND YOSSI SHILOACH

THEOREM A. 1. Berge’s algorithm finds a maximum flow.
Proof. By induction on the number of edges"
i) The claim is obvious if the network contains only one edge.
ii) For m > 1 edges, let en be the bottleneck of P, define the flow network
N (G, s, t, 6) as follows:

(e)={(e)
(e)-c(e)

Let

[f(e)f(e)= [,f(e)-c(en)
ifeE-P,
ifeP.

By Lemma A.1 f(e)>=O te P, and therefore f is a legal flow. Obviously, f is a
maximum flow in/ and If Ifl-c(en).

In Berge’s algorithm we push c(e) units of flow through P and then apply the
same process on the resultant networkm] which has at least one edge (e n) less than N.
By the induction hypothesismthe algorithm, applied to N finds maximum flow of value
[fl-c(e).

Consequently, the algorithm applied to N finds a flow of value (]f]-c(e))+
c(e =Ifl. That is, Berge’s algorithm finds a maximum flow. Q.E.D.

Note added in proof. It was brought to our attention by Professor T. C. Hu that what
we call "Berge’s Algorithm" was originated by L. R. Ford and D. R. Fulkerson in their
paper Maximal flow through a network, Canad. J. Math., 8 (1956), pp. 399-404.

REFERENCES

1] A. E. BARATZ, Construction and analysis of network flow problem which forces Karzanov algorithm to
O(Ni running time, MIT Laboratory for Computer Science Report MIT/LCS/TM-83, Mass. Inst.
of Tech., Cambridge, 1977.

[2] C. BERGE AND A. GHOUILA-HOURI, Programming, Games and Transportation Networks, Methuen,
Agincourt, Ontario.

[3] E. A. DINIC, Algorithm for solution of a problem of maximal flow in a network with power estimation,
Soviet Math. Dokl., 11 (1970), pp. 1277-1280.

[4] S. EVEN AND R. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.
507-518.

[5] J. EDMONDS AND R. M. KARP, Theoretical improvements in algorithmic efficiency for network flow
problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.

[6] C. R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[7] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[8] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.
[9] A. V. KARZANOV, Determining the maximal flow in a network by the method of the preflows, Soviet

Math. Dokl., 15 (1974), pp. 434-437.
[10] D. E. KNUTH, The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA, 1973.
[11] O. ORE, The Four Color Problem, Academic Press, New York, 1967.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics

0097-5397/79/0802-0005 $01.00/0

PROVABLY DIFFICULT COMBINATORIAL GAMES*

LARRY J. STOCKMEYER" AND ASHOK K. CHANDRAt

Abstract. For a number of two-person combinatorial games, the problem of determining the outcome of
optimal play from a given starting position (that is, of determining which player, if either, has a forced win) is
shown to be complete in exponential time with respect to logspace-reducibility. As consequences of this
property, it is shown that (1) any algorithm which determines the outcome of optimal play for one of these
games must infinitely often use a number of steps which grows exponentially as a function of the size of the
starting position given as input; and (2) these games are "universal games" in the sense that, if G denotes one
of these games and R denotes any member of a large class of combinatorial games (including Chess, Go, and
many other games of popular or mathematical interest), then the problem of determining the outcome of R is
reducible in polynomial time to the problem of determining the outcome of G.

Key words, computational complexity, combinatorial game, completeness in exponential time

1. Introduction. For many combinatorial games of perfect information (for
example, Chess, Go, Kayles, and Nim) it is known that there are algorithms which
determine whether or not the player moving first has a "forced win" from a given
starting position. We say that such an algorithm decides the game. For a game such as
Go (generalized to boards of arbitrary size) a position is essentially specified by a
placement of stones on a board together with an indication of whose turn it is; a position
in Nim is a sequence of nonnegative integers represented in, say, binary notation which
specifies the number of sticks in each heap. We are interested primarily in the running
times of decision algorithms where the time is measured as a function of the size of the
starting position given as input. For example, it would be reasonable to define the size of
a position in Go to be the number of squares on the board, and the size of a position in
Nim to be the sum of the lengths of the binary representations comprising the sequence
of heap sizes.

For both Go and Nim, the number of positions which could conceivably be reached
from a given position r by one or more moves of the game grows roughly as an
exponential function of the size of or. Therefore, Go and Nim can be decided in
exponential time by algorithms which list all positions reachable from the input r and
then determine the value of each listed position by the methods of classical game theory
[24, 15]. An exponential running time, while prohibitive in practice for all but very
small initial positions, does provide a rough upper bound on the time that is sufficient to
decide many examples of games.

For certain games this exponential running time can be substantially improved.
The known analysis of Nim [3], [5], [11] yields a decision algorithm for Nim whose
running time is a polynomial of low degree. The applications of Grundy-Sprague theory
[11] and other clever analyses (see, for example, [5]) have produced nonobvious and
efficient decision algorithms for a number of games.

However, other games have resisted analysis. It is not known, for example, if there
is a decision algorithm for Go whose running time is bounded above by a polynomial in
the board size, and it is possible that no such algorithm exists. Recently it has been
proved that the decision problems for Go and Checkers are polynomial-space-hard
[10], [18]; this provides evidence (but, as yet, not proof) that these games cannot be
decided in polynomial time. The main purpose of this paper is to prove that the decision

* Received by the editors February 6, 1978.

" IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

151

152 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

problems for certain simply-defined combinatorial games are complete in exponential
time with respect to efficient reducibility (cf. [1], [22]) and, therefore, that these games
require exponential time to decide, at least on some infinite sequence of starting
positions. Since we have not been able to prove this for existing games such as Go, we
have defined several games for the purpose of illustrating the proof methods.

In 3 we consider games played on propositional formulas. In these games, a start-
ing position is a propositional formula (or formulas) together with an assignment of
truth values to the propositional variables in the formula(s). Two players alternate
moves. A player moves by changing the truth values ot certain variables subject to the
rules of the particular game, and the winner is, for example, the player who first makes
the formula true. Some of these games have more appealing representations. The
following game of Peek is equivalent to one of our formula games and illustrates the
kinds of results that are contained herein. A starting position in Peek is a box containing
a finite number of horizontal plates which can be pushed in or pulled partially out; each
movable plate has exactly two positions, "in" or "out", and we may assume that all
plates are initially "in". There is also one immobile plate. Some of the movable plates
"belong" to player I and the rest "belong" to player II. The plates have holes cut into
them at various places and the locations of all holes are known to both players; see Fig.
1. The two players alternate moves with I moving first. A player moves by either
passing, pulling one of his plates out, or by pushing one of his plates in. The game ends at
the point when a hole appears through the entire stack of plates, and the winner is the
player who made the last move which caused the hole to appear. Define the size of a
position to be the number of plates. We place no a priori bound on the number of plates,
but we assume that there is a fixed constant d such that the number of holes in each plate
is at most the multiple d of the number of plates. By encoding each starting position as a
string of symbols suitable as input to some formal machine model such as a Turing
machine, the set of encodings of starting positions from which player I has a forced win
is a set ot strings which we denote W(Peek). For example, the encoding could contain,
for each plate, a list of pairs of positive integers represented in radix notation which
specifies the coordinates of all holes in that plate. The key result is that W(Peek) is
complete in exponential time with respect to logspace-reducibility. Briefly, this means

(a)

(b)

FIG. 1. (a) A box with ten movable plates, eight "in" and two "out". The top plate is immobile.

(b) A plate with holes.

PROVABLY DIFFICULT COMBINATORIAL GAMES 153

that (i) W(Peek) can be recognized in exponential time, and (ii) if A is any set of strings
which can be recognized in exponential time, and (ii) if A is any set of strings which can
be recognized in exponential time then A is logspace-reducible to W(Peek)athat is,
there is a function [such that w A iff)C(w) W(Peek) for all strings w, and f can be
computed by a Turing machine within logarithmic space (and, therefore, within
polynomial time).

There are two interesting corsequences of the fact that W(Peek) is complete in
exponential time. First, we are able to derive an exponential lower bound on the time
required (infinitely often) to decide Peek. Precisely, there is a constant c > 1, such that if
M is a deterministic Turing machine which recognizes W(Peek), then there are
infinitely many Peek positions 7r such that M runs for at least c size=) steps when started
on the encoding of 7r. It should be pointed out that we use Turing machines as our model
of algorithm purely for technical convenience in proofs, and that this exponential lower
bound (possibly with a different constant c > 1) holds for more realistic models such as
random access register machines [1], [7]. This is true because there are sufficiently
efficient simulations of random access machines by Turing machines.

The second consequence is that Peek is a "universal game" in the sense that the
problem of deciding any reasonable game is logspace-reducible to the problem of
deciding Peek. Informally, a game is "reasonable" if (i) the number of positions
reachable from a given position 7r within an arbitrary number of moves is bounded
above by an exponential function of the size of rr, and (ii) it is not onerously difficult to
recognize whether a move is allowed by the rules of the game. Many common games
such as Chess and Go generalized in any number of ways to arbitrarily large (possibly
multidimensional) boards are reasonable in this sense. The formal definition of
"reasonable" precedes the statement of Corollary 3.2.

Besides serving as examples of exponential-time-complete games, the formula
games of 3 might be useful in showing that other games are complete in exponential
time, in much the same way that the Boolean satisfiability problem [6] was used to show
that certain problems are NP-complete [16], and the quantified Boolean formula
problem [21], [22] was used to show that certain games are complete in polynomial
space [8], [20]. To illustrate this, in 4 we define a type of blocking game played by
moving markers on a graph, prove that one of the formula games is logspace-reducible
to the blocking game, and conclude that the blocking game is complete in exponential
time.

It is instructive to view the results of this paper in the context of previous research
[8], [15], [20] concerning the computational complexity of deciding games. One can
identify three different types of games corresponding to three levels of complexity.
Given a game G and a position 7r of the game, let reach (Tr) be the number of positions
which can possibly be reached from 7r within an arbitrary number of moves, and let
reach o[G be that function which maps each positive integer s to the maximum of
reach(zr) taken over all positions 7r of size s. Games of the first type are those whose
reach is bounded above by a polynomial. For example, if a game is played on a graph by
moving a single marker from node to node, then the number of reachable positions is at
most the number of nodes in the graph. Assuming that the legal moves of the game can
be recognized in polynomial time, the straightforward decision algorithm described in
the second paragraph of this section shows that any game of the first type can be decided
in polynomial time. Jones and Laaser 15] describe a particular game of this type which
is complete in deterministic polynomial time. Games of the second type are those like
Hex and Dots-and-Boxes where players make permanent marks on a board. The
distinguishing feature of games of the second type is that if the game is played from a

154 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

starting position 7r, then the game is assured to end after a number of moves which is
bounded above by some polynomial in the size of 7r. However, there is a game of the
second type which is not of the first type because its reach grows exponentially (even
though the number of positions visited during a particular line of play is at most
polynomial). By exhaustively examining all possible lines of play from a given starting
position, it can be seen that any game of the second type can be decided by an algorithm
which uses space (i.e., memory) bounded above by a polynomial in the size of the
starting position (assuming again that the legal moves ’can be recognized in polynomial
time). Even and Tarjan [8] and Schaefer [20] exhibit games of the second type which are
complete in polynomial space. It follows that these polynomial-space-complete games
can be decided in polynomial time if and only if any set recognizable in polynomial
space is recognizable in polynomial time; this is viewed as providing evidence that these
games cannot be decided in polynomial time. Games of the third type are those like
Chess and Go where players can move, place, and remove pieces on a board. Games of
the third type are those with exponentially bounded reach. There is a game of the third
type which is not of the second type because its play lasts an exponential number of
moves. Any game of the third type can be decided in exponential time by the
straightforward position-listing algorithm. The purpose of this paper is to exhibit games
of the third type which are complete in exponential time.

The relationship between the three types of games and their decision algorithms is
summarized in Fig. 2, where we define the space of a game to be the logarithm of its
reach (which measures, as a function of the size of 7r, the number of bits which is
sufficient to assign a distinct binary string to each position reachable from 7r). These are
but three instances of a general relationship between time (space) bounded games and
space (time) bounded algorithms which is formalized in [4], [17] and outlined in the next
section.

TYPE GAME

LOGARITHMIC SPACE

3

2 POLYNOMIAL TIME

LINEAR SPACE

ALGORITHM

POLYNOMIAL TIME

POLYNOMIAL SPACE

EXPONENTIAL TIME

FIG. 2. The relationship between resource bounds]:or games and algorithms.

2. Games, algorithms, and completeness. For a finite alphabet Z, Y_.* denotes the
set of words (i.e., finite strings of symbols) over Y_. including the empty word e;
+= E*-{e}. A language is a subset of E+ for some finite E. For a word w s E*, [wl
denotes the length of w. N denotes the nonnegative integers, and R denotes the real
numbers. For a finite set S, card(S) denotes the cardinality of S.

It is convenient to adopt the following definition of game.
Dzrir’roN. A (two-person per[ect-in[ormation) game is a triple (P, P2, R)

where P1 and P are sets, Px 71P2 , and R
_
P1 P2 U P2 Pa.

In other words, Vx (P2) is the set of positions in which player I (II) has the initiative,
and R is the set of allowable movesif (zr, zr’) R and zr e P (zr Pz), then player I (II)

PROVABLY DIFFICULT COMBINATORIAL GAMES 155

can move from position 7r to position 7r’ in one move. By convention, a player who is
unable to move is declared the loser.

DEFINITION. Let G (P1, P2, R) be a game. Let W-I(G)= and for integer >_- 0
let

Define

(G)= W_I(G)t.J {r e Pll(::lr’ e P.)[(r, r’)e R and r’e W_(G)]}

U{r Pzl(Vr’ e P1)[(r, r’)e R implies r’e W_I(G)]}.

W(G)= W(G).
i=>o

W(G) is the set of positions from which player I has a "forced win". In particular,
Wo(G) is the set of 7r P2 from which player II cannot move, and W/(G) is the set of
positions from which I has a forced win in no more than moves. For certain games G,
our objective is to establish bounds on the computational complexity of recognizing the
set W(G).

In measuring the computational complexity of sets, our model of computation is
the deterministic one-tape Turing machine [1], [13]. We first define a more general
device, the alternating Turing machine, which is a useful technical tool in the proofs of
our results. The definition of an alternating Turing machine is very similar to that of a
nondeterministic Turing machine (cf. [1], [13]) except that some subset of its states are
referred to as universal states and the rest as existential states. Alternating Turing
machines are discussed in more detail in [4], [17]. We state here a somewhat simplified
version of the definition which is sufficient for the purposes of this paper.

DEFINITION. A one-tape alternating Turing machine (ATM) is a seven-tuple
M (Q, F, E, #, 6, q0, U) where

Q is the set of states;
F is the tape alphabet;
,E is the input alphabet, Y_,_ F;
is the blank tape symbol, # F-Y_,;
6

_
(Q x r)x (O x (F- {#}) x {L, R, S})

is the next-move relation;
qo is the initial state;
U is the set of universal states, U Q;
Q- U is the set of existential states.

The tape is assumed to be one-way infinite to the right, and we assume that the head
never moves off the left end of the tape.

A configuration ofM is a triple of the form (q, ,/) where q Q is the current state,
), 6 (F-{#})* denotes the nonblank portion of the tape, and/" -> 1 is an integer which
indicates that the]th tape cell from the left end is currently being scanned; let ct
denote the set of all such configurations. For an input w 6 Y_,+, the initial configuration on
w is (q0, w, 1). If M is in state q scanning the symbol u F, and if ((q, u), (q’, u’, d)) 6,
thenM can in one step enter state q’, print u’ on the tape, and shift the head in direction

Cd (_Left, _Right, or Stationary). For configurations C and C’ we write C t iff C can
reach C’ in one step as just described; - tdenotes the reflexive transitive closure of t.

The configuration (q, y,/’) is a universal (existential) configuration if q is a universal
(existential) state.

Several equivalent definitions of acceptance for ATM’s are discussed in [4], [9],
[17]. The following definition was suggested by M. Fischer and R. Ladner [9].

156 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

DEFINITION. Let M be an ATM. A trace ofM is a set Tr_ ct x N such that:
1) if (C, k) Tr and C is a universal configuration, then (C’, k- 1) Tr for all C’

such that C t C’; and
2) if (C, k) Tr and C is an existential configuration, then there exists a C’ such

that C -t C’ and (C’, k 1) Tr.
Maccepts w E+ iff there is a trace Tr of M and a k N such that ((q0, w, 1), k) Tr; in
this case, Tr is said to be an accepting trace for w.

Let L(M) denote that subset of Y_,+ which M accepts.
Note. A configuration C is said to be halting if there is no C’ such that C t C’.

Universal halting configurations serve as "accepting configurations" since such
configurations can belong to any trace. Existential halting configurations serve as
"rejecting configurations" since such configurations belong to no trace. Thus, the
definition of ATM given above need not mention accepting and rejecting states
explicitly.

Let t, s N. The trace Tr uses time at most iff k <_- for all (C, k) Tr. The trace Tr
uses space at most s iff/" _-< s for all ((q, y, f), k) Tr.

DEFINITION. Let F: N- R and let M be an ATM. Moperates within time (space)
F(n) iff for each w L(M) there is a trace Tr ofM such that Tr is an accepting trace for
w and Tr uses time (space) at most F([wl). Define

ATIME(F(n))(ASPACE(F(n)))

{L(M)[M is an ATM which operates within time (space) F(n)}.

A deterministic Turing machine (DTM) is an ATMM such that for any configura-
tion C ofM there is at most one C’ such that C !--t C’. When restricted to DTM’s, the
above definitions of time and space bounded acceptance of languages are identical to
the usual definitions 1], 13]. (Although nondeterministic Turing machines play no role
in this paper, it might aid the reader’s intuition to note that one could define a
nondeterministic Turing machine to be an ATM with the restriction that every universal
configuration is halting.) Define

DTIME(F(n)) (DSPACE(F(n)))

{L(M)IM is a DTM which operates within time (space) F(n)}.

Also let

-TIME= U DTIME(cnk), -SPACE= U DSPACE(cnk),
c,k--I c,k--I

g’-TIME= I,.J DTIME(c’).

The connection between space-bounded ATM’s and time-bounded DTM’s is
embodied in the following result.

THEOREM 2.1 (Chandra, Kozen, Stockmeyer [4], [17]). Let F(n)>-_ n + 1.

ASPACE(F(n)) U DTIME(cF(")).
cl

To be completely precise, an ATM is defined in [4], [17] to have a separate input
tape, and Theorem 2.1 is proved for all F(n) >- log n; the case F(n) log n is implicit in
Jones and Laaser [15, Thm. 13]. In the case that F(n) >- n + 1, the presence or absence
of an input tape is immaterial, so Theorem 2.1 follows trivially from [4], [17]. We are
interested primarily in the following corollary of Theorem 2.1.

PROVABLY DIFFICULT COMBINATORIAL GAMES 157

COROLLARY 2.1. ASPACE(n + 1)= g’-TIME.

In 3 we prove that the sets W(G) for certain games G are complete in ge-TIME
by exploiting the natural connection between ATM’s and games. Briefly, the existential
(universal) configurations of the ATM correspond to positions from which player I
(player II) has the initiative to move, and the universal halting configurations cor-
respond to immediate losing positions for II.

Remark. The papers [4], [17] also characterize time-bounded ATM’s in terms of
space-bounded DTM’s. In particular,

t_J ATIME(cn k) -SPACE.
c,k>--I

This equality embodies the connection between -SPACE and "polynomial-time
bounded games" (games of the second type in 1) which is exploited by Even and
Tarjan [8] and Schaefer [20] in proving that certain games are complete in -SPACE.

Finally we define the notion of a language being complete in a class of languages.
Let log n denote the base two logarithm for n ->_ 2, and log 0 log 1 1. Let E and A be
finite alphabets. The function f: E+- A+ is logspace-computable (cf. [14], [15], [22]) if
there is a deterministic Turing machine with a separate two-way read-only input tape, a
read/write work tape, and a one-way output tape such that, when started with any word
w e E+ on the input tape, the machine eventually halts with f(w) on the output tape
while having visited at most log Iw squares on the work tape. Let l" N - R. The function
f is length l(n) bounded iff If(w)l _<-/(Iwl) for all w s Y,,+.

Let A
_

Y_,+ and B
_
A+. A transforms to B within logspace via f(A <-og B via f) iff f

is a logspace-computable function, f: Y_,/-->A+, such that wA->f(w)sB for all
w s E/. We remark that the class of logspace-computable functions is closed under
composition [14], [22], so that --<og is a transitive relation on languages.

Let B be a language and let Ao be a class of languages. Then

’ log B iff A --<log B for all A .
Furthermore, -<og B via length order l(n) (/: N-> R) provided that for each A
there is a function f and a constant b s N such that A =<og B via f and f is length b l(n)
bounded.

The language B is log-complete in iff both B s ? and <-og B.

3. Games on propositional formulas. In this section we describe six games which
are played on propositional formulas and prove that their sets of winning positions
are log-complete in g’-TIME. By formula we mean a well-formed parenthesized
expression involving variable symbols (which are denoted in the text by (subscripted)
letters t, u, v, x, y, z), the binary connectives/ (conjunction), /(disjunction) and
(exclusive- or), the unary connective (negation), and parentheses. We define the class
of formulas and simultaneously define V(F), the set of variable symbols in F, and
size(F), the number of occurrences of variable symbols in F.

DEFINITION. 1) If X denotes a variable symbol, then x is a formula, V(x)= {x},
and size(x) 1;

2) if F (G @ H) where G and H are formulas and @ denotes a binary connec-
tive, then F is a formula, V(F)= V(G)t.J V(H), and size(F)=size(G)+size(H);

3) if F =---H where H is a formula, then F is a formula, V(F)= V(H) and
size(F) size(H).

When writing formulas in the text, parentheses are deleted when not needed to
determine the precedence of operations. If X1, , X, denote disjoint sets of variable

158 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

symbols, we let F(X1, , X,), H(X1, Xm), etc., denote formulas containing only
variables in X1 LI... LIX,. For a set S of variable symbols, an S-assignment is a
function from S to {0, 1}, where 0 and I in this context denote Boolean values false and
true, respectively. A formula F defines, in the obvious way, a function mapping
V(F)-assignments to {0, 1}. A literal is either x or --x where x denotes a variable
symbol. A formula is in conjunctive normal form (CNF) iff it is a conjunction of
disjunctions of literals. A formula is in disjunctive normal form (DNF) iff it is a
disjunction of conjunctions of literals. For positive integer k, let kDNF denote the set of
formulas in DNF which are of the form C1 V C2 V’ V Cm where each Ci (1 -<_ -< m)
is a conjunction of at most k literals; kCNF is defined dually.

We now describe games Gk (Pk 1, Pk2, Rk) for 1 <-- k <= 6. We prefer to describe the
move-relations Rk informally, and in several cases we indicate the formal definition as
well; it should be obvious how to translate these descriptions into complete formal
definitions of the Rk as subsets of pairs of positions. In these games, each position
contains a symbol z {1, 2} which serves only to differentiate the positions in Vkl from
those in Pk2.

GI: A position is a triple (z, F(X, Y, {t}), a) where z {1, 2}, F is a formula in
4CNF whose variables have been partitioned into disjoint sets X, Y, and {t}, and a is a
V(F)-assignment. Player I moves by setting to 1 (true) and setting the variables in X to
any values; player II moves by setting to 0 (false) and setting the variables in Y to any
values. A player loses if the formula F is false after his move.

G2: A position is a 4-tuple (z, I-WIN(X, Y), II-WIN (X, Y), a) where - {1, 2},
I-WIN and II-WIN are formulas in 12DNF, and a is an (X LI Y)-assignment. Player I
(II) moves by changing the value assigned to at most one variable in X (Y); either player
may pass since changing no variable amounts to a "pass". Player I (II)wins if the
formula I-WIN (II-WIN) is true after some move of player I (II). More precisely, player
I can move from (1, I-WIN, II-WIN, a) to (2, I-WIN, II-WIN, a’) in one move iff a’
differs from a in the assignment given to at most one variable in X and II-WIN is false
under the assignment a; the moves of player II are defined symmetrically.

G3: A position is a 4-tuple (z,I-LOSE(X, Y), II-LOSE(X, Y), a) where -{1, 2}, I-LOSE and II-LOSE are formulas in 12DNF, and a is an (X LI Y)-assignment.
Player I (II) moves by changing the value assigned to exactly one variable in X (Y) (i.e.,
passing is not allowed). Player I (II) loses if the formula I-LOSE (II-LOSE) is true after
some move of player I (II). More precisely, player I can move from (1, I-LOSE, II-
LOSE, a) to (2, I-LOSE, II-LOSE, a’) iff a and ce’ differ in the assignment to exactly
one variable in X and I-LOSE is false under the assignment a’.

G4: A position is a triple (z, F(X, Y), a) where F is a formula in 13DNF and - anda are as in game G2. Player I (II) moves by changing at most one variable in X (Y);
passing is allowed. The game ends at the point when F first becomes true and the winner
is the player who made the last move which caused F to become true. In other words, a
player has no legal move from a position in which F is true.

Gs: A position is a triple (-, F(X, Y), a) where F is a formula and z and a are as in
G2. Player I (II) moves by changing at most one variable in X (Y); passing is allowed.
Player I wins if the formula F ever becomes true. In other words, player II cannot move
from (2, F, a) to (1, F, c’) if F is true under a, but I can always move from (1, F, a) to
(2, F, a’) provided only that a and a’ differ in the assignment to at most one variable in
X.

G6: Game G6 is identical to G5 except that F is restricted to be in CNF.
Note that the game of Peek described in the Introduction is merely a restatement of

that game which is identical to G4 except that F can be any formula in DNF. Among

PROVABLY DIFFICULT COMBINATORIAL GAMES 159

these six games G4 and G6 stand out because they are played on one formula which is in
restricted form (i.e., DNF or CNF) and the artificial "turn variable" of G1 is not
involved. The games G1, G2, and G5 are included since they arise as usefu intermediate
steps toward the proofs that G4 and G6 are g-TIME-complete. The game G3, a minor
variant of G2, is used in 4.

In order to discuss the complexity of the sets W(Gk), we must first encode the
positions of these games as words over some fixed finite alphabet. The details of this
encoding are for the most part immaterial, and we do not define the encoding formally.
We do assume, however, that variable symbols are encoded as words over a finite
alphabet by writing subscripts in binary notation; for example, x5.6 would be encoded as
xl01ll0. This encoding can be extended in a natural way to give encodings of
formulas and assignments (cf. 1], [6], [21]) and ultimately of positions. Since subscripts
are written in binary, we assume that there is a constant e > 0 such that, if IFI denotes the
length of the encoding of the formula F, then

(3.1) IFI -< e. size(F), log (size(F));

and

(3.2) card(V(F)) <- e. IFI/log (IFI);
and the length of the encoding of an S-assignment is at most e card(S), log (card(S)).
Fix some encoding with these properties, and let EW(Gk) denote the set of encodings of
positions in W(Gk).

THEOREM 3.1. For 1 <=k <=6, EW(Gk) is log-complete in g’-TIME.

Theorem 3.1 is immediate from Lemmas 3.1 and 3.2 below. The first lemma shows
that each EW(Gk) belongs to g’-TIME.

LEMMA 3.1. There is a constant d > 1 such that

EW(Gk)DTIME(d’/lg’) for l <-k <-_6.

Proof. We consider the case k 1; the proof in the other cases is virtually identical.
Let w be a given input which encodes the position 7r (’, F, a) and let n w I. Let

P {(’, F,/3)1- { 1, 2} and/ is a V(F)-assignment}.

By the convention (3.2) concerning encodings,

card(P) _-< p [2.2en/lgn].

The DTM which accepts EW(G1) first constructs the sets W/(G1) I") P for 0 <- <= p using
repeated application of the inductive definition of Wi, and then checks whether or not
zr Wp(G)f-)P. The time to carry out this procedure is clearly bounded above by some
polynomial in np, and the conclusion follows. I’-I

LEMMA 3.2.

g-TIME Nog EW(Gk) via length order n log n, for 1 <= k <= 5;

g’-TIME --<og EW(G6) via length order n 3 log n.

Lemma 3.2 is proved below. Several remarks and corollaries precede the exposi-
tion of this proof.

Lemma 3.2 combines with the hierarchy theorem for deterministic time complex-
ity, proved by Hartmanis and Stearns 12], to yield an exponential lower bound on the
time required (infinitely often) to accept EW(Gk).

160 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

COROLLARY 3.1. Let 1 <-- k <-_ 5. Them is a rational constant c > 1, such that if a
deterministic Turing machine accepts EW(Gk) and operates within time T(n), then
T(n) > c"/" for infinitely many n.

Proof. From [12] there is a language A such that A -TIME, and if a DTM
accepts A and operates within time T(n) then T(n)>_-2 for infinitely many n. By
Lemma 3.2, A -<-og EW(Gk) via f where f is length bn log n bounded for some constant
b; say that b _-> 1. Choose c > 1 so that cb < 2. Assume for contradiction that there is a
DTM which accepts EW(Gk) within time T(n) where T(n)<= c ,/og, for almost all n.
Since f is computable in polynomial time, it follows that there is a DTM which accepts A
within time T’(n) where

T,(n < cbn(log n)/log (bn logn) + p(n)

for almost all n, where p (n) is a polynomial. By our choice of c, T’(n) < 2" for almost all
n, contradicting one condition that A was chosen to satisfy. I-]

(n/log n)1/3By a virtually identical proof one shows that EW(G6) requires time c
infinitely often.

The following definition and corollary formalize the assertion made in the Intro-
duction that the formula games Gk are "universal games".

DEFINITION. The game G (P1, P2, R) is reasonable if:
1) there is a finite alphabet Y_, such that P1, P2- X+; and
2) for all zr, zr’6 P1 tA Pz, if (zr, zr’) R then tzr] [zr’[; and
3) for some symbol $Y,, the language {zrSer’[(r, zr’)R} belongs to -TIME.
The condition 1) is a convenience to dispose of the issue of encoding positions as

words. The intent of 2) is that each instance of the game be played on a "board" of
fixed (but possibly arbitrary) size; for example, in generalized Go (cf. 1), once a board
size has been chosen the players are not permitted to enlarge the board during the course
of play. The condition 3) ensures that the legal moves can be recognized in polynomial
time.

COROLLARY 3.2. If the game G is reasonable, then

W(G) --<--log ff.W(Gk) for 1 <= k <- 6.

Proof. By the definition of reasonable it is easy to see that W(G)6 -TIME using
the method described in the proof of Lemma 3.1. Now the conclusion is immediate from
Lemma 3.2. U

Our aim in this section is simply to illustrate the kinds of games on formulas which
are complete in -TIME rather than to give a full analysis of the various combinations
of rules, CNF versus DNF formulas, etc. Two points are worth mention, however. First,
the games Gk remain complete in -TIME if formulas are not restricted to CNF or
DNF, or if passing is disallowed, or both. If arbitrary formulas appear in positions of
these games, the winning positions can still be accepted within time dn/lg as the proof
of Lemma 3.1 demonstrates. If passing is disallowed, we can give each player an
additional variable upon which the formulas do not depend. Secondly, the "turn
variable" appears to be essential to the -TIME-completeness of games like G1
where a player can change the assignment to all of his variables in one move. For
example, if we define the game G like G4 except that player I (II) can change the
assignment of the entire set X(Y) in one move, then a position (1, F(X, Y),) belongs
to W(G)iffF is false under a and (X)[F’(X)] where F’(X) is obtained from
F(X, Y) by setting the variables in Y according to the assignment a. This problem is
trivial for DNF formulas and log-complete in NP [6], 1] for CNF or arbitrary formulas.

PROVABLY DIFFICULT COMBINATORIAL GAMES 161

If player II has the first move, a position (2, F(X, Y), a) belongs to W(G’4) iff either F is
true under a or

(VY)[--F"(Y) and (IX)[F(X, Y)]]

where F"(Y) is obtained from F by setting X according to ce. This problem is
log-complete in co-NP for DNF formulas and log-complete in H. [21] for CNF or
arbitrary formulas.

The remainder of 3 is devoted to the proof of Lemma 3.2. In this proof it is
technically convenient to deal with ATM’s of a special type described next. A standard
linear ATM is an ATM M (Q, F, E, #, 6, q0, U) with the properties that: (i) for all
w e Y_,+, when started on input w, M can reach no configuration in which tape cell Iwl + 2
is being scanned (formally, there do not exist q6Q and TF* such that
(q0, w, 1)- t(q, 3’, Iw[+ 2)); (ii) the initial state qo is existential; and (iii)if C and C’ are
configurations of M with C -t C’, then C is existential if and only if C’ is universal.
Because of the following lemma, we can restrict attention to standard linear ATM’s in
the sequel.

LEMMA 3.3. g’-TIME {L(M)[M is a standard linear ATM}.
Proof. In light of Corollary 2.1 it suffices to observe that if A is accepted by an

ATMM which operates within space n + 1, then M can be modified to satisfy the
necessary constraints (i), (ii) and (iii), and still accept A. The constraint (i) can be met by
modifying M so that it enters a halting existential (i.e., rejecting) configuration
whenever the original M would attempt to shift the head to cell Iwl + 2. Now (ii) and (iii)
can be met by introducing new states. Say, if ((/9, u), (q, u’, d)) 6 where both p and q
are existential states, then remove this element from and introduce a new universal
state p’ such that both ((p, u), (p’, u’, Stationary)) and ((p’, u’), (q, u’, d)) belong to

With each standard linear ATMM we associate a game Gt (Pt1, PM2, Rt) as
follows: Ptl (Ptz)is the set of existential (universal)configurations of M, and RM is the
next-move relation M.

LEMMA 3.4. LetM be a standard linear ATM and let Glvt be the game associated
with M.

L(M)= {w e E+l(qo, w, 1)e W(GM)}.

Proof. The proof follows easily from the definitions of W(G) and of acceptance
for ATM’s, together with the conventions concerning standard linear ATM’s. On the
one hand, if Tr is a trace of M then one proves by induction on that

{C[(C, i)e Tr}_ Wi(GM) for all e N.

On the other hand, it also follows from definitions that

{(C, i)[i e N and C e W(GM)}
is a trace of M.

Lemmas 3.3 and 3.4 provide the necessary link between -TIME and games.
Note, in particular, the similarity between GM and G1. The proof that ’-
TIME <=log EW(Gx) follows easily from known methods of expressing a Turing
machine’s next-move relation r--M as a propositional formula [1], [6], [21]. We next
formalize this method.

First, we need a convention for representing a configuration by an assignment to a
set of Boolean variables. Let M be a standard linear ATM with states Q and tape

162 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

alphabet F. With each configuration C (q, Yl’2 Yl, j) where 1 _<-f_-< + 1 and
3’ F-{#} for all i, we associate the word

to(C) =Tly2"’’’Yi-lq’Y/Ti+I"" Y/-

def
Let s s(M) [log (card(Q LI F))]. Fix a one-to-one map hM" (Q LI F){0, 1} such
that hM(#) 0 and extend ht to a map from (Q LI F)* to {0, 1}* in the obvious way. Let
U {u 1, , up} be a set of variable symbols where p -> s (l + 1). The U-assignment a
represents C iff

O(Ul)O(U2) Ol(Us(l+l))--" hM(o(C)),

and c (u) 0 for s(l + 1)< p. It is important to note that, once M and h have been
fixed, each U-assignment represents at most one configuration.

LEMMA 3.5. LetM be a standard linear ATM. For each w E+ there is a formula
NEXT.w(U, V) involving the variables U {Ul, , up} and V {Vl," , vp} where
p s(M)" (Iw[+ 2) with the following properties. If at: is a U-assignment and v is a
V-assignment such that at: represents a configuration C such that (qo, w, 1) C, then
NEXTt.w is true under at:and aviffavrepresents a configuration C’ such that C t C’.
Moreover,

size(NEXT.,w)--< clwl

]:or some constant CMdepending only on M, and the function which maps w to the encoding
of NEXTM.w is logspace-computable.

The proof of Lemma 3.5 is not difficult, and the details (in a slightly different
context) can be found in [21, Lemma 6.3]. Briefly, the formula NEXT .w is a con-
junction of [w[subformulas; the ith subformula checks that the ith, (i + 1)th, (i + 2)th
symbols of h -l(aU) and h -1 (av) are consistent with a legal move of M. This can be done
in such a way that the size of each subformula is a constant depending only on M.

The next lemma permits us in certain cases to replace arbitrary formulas by
formulas in 3CNF while incurring only a constant factor dilation in formula size. The
proof, which is not repeated here, is based on a method of Tseitin [23], (cf. [2], [21])for
converting an arbitrary formula to a formula in 3CNF while preserving satisfiability.

LEMMA 3.6. There is a constant a_, such that]or any formula F(S), there is a formula
H(S, Z) in 3CNF where Z is a set of variables disjoint from S, such that

1) size(H)_-< _a size(F), and
2) for any S-assignment , F(S) is true under a iff there exists a Z-assignment

such that H(S, Z) is true under the combined assignments a and .
Moreover, there is a logspace-computable function which maps each F to an Hsatisfying
1) and 2).

We have now collected the technical machinery to be used in the proof of Lemma
3.2. In each case 1 _<- k -< 6, given a standard linear ATMM and an input w, we describe
a position Zrw such thatM accepts w iff Zrw W(Gk). We also note how the length of the
encoding of zrw depends on [wl (with M fixed). If gx, g2" NR, then we write
gl OM(g2) to assert that there is a constant bt depending only on M such that
gl(n) -< bl g2(n) for all n _-> 1. In each case it is not difficult to see that the function
mapping w to the encoding of Zrw is logspace-computable (given that the functions
described in Lemmas 3.5 and 3.6 are logspace-computable) and we let the reader
convince himself that these functions are indeed logspace-computable.

PROVABLY DIFFICULT COMBINATORIAL GAMES 163

Proof ofLemma 3.2.
1. Let M be a standard linear ATM, let w be an input, and let n w I. Let p, U, V,

and NEXTt.w (U, V) be as in Lemma 3.5 for this M and w. Let NEXT(U, V, Z) be the
formula obtained by applying Lemma 3.6 with S U tA V and F NEXTt.w. Recall
that NEXT (U, V, Z) is in 3CNF and its size is Ot(n). Say that Z {Zl," , Zk}.

Now we describe a formula Fx(X, Yl,{t}) where X1--{XI,’’" ,Xm}, Y1
{YI," Ym}, and m p + k. Let MOVEI(Y1, Xx) denote the formula NEXT(U, V, Z)
after substituting y for u, x for v (1-<i<-p), and xp/ for z. (l <_-j <_- k). Let
MOVE(X, Y1)denote NEXT(U, V, Z)after substituting xi for u, y for v (1 <_-i =< p)
and y,+i for zi (1 <_-j <_-k). Let F denote the formula

(---t /MOVE(Y1, Xl) A (t /MOVE(X, Y1)).

F] is easily transformed via the distributive laws to an equivalent formula F1 in 4CNF
with size(F1) Ozvt(n). Let a be an (X1LI Y1)-assignment such that the restriction of a
to {y 1,. , Yp} represents the initial configuration of M on input w; the assignment to
the other variables can be arbitrary. The position 7rw is (1, Fa, aa). Recalling Lemma
3.4, and noting that the legal moves of G1 mimic the legal moves of Gt, it should be
obvious that Zrw W(G1)iff M accepts w. For example, say that player I is about to

move, so that must be set to 1. To avoid losing, player I must set the variables in Xa so
that MOVEI(Y, X) assumes the value 1. If C is the configuration of M currently
represented by the assignment to {y 1,""", yp} then, by Lemmas 3.5 and 3.6, I must
choose the Xl-assignment so that the assignment to {x1,’" ,x,} represents a
configuration C’ with C t C’. The reasoning is similar in the case that II is about to
move, except that ---t is 1 so MOVE](Xa, Y1) is enabled.

Since size(F1)= Ot(n), it follows from the convention (3.1)concerning encodings
that the function mapping w to the encoding of Zrw is length bMn log n bounded for
some constant bt. Since M was arbitrary, we conclude that g’-TIME -<log EW(G1) via
length order n log n.

2. We introduce some new terminology which will be useful in this part of the
proof. Let G2 -(P1, P2, R), and let _1_ P1 [.-J Pz. A I-strategy (II-strategy) is a total
function 0-: P1LI { +/- } P tA {_1_ } (0-: P: lA { +/- } P1LI {_1_ }) such that 0-(+/- +/-, and, for
all zr P (r Pz), if there exists a zr’ such that R (r, zr’) then R (or, 0-(r)), and if there
does not exist a zr’ such that R (zr, r’) then 0-(r) _1_. For a position rl P1, a I-strategy
0-1 and a II-strategy 0-2, define play (Zrl, 0-1,0-2) to be the infinite sequence
zr, zr2, r3, where zri+l 0-1(ri) for odd and 7ri+1 0-z(zr) for even. We say that
play(Trl, 0-1, 0-2) ends if 7ri _1_ for some i, and in this case we let last(Trl, 0-1, 0-2) denote
that position zr. - _1_ with largest subscript j. For games of perfect information, there is
no loss of generality in assuming that players choose their moves by a "strategy" as just
defined; for example, it is not difficult to see that, for any game G, the inductive
definition of W(G) yields an optimal I-strategy and an optimal II-strategy for G.

Let M be a standard linear ATM and let w be an input. We construct a pair of
formulas I-WIN(X2, Y2) and II-WIN(X2, Y2) and an (X2 Y2)-assignment a2 such
that the position 7rw (1, I-WIN, II-WIN, a2) has the following properties (3.3) and
(3.4). If H(X2, Y2) is a formula, 7r (z, I-WIN, II-WIN, a) is a position, and b {0, 1},
we say that 7r satisfies H b itt H assumes the value b under the assignment a.

(3.3) If M accepts w then there is a I-strategy 0-, such that for all II-strategies 0"2:

(a) play(rrw, 0-1,0-2) ends with last(Trw, 0-1,0-E)P2 (i.e., I wins), and
last(rrw, 0-1, 0"2)satisfies I-WIN 1 and II-WIN 0; and

164 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

(b) if player II passes on some move, then I next moves to a position which
satisfies I-WIN 1 and II-WIN 0.

(3.4) IfM does not accept w then there is a II-strategy tr2, such that for all I-strategies

(a) if play(Tr,o’,o’2) ends then last(-trw, O’,o’2)P1 (i.e., II wins), and
last(rw, trx, tr2) satisfies I-WIN 0 and II-WIN 1; and

(b) if player I passes on some move, then II next moves to a position which
satisfies I-WIN- 0 and II-WIN- 1.

In particular, (3.3)(a) and (3.4)(a) imply that M accepts w iff rw W(G2). The
properties (3.3) and (3.4) will be useful in proving cases k 4, 5 of Lemma 3.2 where we
construct formulas using I-WIN and II-WIN as subformulas. We there use the fact that
the game never ends with both I-WIN 1 and II-WIN 1, and that if one player passes
then the other player wins immediately on the next move.

Let m be as in part 1 for this M and w. I-WIN and II-WIN contain variables
X2 {xi,i and Y2 {yi,i} where 1 <- -<_ 2m + 2 and / 1, 2. The sets of variables
X {x,x 11 <-i _-< m} and Y {y,x m + 2-<_ <_- 2m + 1} play the roles of X1 and Y1,
respectively, in the previous part. However, since the rules of G2 allow only one
variable to be changed in one move, we must constrain the play so that, for example,
while I is changing variables in X, player II can only change variables not belonging to
Y. Similar to the proofs in [8], [20], we describe a legitimate play such that if both
players play legitimately then it is obvious that (3.3) and (3.4) hold, and a player who
departs from legitimate play loses after the next move of the other player. When we say
that a player plays a variable x we mean that the player changes the truth value of x.
Legitimate play is described as follows:

i-1;
loop: I plays exactly one of x, or x,2;

II plays exactly one of y, or yi,2;

(if < 2m + 2 then + 1 else 1);
go to loop.

If we assume legitimate play, then as play progresses from 1 to m, player I can
assign any values to variables in X; then as play progresses from m + 2 to 2m + 1,
player II can assign any values to variables in Y; and so on.

We next describe formulas I-ILL and II-ILL which punish players I and II,
respectively, for illegitimate play. We use the symbols a, b, a , and b to denote certain
subformulas of I-ILL and II-ILL. For 1 _-< _-< 2m + 2 define

ai xi,1 xi,2,

bi Yi, 03 Yi,2.

If we choose the initial assignment so that the ai and bi are all 0 initially, then during
legitimate play we always have ala2 a2,,/2 and bib2" b2m/2 in 0"1" tA 1"0". The
formulas a’ and b detect the boundaries between the blocks of O’s and l’s.

a’ Ia-a if2=<i-<2m +2’
---(a2,,,+2a) if 1.

The b are defined similarly in terms of the bi. If we assume legitimate play then" just
before a move of I there is a / such that a b 1 and a b 0 for all /; and just
before a move of II there is a j such that ai+ b 1 and ai+l bi 0 for all j.

PROVABLY DIFFICULT COMBINATORIAL GAMES 165

(Here and subsequently, subscripts are evaluated modulo 2m + 2 to lie in the range
from 1 to 2m + 2.) Define

I-ILL= V ((a/ a+x)V (a/ b+l/ -b_x)),
1_i_<--2m+2

II-ILL= V ((b; A b+l)V (b; A a;+z A
1_<_i_2m+2

Note that during legitimate play, both I-ILL and II-ILL remain 0. In addition, these
formulas satisfy the following properties.

(3.5) Suppose that both players have played legitimately to a position where II is
about to move. Then:
(a) player II cannot in one move reach a position which satisfies I-ILL 1; and
(b) any illegitimate nonpassing move of player II reaches a position which

satisfies I-ILL 0 and II-ILL 1; and
(c) if II passes, then I can in one move reach a position which satisfies I-ILL 0

and II-ILL 1.

To verify (3.5), consult Fig. 3 which depicts a typical situation where II is about to move;
in this example, ai+ b, 1. First note that in order to reach a position which satisfies

bi+2I-ILL 1 the move must change both b, to 0 and to 1" this is impossible in one
move, so (a) is true. If the next move of player II changes b,, then this move is legitimate.
If II changes b,-x then the term (bi_ A a,+l A---ai_) of II-ILL becomes 1. If II
changes bt with -/" and #:- 1, then the term (b A b+) of II-ILL becomes 1. If II
passes, then I changes ai+l from 1 to 0 on the next move, so that the term
(b A a+2 A ---a}) of II-ILL becomes 1. In a completely analogous fashion, one verifies
the symmetric version of (3.5) where the players I and II are interchanged and the
formulas I-ILL and II-ILL are interchanged.

{ai} 0 0 0 0 0

{i} o o o o
{a’i} 0 0 0 0 0 0 0 0

{,’i} o o o o o o o o

FIG. 3. A typical situation in G2 when player II is about to move.

Now let MOVE2(Yc, Xc) and MOVE(X, Y) denote the formulas
MOVEI(Y1, X1) and MOVE(Xa, Y) of part 1, after substituting xi, for xi and
y,,++1,1 for y (1 <=i <-m) in both. The formulas MOVEz and MOVE check that
configurations are chosen correctly; these formulas are enabled only at the proper times
during play. Let

I-WIN’= (II-ILL V (a.,+2/k b.,+/k---MOVE(Xo Y))),

II-WIN’ (I-ILL V (am+l A bm+l A---MOVEz(Yc, X))).

These two formulas can be transformed to equivalent formulas I-WIN and II-WIN in
12DNF with size(I-WIN)= size(II-WlN) 01vt(n). For example, the terms (a/ a+l)
and (a/ b/ / ---b i-1 of I-ILL are formulas which involve at most twelve variables
(after the abbreviations a and b have been replaced by their definitions). Each term is,
therefore, equivalent to a formula in 12DNF, so I-ILL is in 12DNF. Also, MOVE2

166 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

and ---MOVE are equivalent to formulas in 3DNF by DeMorgan’s laws. Let O2 be an
(X2 I..J YE)-assignment such that the assignment to Yc represents the initial configuration
on inPut w, and ai bi 0 for all i.

The verification of (3.3) and (3.4) is a combination of (3.5) (and its symmetric
version) with the fact that legitimate play mimics Gt. Say that M accepts w. Player I’s
strategy is to play legitimately and play a "side game" of Gt to determine, each time
play progresses from 1 to m, which configuration to represent by Xc. If II plays
legitimately, then just as in part 1, eventually the game will reach a position which
satisfies aEm+2 b,,,+l 1 and MOVE(X, Y)= 0. Therefore, we need only consider
the case that II makes an illegitimate move. If II’s first illegitimate move is a pass, then
by (3.5) (c), player I can next move to a position (2, I-WIN, II-WIN, a) which satisfies
II-ILL 1 and I-ILL 0. Since I has been playing legitimately and II passed, we also
have that a m+l and b,+l are not both 1 under a, so the position satisfies I-WIN 1 and
II-WIN 0. Say then that II’s first illegitimate move is a nonpassing move from position
zr to zr’. By (3.5) (b), the position zr’ satisfies II-ILL 1 (and, therefore, I-WIN 1) and
I-ILL 0. We must check that rr’ satisfies

(a+l A b’+x A -MOVE2(Y, X))= 0.

If 7r satisfies a’,/1 0 we are done. If 7r satisfies a /t 1 then, since both players have
been playing legitimately up to zr, rr satisfies b’,/1 0. Since I has chosen the current
assignment to Xc using a winning strategy for Gt, 7r satisfies ---MOVE2 0. Since the
formula b’,,+ contains no variable in Y, we conclude that either rr’ satisfies b’m+l 0 or
r’ satisfies -MOVE2(Y,X)=0. This completes the verification of (3.3). The
verification of (3.4) is completely analogous, using the symmetric version of (3.5) (i.e.,
interchanging I and II), and is left to the reader.

Having noted above that the sizes of I-WIN and II-WIN are OM(n), it follows that
g-TIME -<-1o W(G2) via length order n log n.

3. Define

I-LOSE’ (I-ILL k/(a ’+/k ---MOVEE(Y, Xc))),

II-LOSE’-(II-ILL /(b,,,/2 A ---MOVE(Xc, Y))).

As in part 2, these formulas are equivalent to formulas I-LOSE and II-LOSE in 12DNF
of size OM(n). It is easy to see that M accepts w iff (1, I-LOSE, II-LOSE, a2) W(G3).
First recall that, by the rules of G3, neither player can pass and player I (II) cannot move
to a position which satisfies I-LOSE 1 (II-LOSE 1). This forces both players to play
legitimately, so it should be obvious that this starting position has the property claimed.

4. Let I-WIN(X2, Y2) and II-WIN(X2, Y2) be the formulas described in part 2. We
construct a formula F4(X4, Y4) where

X4=X2.J{X1, X2, X3, X4, X5} and Y4 Y21,-J(Y, Y2, Y3, Y4,)25}.

Let

F, ((ylVI-WIN)A(x2Vy3)) V (xaAxsA---y3)

V ((xVII-WIN)A(y2Vx3)) V (y4AysA’--x3).

Since I-WIN and II-WIN are formulas in 12DNF of size OM(n), F is equivalent to a
formula F4 in 13DNF of size Old(n). Let O4 be an assignment that assigns X2 and Y2 as
in part 2 and assigns x and y to 0 for 1<=i<-5. We claim that M accepts w iff
(1, F4, 4)1 W(G,O.

PROVABLY DIFFICULT COMBINATORIAL GAMES 167

Say that M accepts w. We describe a winning strategy for player I. As long as II
plays only variables in Y2, I plays a side game of G2 using the strategy of (3.3) to
determine his plays in X2. Before each of his moves, I switches strategy if one of the
following two conditions are met:

1) if II has just played one of the yi, then I switches to one of the strategies la)-ld);
2) if I has a play (possibly a pass) which moves the side game of G2 to a position

which satisfies I-WIN 1 and II-WIN 0, then I switches to one of 2a) or 2b).
Note that (3.3) ensures that either 1) or 2) will eventually occur. If 1) and 2) are met
simultaneously then 1) takes precedence.

In describing the strategies l a)-ld) we can assume that none of the xi have been
played and that exactly one of the y has been played. Moreover, the current position
satisfies I-WIN 0 and II-WlN 0 since condition 2) was not met before I’s most
recent previous move.

la) If II has just set yl to 1, then I sets x2 to 1 and wins.
lb) If II has just set y2 to 1, then I sets Xl to 1 and wins.
lc) If II has just set Y3 to 1, then I views this as a pass by II in the side game; by (3.3)

(b), I has a play in X2 which sets I-WIN 1, and I wins by making this play.
ld) If II has just set either y4 or Ys to 1, then I sets x3 to 1. Since I has been playing

the strategy (3.3) up to this point, II cannot reach a position which satisfies
II-WIN i on his next move. Since also yl, x2, y3 and ---x3 are 0, II cannot set
F4 to 1 in one move. Therefore, player I can set xl to 1 on his next move and
win.

In describing the strategies 2a) and 2b) we can assume that none of the x or y have
yet been played.

2a) If the current position satisfies I-WIN 1, then I sets x2 to 1 and wins.
2b) If the current position satisfies I-WIN II-WIN 0, but I can reach a position

which satisfies I-WIN 1 on his next move, then I sets x4 to 1. Since the
variables xg and yi for 1 <_- <_- 5 other than x4 are all 0, it is easy to check that II
cannot reach a position which satisfies F4 1 in one move. Now if II does not
set Y3 to 1, then I sets xs to 1 and wins. If II does set Y3 to 1, then I makes the
play in X2 that sets I-WIN 1.

This completes the proof that if M accepts w then (1, F4, a4)6 W(G4). The proof
of the converse is symmetric utilizing the symmetry between (3.3) and (3.4) and the
symmetry in the definition of F.

5. Let the formulas I-WIN and II-WIN be as in part 2. Let Y {Y’IY Y2}. We
describe a formula Fs(Xs, Ys) where Xs X2 {Xo} and Y5 Y2 t_J Y LI {yo, yl}. Let
I-WIN5 and II-WlNs be the formulas I-WIN and II-WIN, respectively, after substitut-
ing (y 03 y’) for all occurrences of y for each y Y2. Let T denote a formula which is the
exclusive-or of the variables in Y I,.J {y 1}. In what follows, it is useful to imagine that T
is a "variable" and that I-WINs and II-WINs contain variables in Y2 just as in part 2.
The effect is that in one move player II can either play one y Y2 while leaving T fixed,
or play T while leaving all y Y2 fixed, or simultaneously play T and one y 6 Y2. Let

Fs ((T/k I-WINs) k/(---T/k Xo))/k ---II-WINs/k (T V yo).

Note that size(Fs) 01vt(n). Let a5 be an assignment which assigns X2 and Y2 as in part
2, assigns Xo to 0, yo to I and yx to 1, and assigns all y’ Y. to 0; note that the "variable"
T assumes the value 1 under as. We claim that M accepts w iff (1, Fs, as) W(Gs);
furthermore, if M accepts w then I has a winning strategy such that if II passes then I
wins immediately on his next move.

168 LARRY J. STOCKMEYER AND. ASHOK K. CHANDRA

Say that M accepts w. As long as Ii doesn’t play T or yo, I plays a side game of G2
using the strategy (3.3) to determine his plays in X2. Eventually the side game will reach
a position which satisfies I-WIN 1 and II-WlN 0, so this position satisfies F5 1 and
I wins. If II either passes or plays yo, then I views this as a pass by II in the side game, and
I next moves to a position which satisfies I-WIN 1 and II-WlN 0. If II sets T to 0
(possibly in parallel with a move in the side game), then I sets Xo to 1 and wins.

Say now thatM does not accept w. As long as I doesn’t play Xo, II plays a side game
of G2 using (3.4) to determine his plays in Y2. The "variable" T is left fixed at 1 unless II
sees that his next play in the side game reaches a position which satisfies II-WIN 1. In
this case, II makes this play while simultaneously setting T to 0. Now I needs at least two
moves to reach a position which satisfies F5 1 since he must set Xo to 1 and make some
play in X2 which sets II-WlN to 0. Therefore, before I can win, II can set yo to 0 and I
cannot win thereafter. If I sets Xo to 1 before the side game ends in II’s favor, then II sets
yo to 0. Since II has been playing the strategy (3.4) up to this point, I cannot win on his
next move, and II sets T to 0 on his next move. If I passes then II passes.

6. Let Fs(Xs, Ys) be the formula just described in part 5. By invoking Lemma 3.6
with S X5 LI Y5 and F F, there is a formula H(X5, Ys, Z) in 3CNF with size(H)=
OM(n) such that, for all assignments to X5 and Y5,

(3.6) Fs(X5, Y5)= 1 iff (Z)[H(Xs, Ys, Z)-- 1].

Say that Z (z 1, , Zk}. Let H’ denote the formula H after substituting (zi V z’i) for
z for 1 _-< -<_ k. Let

X6=XsU{z,,zll<-i<-k+l}, Y6= YU{u,,ulll<-i<-_k},

and

F =H’V (zl/k""/k z,/k,z,+l/k (ul V’" V u,))

V (Z A" A z A Z+l A (u V’"" V u)).

By the distributive laws, F; is equivalent to a formula F6 in CNF with size(F6)=
OM(n3). Let O6 be an assignment that assigns X5 and Y5 as in part 5, assigns zi and z to
0 for all and assigns u and u to 1 for all i. We show that M accepts w iff
(1, F6, of6)E W(G6).

Say thatM accepts w. As long as II plays only variables in Ys, I determines his plays
in X5 by playing a side game of G5 starting on position (1, F5, as) using the strategy
described in part 5. At some point, the side game will reach a position 7r (1, Fs, a)
such that I can move to a position 7r’ (2, F, a’) where r’ satisfies F5 1. At the point
where such a zr occurs, I begins a strategy we call the end strategy. By (3.6), there is a
Z-assignment " such that H assumes the value 1 under the combined assignments a’
and ’. Let {i sr(zi) 1}. To play the end strategy, I does not immediately make the
play in X5 which moves 7r to r’, but rather I first sets z to 1 for all E .’ on his next

card() moves. Each time I sets some zi to 1, iI must respond by setting some u to 0; for
otherwise I can set all the z to 1 before II can set all the u to 0, and I wins G6. (We are
still assuming that II played only variables in Y5 up to the point where the side game
reached zr.) After I has set z to I for all and II has responded by setting some u to
0, I makes the play in X5 which moves the side game from zr to 7r’; the new position
satisfies H 1 and I wins. If II passes (before playing some u or u i) then, as was noted
in part 5, the side game is at a position 7r as above (i.e., I can win G5 on his next move).
Now I plays the end strategy.

PROVABLY DIFFICULT COMBINATORIAL GAMES 169

If II plays some u before I begins the end strategy, then I views this as a pass by II
in the side game, and I plays the end strategy. If II plays some ui, then again I views this
as a pass and plays the end strategy except that the variables z’i for are set to 1.

Say now that M does not accept w. Player II plays a side game of G5 to determine
his responses to plays of I in X5. If I plays some zi (z’i), then II changes some Ui (U) from
1 to 0 if possible, or II passes otherwise, if I passes then II passes.

This completes the proof of Lemma 3.2.

4. Games on graphs. In the previous section we have exhibited several games on
propositional formulas which are log-complete in g’-TIME. It is possible that these
games will be useful as starting points for reductions to other games, in the same way
that the quantified Boolean formula "game" [21], [22] has been used to show that
-SPACE is reducible to certain games [8], [10], [18], [20]. Since -<og is a transitive
relation, to show that ge-TIME <-log W(G) for some game G, it suffices to show that
EW(Gk) <-log W(G) where Gk is one of the formula games. The main purpose of this
section is to illustrate, for a particular game G on graphs, how a reduction
EW(G3) <-log, W(G) can be performed.

Before presenting this example in detail, we remark that by combining Theorem
3.1 with Schaefer’s notion of a pseudoformula [19] it is easy to devise g’-TIME-

complete games which are based on known NP-complete problems. For example, the
following game HAM is obtained by combining G5 with the NP-complete Hamiltonian
circuit problem for undirected graphs [16].

HAM: A position in HAM is a tuple (z, V, E, El, E2, O1, O2) where - {1, 2}, V is a
finite set (the vertices of the graph), E

_
{{u, v}[u, v V, u : v} (the edges of

the graph), EI, ’:z -/,/1 i"l E9_ , and a: E {in, out} for 1, 2. Player I
(II) moves by either passing or changing the status of one edge in E1 (E_) from
"in" to "out" or vice versa. Player I wins if, after some move of either player,
there is a Hamiltonian circuit in the graph (V, E) (that is, a circuit which
contains each vertex exactly once) such that all of the edges currently declared
"in" belong to the circuit and none of the edges currently declared "out"
belong to the circuit.

For any of the standard methods of encoding graphs as strings of symbols, EW(HAM)
is log-complete in g-TIME. By [19, Fact 3.1] it is immediate that
EW(Gs) <_-Iog EW(HAM), so Theorem 3.1 and the transitivity of -<-log imply that
g’-TIME --<log EW(HAM). Also, EW(HAM) g’-TIME by the method of Lemma 3.1.

We now describe another game, BLOCK, for which the reduction from W(Gk) to
W(BLOCK) is more involved. The portion of a position of BLOCK which remains
fixed throughout play of the game is referred to as a board.

A board is a tuple (V, E, ,, W, W2)where:
V is a finite set;
E

__
{{u, v}l u, v v, u v};

,: E{1, 2, 3}; and
w, wc__ v.

V and E should be thought of as the vertices and edges of an undirected graph.

position of BLOCK is a tuple (’, B, M, M2) where:
e {1, 2} signifies whose turn it is;

(V, E, ,, W1, W2) is a board; and
M1, M2_V and Mlf’IM2=.

170 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

M1 and M2 represent the movable part of a position; M1 (M2) should be thought of as a
set of markers which belong to player I (II) and are placed on vertices of the board. A
player moves by choosing one of his markers and moving it to a new unoccupied vertex
by traversing edges of the graph subject to the restrictions that (i) all traversed edges are
given the same value by v, and (ii) no traversed vertex is occupied by a marker of either
player. The players are not permitted to pass. The function v gives a "direction" to each
edge; the restriction (i) corresponds, for example, to the situation in Chess that a queen
can move in any of four directions but cannot change direction during a single move.
Player I (II) wins by placing one of his markers on a vertex in W1 (WE). Formally,
(1, B, M1, ME) can reach (2, B, M],M) in one move iff ME M, ME W2 Q, and
there exist Ul,’’’,UkV and c{1,2,3} such that UUk, uM1, M’I=
(M-{u})t_l{Uk}, uiM1 t.JM2 for 2-<i -<k, and {u, U+l}E and u({u, U+l}) c for
1 =< < k. The legal moves of player II are defined symmetrically.

To encode positions as words over a finite alphabet, associate each element u V
with a distinct binary word to(u) of length roughly log (card(V)), and list the various
elements of a position in some natural way; for example, letting e =card(E), list
E {{Ul, Vl},’’’, {Ue, De}} as tO (Ul)$O.) (/)l)$ $(.O(Ue)$(.o([’e). Let EW(BLOCK)
denote the set of encodings of positions in W(BLOCK).

THEOREM 4.1. EW(BLOCK) is log-complete in g’-TIME.

Proof. By the algorithm of Lemma 3.1 and the method of encoding positions, one
finds that there is a constant d such that

EW(BLOCK) DTIME(d"/lg ").

To show that g’-TIME -<log EW(BLOCK) it suffices to prove

(4.1) EW(G3) --<log EW(BLOCK).

Let

zr (’, I-LOSE(X, Y), II-LOSE(X, Y), a)

be a given position of G3. We describe a position

7r’ (’r, V, E, v, W1, W), M1, M2)

in BLOCK such that r e W(G3) if[or’ e W(BLOCK).
Say that X {xill <- <= mx} and Y {yll =< -< m}. Let denote the literal ---x

and let 7 denote y. For each variable x and y the graph (V, E) contains the subgraph
depicted in Figs. 4(a) and 4(b), respectively. In these figures, vertices are labeled by
subscripted lower case Roman letters. The value of each edge under v is indicated by
drawing the edge as either solid, dashed, or dotted. Vertices which belong to WI (W2)
are indicated by open (solid) stars. The markers of player I (II) are shown as open (solid)
circles. The dashed edges in these figures connect these subgraphs to the remainder of
the graph, and these are the only such connections. The rest of the graph is constructed
in such a way that (i) neither y nor 7 (resp., x nor) is connected to a vertex in W
(resp., W) by a path of dashed edges, and (ii) any attempt by either player to move a
marker from outside one of these subgraphs to a vertex x, 2, y, or results in an
immediate win on the next move for the other player.

Consider Fig. 4(a). The marker currently shown on vertex x i termed the ith value
marker (ofplayer I) and is free to move between x and 2. The position of this marker is
associated with a truth value of the variable x as follows" if the marker is on x (), then
x has value 0 (1). The markers on d and c1 are termed guard markers. If I moves his
ith value marker to a vertex other than x or 2, then II wins on the next move by moving

PROVABLY DIFFICULT COMBINATORIAL GAMES 171

his guard marker to either ali or bli, one of which must be unoccupied. However, if II
moves his guard to either i, e, or fi, then I wins immediately by moving his guard
marker from c li to either e, or fl. The terminology and behavior associated with Fig.
4(b) is analogous. Therefore, at each move player I (II) must either move his ith value
marker from x to or vice versa (resp., from y to 7i or vice versa) for some i, or move
some marker other than a value marker or a guard marker.

(a)

/
/

(b)

FIG. 4. Subgraphs which represent the truth value of xi and Yi.

Write I-LOSE as CI /. /Clkl and write II-LOSE as C21 /" /C2k2 where
each Cij is a conjunction of literals. Another portion of the graph (V, E) is constructed
for each Cj. For example, say that CEj is (x3/ 375). Then the graph would contain the
subgraph shown in Fig. 5. (With the exception of x3 and 375, each vertex label in Fig. 5
actually has two additional subscripts, 2 and], which have been repressed for readabil-
ity.) This subgraph has two relevant properties. First, if it is player I’s turn to move and
both x3 and 375 are unoccupied (corresponding to an assignment for which x3/)75 is
true) then I has a forced win. The strategy which achieves the win is termed the end
strategy. To play the end strategy, I first moves the marker from w to s 1. Now II is forced
to place a marker on rl, and the marker shown currently on v is the only one that can
reach r in one move. Now I is forced to place a marker on u, and he does this by
moving the marker from Sl to u. Now II is forced to move his marker from rl to tl, I is

172 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

forced to move from u to $2, and so on. Finally, I is able to move a marker from U2 to z,
and I wins. Note that as soon as I moves the marker from w to sl, the moves of both
players are forced. This yields the second relevant property of this subgraph: if I moves
the marker from w to sl at a time when either x3 or }75 is occupied, then II has a forced
win. For example, suppose that x3 is occupied and I moves from w to Sl. Then II moves
from v to rl. The only marker of player I which can reach u in one move is the one
currently on x3. However, if I moves this marker from xa.to ux, then II moves his guard
marker from d13 to a13 and wins (see Fig. 4(a) where 3).

FIG. 5. The subgraph which corresponds to the clause (x3/ 75) in II-LOSE.

It should be obvious how to generalize the graph of Fig. 5 for conjunctions with
more than two literals. For conjunctions Cj in I-LOSE, the construction is similar
except that the markers on vertices v and w are interchanged and the vertices in Wx
(W2) become vertices in W2 (W1). The position 7r’ consists of the subgraphs of Fig. 4(a)
and 4(b) for each variable together with the subgraph of Fig. 5 for each conjunction in
I-LOSE and II-LOSE. The initial placement of value markers is specified by the
assignment c. Observe that .there is a constant b such that

(4.2) card(V) + card(E) <= b (size(I-LOSE)+ size(II-LOSE)).

It is not difficult to see that zr E W(G3) iff -n"E W(BLOCK). Suppose that zr E

W(G3). Player I plays a side game of G3 starting on 7r to determine his movement of
value markers as long as II moves only value markers. At some point, player II must

PROVABLY DIFFICULT COMBINATORIAL GAMES 173

move the side game to a position (1, I-LOSE, II-LOSE,/3) where II-LOSE 1 under/3,
so C2. 1 for some . Now I can successfully play the end strategy on the subgraph
corresponding to Czj. The only other possibility is that II moves a marker from Wlj to

s11i (cf. Fig. 5), for some/’, before II-LOSE 1 in the side game. But since I has been
playing a winning strategy in G3, some literal in C1. is 0 (i.e., the vertex corresponding to
that literal is covered by amarker). Now II’s moves are forced, and I wins as discussed
above. The argument that zr W(G3) implies zr’ W(BLOCK) is symmetric. This
completes the proof of (4.1) and, therefore, that of Theorem 4.1.

Moreover, from the proofs of Lemma 3.2 and (4.1), the inequality (4.2), and the
method of encoding positions of BLOCK, it can be seen that the following is true.

COROLLARY 4.1. 1) g-TIME <-og EW(BLOCK) via length order n log n.
2) There is a constant c > O, such that if a DTM accepts EW(BLOCK) within time

T(n), then T(n > c"/g for infinitely many n.

REFERENCES

1] A. V. AHO, J. E. HO’CROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] M. BAUER, D. BRAND, M. FISCHER, A. MEYER AND M. PATERSON, A note on disjunctive form
tautologies, SIGACT News, 5 (April 1973), pp. 17-20.

[3] C. L. BOUTON, Nim, a game with a complete mathematical theory, Ann. Math. Princeton, 3 (1902), pp.
35-39.

[4] A. K. CHANDRA AND L. J. STOCKMEYER, Alternation, Proc. 17th IEEE Symp. on Foundations of
Computer Science, 1976, IEEE, New York, 1976, pp. 98-108.

[5] J. H. CONWAY, On Numbers and Games, Academic Press, New York, 1976.
[6] S. A. COOK, The complexity of theorem proving procedures, Proc. Third ACM Symp. on Theory of

Computing, 1971, Assoc. for Comput. Mach., New York, 1971, pp. 151-158.
[7] S. A. COOK AND R. A. RECKHOW, Time bounded random access machines, J. Comput. System Sci., 7

(1973), pp. 354-375.
[8] S. EVEN AND R. E. TARJAN, A combinatorial problem which is complete in polynomial space, J. Assoc.

Comput. Mach., 23 (1976), pp. 710-719.
[9] M.J. FISCHER AND R. E. LADNER, Propositional modal logic ofprograms, Proc. Ninth ACM Symp. on

Theory of Computing, 1977, Assoc. for Comput. Mach., New York, 1977, pp. 286-294.
[10] A. S. FRAENKEL, M. R. GAREY, D. S. JOHNSON, T. SCHAEFER AND Y. YESHA, The complexity of

Checkers on an N x N board-preliminary report, Proc. 19th IEEE Symp. on Foundations of
Computer Science, 1978, IEEE, New York, pp. 55-64.

[11] R. K. GuY AND C. A. B. SMITH, The G-values of various games, Proc. Cambridge Philos. Soc., 52
(1956), pp. 514-526.

[12] J. HARTMANIS AND R. E. STEARNS, On the computational complexity of algorithms, Trans. Amer.
Math. Soc., 117 (1965), pp. 285-306.

[13] J. E. HOt’CROFT AND J. D. ULLMAN, Formal Languages and Their Relation to Automata, Addison-
Wesley, Reading, MA, 1969.

[14] N. D. JONES, Space-bounded reducibility among combinatorial problems, J. Comput. System Sci., 11
(1975), pp. 68-85.

[15] N. D. JONES AND W. T. LAASER, Complete problems for deterministic polynomial time, Theoretical
Computer Science, 3 (1977), pp. 105-117.

16] R.M. KARl’, Reducibility among combinatorialproblems, Complexity of Computer Computations, R. E.
Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[17] D. KOZEN, On parallelism in Turing machines, Proc. 17th IEEE Symp. on Foundations of Computer
Science, 1976, IEEE, New York, 1976, pp. 89-97.

[18] D. LICHTENSTEIN AND M. SIPSER, Go is Pspace hard, Proc. 19th IEEE Symp. on Foundations of
Computer Science. 1978, IEEE, New York, pp. 48-54.

[19] T. J. SCHAEFER, Complexity ofdecision problems based on finite two-person perfect-information games,
Proc. Eighth ACM Symp. on Theory of Computing, 1976, Assoc. for Comput. Mach., New York,
1976, pp. 41-49.

[20] ., On the complexity of some two-person perfect information games, J. Comput. System Sci., 16
(1978), pp. 185-225.

174 LARRY J. STOCKMEYER AND ASHOK K. CHANDRA

[21] L.J. STOCKMEYER, The polynomial-time hierarchy, Theoretical Computer Science, 3 (1977), pp. 1-22.
[22] L. J. STOCKMEYER AND A. R. MEYER, Word problems requiring exponential time: preliminary report,

Proc. Fifth ACM Symp. on Theory of Computing, 1973, Assoc. for Comput. Mach., New York,
1973, pp. 1-9.

[23] G. S. TSEITIN, On the complexity of derivation in propositional calculus, Studies in Constructive
Mathematics and Mathematical Logic, Part II, A. O. Slisenko, ed., Steklov Math. Institute,
Leningrad, 1968.

[24] J. YON NEUMANN AND O. MORGENSTERN, Theory of Games and Economic Behavior, 3rd ed.,
Princeton University Press, Princeton, NJ, 1953.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0802-0006501.00/0

DYNAMIC BINARY SEARCH*

KURT MEHLHORN’t

Abstract. We consider search trees under time-varying access probabilities. Let S {B1, Bn} and let
p be the number of accesses to object Bi up to time t, Wt= p. We introduce D-trees with the following
properties.

1) A search for X Bi at time takes time O(log Wt/pl). This is nearly optimal.
2) Update time after a search is at most proportional to search time, i.e. the overhead for administration

is small.

Key words, searching, binary trees, time-varying access probabilities, TRIES

1. Introduction. "One of the popular methods for retrieving information by its
’name’ is to store the names in a binary tree. We are given n names B1, B2, , B, and
2n + 1 frequencies/31, ,/3,, a0, , aN with Y/3i + a- 1. Here/3j is the frequency
of encountering name Bi and % is the frequency of encountering a name which lies
between Bj and B.+I, a0 and a, have obvious interpretations." [13].

A binary search tree T is a tree with n interior nodes (nodes having two sons),
which we denote by circles, and n + 1 leaves, which we denote by squares. The interior
nodes are labeled by the Bi in increasing order from left to right and the leaves are
labeled by the intervals (Bj, Bj+I) in increasing order from left to right. Let b be the
distance of interior node B; from the root and let a be the distance of leaf (Bj, Bj+I)
from the root. To retrieve a name X, b + 1 comparisons are needed if X-B and a
comparisons are required if Bi < X < Bj+I. Therefore we define the weighted path
length of tree T as

P Z i(bi + 1)+ Z ajai.
=1 j=o

A large number of papers have been written on the subject of constructing optimal
or nearly optimal binary search trees [3], [7], [8], [9], [10], [11], [12], [13], [15], [16],
[17], [21]. We quote two results:

It is possible to construct a tree T, in time linear in the number of nodes, such that

and

bi =< log 1//3i

aj log 1/aj + 2

[7], [17], [18]. Furthermore these bounds are almost sharp for most nodes and leaves
10], 18]. More precisely, for any d and h > 0 let

Lh {]’; aj _-<(log (1/%)- h)/log (2 + 2-a)}
and

Nh --{j; b+ 1 =<(log (1/i)-h-d)/log (2 + 2-d)}.

* Received by the editors January 24, 1978.
t Angewandte Mathematik und Informatik der Universitit Saarlandes, D-6600 Saarbriicken, Germany.

175

176 KURT MEHLHORN

Then

ojq-’, i<2-h;
jLc iNc

i.e. only a small percentage of the nodes can be considerably higher in the tree than
stated in the upper bound. These results show that the best we can expect from binary
search trees is "logarithmic" behavior.

In many applications the access frequencies are (a) not known in advance (b)
changing over time and therefore (nearly) optimal binary trees are not readily applic-
able. In this paper we introduce D-trees (dynamic-trees) in an attempt to resolve this
difficulty and thus answer a challenge of Knuth 13]: "A harder problem, but perhaps
solvable, is to devise an algorithm which keeps its frequency counts empirically,
maintaining the tree in optimum form depending on the past history of the searches.
Names occurring most frequently gradually move towards the root, etc.".

We suggest the following model. With every node Bi and leaf (B., Bi/l) we
is the number of searchesassociate its frequency count p and q respectively. Here p

for X--B performed up to time and q is the number of searches performed for
X (Bi, Bi/l) performed up to time t. We use Wt= p + q for the total number of

t)accesses up to time t. Then/3 =p/W (ozi=qi/W is the relative access frequency of
node B (of leaf (B., Bj+)) at time t. A search for X B (X (B-, Bi+)) at time
increases p (q) by one. We drop the upper index when it is clear from the context. Our
tree structure exhibits the following behavior:

1. The tree is always nearly optimal, i.e. a search for X Bi (X (B, B.+I)) can be
carried out in time O(log 1 //3) (O(log 1 /)).

2. The time needed to update the tree structure is at most proportional to search
time. This is achieved by restricting updating to the path from the root to the node (leaf)
searched for.

3. New names can be inserted in time O(min (n, log W)).
In 2 we review some facts about weight-balanced trees [20]. In 3 we introduce

D-trees and show properties 1 and 2 above. In 4 we give an alternate definition and
work out some of its properties. Section 5 is dedicated to compact D-trees, and in 6 we
give some extensions. Finally, we apply D-trees to TRIES.

Note. A preliminary version of this paper was presented at the 4th Colloquium on
Automata, Languages and Programming, Turku, 1977, Springer-Verlag Lecture Notes
vol. 52, pp. 323-336, Springer-Verlag, Berlin.

2. Preliminaries: Weight balanced trees. Nievergelt and Reingold introduced
weight balanced trees (cf. [20] and 18]). We review some of their definitions and adapt
them for our purposes. In a binary tree every node has either two sons or no son at all.
Nodes with no sons are called leaves.

DEFINITION. Let T be a binary tree. If T is a single leaf then the root-balance p(T)
is 1/2; otherwise we define p(T)= /I/I TI, where I /I is the number of leaves in the left
subtree of T and IT[is the number of leaves in tree T.

DEFINiTiON. A binary tree T is said to be of bounded balance , or in the set BB[ce],
for 0 <-a <- 1/2, if and only if

1. a <-p(T) < l-a,
2. T is a single leaf or both subtrees are of bounded balance c.
The depth of a tree T of bounded balance a is O(log]TI). We add a leaf to a tree T

by replacing a leaf by a tree consisting of one node and two leaves. "If upon the addition
of a leaf to a tree in BB[a] the tree becomes unbalanced relative to a, that is, some
subtree of T has root-balance outside the range [c, 1-a] then that subtree can be

DYNAMIC BINARY SEARCH 177

rebalanced by a rotation or a double rotation. In Fig. 1 we have used squares to
represent nodes, and triangles to represent subtrees; the root-balance is given beside
each node"J20]. Symmetrical variants of the operations exist.

’ /3 Rotation - /3t +(1 -/3z)/31

- Double
/3 Rotation

FIG.

--B-/3, +(1

Fact 1 (Nievergelt and Reingold). If a =< 1-v/2 and the insertion of a leaf in a
tree in BB[a] causes a subtree T of that tree to have root-balance less than a, T can be
rebalanced by performing one of the two transformations shown above. More precisely
let/32 denote the balance of the right subtree of T after the insertion has been done. If
/32 < (1 2ce)/(1 ce) then a rotation will rebalance T, otherwise a double rotation will
rebalance T.

The search time in weight-balanced trees is proportional to the logarithm of the
number of leaves. Updating the structure upon insertion (or deletion) of a leaf can be
done in time proportional to the search time. It takes constant time on the average [24].
In the next section we adapt weight-balanced trees to binary search trees.

3. D-Trees: The basic scheme. In this section we restrict the discussion to the case
in which only searches for the leaves of a binary search tree are performed. Let qj be the
number of searches for some X (Bj, B/I), 0<= j <= n, performed up to now and let
W q be the total number of searches performed so far. We assume q0 q,, 1 to
avoid some technical difficulties. This can always be achieved by adding two extra
names. From now on a is fixed, 0 < c -_< 1 -x//2.

Let T be a tree in BB[a] with W leaves. The leaves of T are labeled from left to
right according to the following rule. The first q0 leaves are labeled with (., B1), the next
ql leaves are labeled with (B1, B2),’’’. The idea of duplicating leaves appears
implicitly in [17] and explicitly in [15].

DEFINITION. (a) A node v of T is a j-node, 0 <= j <= n, if all leaves in the subtree with
root v are labeled with (B, B./I) and v’s father does not have this property.

(b) A node v of T is the j-joint, if all leaves labeled with (Bj, Bi+l) are descendants
of v and neither of v’s sons has the property.

In general, the j-joint is not a -node. If it is, then there is just one j-node. Figure 2
shows the relative position of j-nodes and the j-joint.

178 KURT MEHLHORN

FIG. 2. Dotted lines denote zero or more tree edges.

DEFINITION. (a) Consider the j-joint v. q} of the leaves labeled with (Bi, Bi+l) are
> "then the j-node of minimal depth to the left of v isleft of v and qi are right of v. If qi q

active; otherwise the j-node of minimal depth to the right of v is active.
(b) The thickness th (v)of a node is the number of leaves in the subtree with root v.
LEMMA 1. Let ai be the depth of the active]-node in tree T. Then ai _-< Cl log 1 / ai + c2,

where c 1/log (1 /(1 a)), C2 1 + c and a q/W.
Proof. Let v be the active j-node, a the depth of v and let w be the father of v. We

show th (w)>-q/2. If v is the j-joint then th (v) q and we are done. Otherwise v is a
left or right descendant of the j-joint. Suppose v is a left descendant. Then at least q/2
of the leaves labeled with (B, B/) are in the left subtree of the j-joint. All of them are
descendants of w. Hence th (w)>-q/2. w has depth a-1. Since the tree T is of
bounded balance a

and hence

th (w) -< (1 a)’’-1 W

a <- 2" (1 o)ai-1

Taking logarithms yields the result.
Example. Let a 1 x//2. Then C 2, C3 3 and hence aj =< 2 log 1/aj + 3. No

analogue to Lemma 1 exists if one takes height-balanced trees instead of weight-
balanced trees as the underlying tree structure.

Next we have to assign queries to the nodes of tree T. The queries are of the form

"if X < Bi then go left else go right".

We assign queries in such a way as to direct a search for X (Bi, Bj+I) to the active
j-node. Then Lemma 1 assures us that search time is logarithmic and thus nearly
optimal.

Let v be any node of T. Let j be maximal with: the active j-node is left of v. Then we
assign the query "if X < Bi+l then left else right" to v. This rule assigns queries to all
nodes of v. It is apparent that a search for X (Bj, Bi+l) is directed to the active j-node.
Figure 3 is Fig. 2 redrawn; this time the queries are shown.

DYNAMIC BINARY SEARCH 179

Bj active

/’-node

FIG. 3

Before we describe the searching in and updating of our tree structure we have to
say more about the information stored in the nodes.

1. All proper descendants of j-nodes are pruned.
2. In each remaining node of the underlying tree of bounded balance a we store
(a) the type of the node: joint node or j-node or neither of above,
(b) its thickness,
(c) in the case of a joint node the number of j-leaves in its left and right subtree,
(d) in the case of a j-node a pointer to the element B. of a linear list containing the

names B1, , B, in that order. An array will do if the insertion of new names
is not required (cf. 6).

Suppose now that we search for some X6 (Bj, Bj+I). We descend the tree as
directed by the queries and end up in the active j-node. As we descend, the thickness of
every node encountered during the descent is increased by one. Then we ascend and
rebalance the trees as in the case of trees of bounded balance a. Three new problems
arise. Assume that we reach node w from its right son v. Then we searched below v. The
thickness of w and v were both increased by 1. If the root balance p(w)
(th (w)-th (v))/th (w) is less than a then we have to rebalance the tree. We treat the
case of a rotation and leave the case of a double rotation for the reader.

Rotation

Problem 1. v is a j-node for some j (see Fig. 4). Then trees/ and/ do not exist
explicitly. We recreate them by splitting v into 2 j-nodes of thickness [th (v)/2] and
[th (v)/2] respectively. Then 1/3 N0(v) [th (v)/2]/th (v)<-_ 1/2 because of th (v)=>
2. A rotation will rebalance the tree. Note further that the j-node v is to the left of the

180 KURT MEHLHORN

j-joint (cf. Fig. 2). Hence the query assigned to v after the rotation should be "if
X < B ". The name B can be found using the pointer into the linear list containing
all names.

Problem 2. w is a j-node after the rotation. Then we have to combine the two trees
/ and/ into a single node.

Problem 3. Queries have to be changed. This can only happen if the active nodes
change. This can only be the case if the active node is split (Problem 1) or combined
(Problem 2) or if the distribution of the leaves labeled with (Bi, Bi/ 1) with respect to the
j-joint changes. The first two cases were treated already. The distribution of the leaves
labeled with (B., B+) with respect to the j-joint can only change if the j-joint is one of
the nodes involved in the transformation, i.e. is either node w or v in Fig. 4. If v is the
]-joint then the distribution does not change. If w is the j-joint then we have to
distinguish two cases.

Case 1. The tree/ contains no j-node. Then all j-nodes to the right of w (the
j-joint) are elements of the subtree/. This can be checked by comparing the thickness
of the root of// with the number stored in the j-joint w. In this case nothing has to be
changed.

Case 2. The tree/ contains a j-node. Then/ is a j-node and its thickness is strictly
smaller than the number stored in w. Then w ceases to be the/’-joint, v becomes the
j-joint. The query assigned to w after the rotation is "if X<Bi then... ". The
distribution of the j-leaves with respect to the new]-joint v can be computed from the
thickness of the]-node / and the distribution stored in the old j-joint w. The
distribution is stored in v and the appropriate query is assigned to v. Again the names Bi
and Bi+l can be found using the pointer stored in the f-node/.

Problem 4. Nodes change their type.
Case 1. A joint node can only change its type if it is involved in the rotation. Hence

this case was treated already in Problem 3.
Case 2. A]-node can only change its type if it is involved in the rotation. Hence this

case reduces to Problems 1 and 2.
We summarize the discussion. We use trees of bounded balance in order to

implement search trees. The depth of the active]-node is always less than ca log 1/a +
c2 for some small constants C and c2. Here, a is the relative frequency of leaf (B, B]+I)
at time t. Updating is restricted to the path from the root to the active j-node. In each
node of the path a constant amount of work is necessary. Thus searching and updating
the structure can be performed in time O(log 1/c).

THEOREM 1. Consider a D-tree based on a BB[a]-tree with 0 < ce <- 1- x//2.
(a) Letq be the number ofsearches forX (Bi, B+), 0 <=] < n, performed up to time

and let W= q. Then at time a search for X (B., B.+I) can be executed in time
O(c log (W/q)+c2) where c1 1/log (1/(I-a)) and c2 1 /c1. The time needed to
update the tree structure is proportional to the search time.

(b) Letai qi/Wt, H= H(ato, al, at,,) -Y, a log a, letPopt be the weighted
path length of an optimal search tree]:or the distribution and let P be the weighted path
length of the D-tree at time t. Then

P-<IH+2--- leopt -" C2
where ca, C2 are defined as in (a).

(c) The number of nodes in a D-tree is O(n(1 + log W)).
Proof. (a) This is immediate from Lemma 1 and the preceding discussion.

DYNAMIC BINARY SEARCH 181

t<(b) Let aj be the depth of the active/’-node at time t. Then aj=cl log 1/c + c2 by
Lemma 1. Hence

p_._fttaai <2 log 1/c)+Ogj(--C C2

Cl H+c2

c1 Popt +C2
since HPopt by Gilbert and Moore [8], [14], [18].

(c) Suppose there are j-nodes Vl,’", v of thickness q),..., q) respec-
tively. 1 of these -nodes are to the left of the -joint. Among these has maximal
depth and v, has minimal depth. Let w be the father of 1. Then

th(v,)/th(w)
and hence

th (w) q(k’)/a qi/a.

Furthermore 1 q()= th (Vl). The depth of node v in the tree with root w is bounded
above by c log (th (w)/th (va))+ c2. (Lemma 1). Vl has depth kl. Thus

kl Cl log th (w)+ c2

c log qi/a + c2.

From this we conclude that the number of j-nodes is d log qi+ d2 for suitable
constants da and d2. Hence the total number of j-nodes, 0 j n, is

dl" logq+d2(n+l)
j=0

d n log W+ d2(n + 1).

Since the j-nodes are the leaves of the D-tree the total number of nodes is O(n(1 +
log W)).

Example. Figure 5 shows a D-tree for the distribution (q0, ql, q2, q3, q4)
(2, 3, 1, 8, 2) based on a tree in BB[1/4]. The j-nodes are indicated by square boxes, the
active j-nodes are underlined, the thickness of the j-nodes is written on top of them and
finally the distribution of the j-leaves with respect to the j-joints is written on top of the
joint nodes.

7

2

FIG. 5

182 KURT MEHLHORN

Suppose we search for X < B1. The search is directed towards the active 0-node
and destroys the balance in the node between the 0-joint and the 1-joint. A rotation
about that node rebalances the tree. One gets Fig. 6.

2

2

7

unchanged

unchanged

4. A modified definition. Recall that the active j-node is the minimal depth/-node
in that subtree of the/’-joint which contains at least one half of the j-leaves. Hence the
active j-node is not necessarily a j-node of minimal depth. An example is shown in Fig.
7.

8

FIG. 7. A D-tree for qo 5, ql 18.

Of course, search time could be improved by ensuring that the active j-node is
always a j-node of minimal depth. This leads to the following alternate definition of
active j-node.

DEFINITION (alternate definition of active j-node). Exactly one of the j-nodes is
active. The active j-node is a j-node of minimal depth.

DYNAMIC BINARY SEARCH 183

Lemma 1 and hence Theorem l(b) is obviously true for the alternate definition of
active j-node. However, the bound for the weighted path length can be improved
considerably.

THEOREM 2. (Average search time in D-trees with the alternate definition of active
/’-node).

P<=(1/H(o, l-a)). H(ao,’.’,

where c 1 + 1/a.
Example. Let a=l-/2. Then 1/H(a, l-a)= 1.09 and c=3+.,/4.41.

Because of the fact that P >=H(ao," , a,) ([8], [14], [18]) always, average search time
is at most 9% above the optimum.

Proof of Theorem 2. Suppose there are mj j-nodes vl,’", Vm, with thickness
q.,,..., q1,,,, and depth ail, , a-,,, respectively. Then

q] q]l .qt_ _]_ q]mi

and

aj min (ah, ., aim,).
Thus

m
P<= P= Y__, E (qj,/ W) aj,.

j=o i=1

An easy induction argument on the height of the D-tree shows

<= d. H(aox, (102,""", a0mo, all,’’’, lml,"" ")

where d 1/H(a, l-a)and aj,=qj,/W. By the grouping axiom

H(CZOl, 002, O0mo, O11 O:lrna, ")

i=0 c

Choose K such that/)1, VK, are left of the]-joint and vt+l, , v,,j are right of the
j-joint. Let c. %., +. + c%, and a %.- a. Again, by the grouping axiom

.,
Consider nodes v,. , v. Among these, v has maximal depth and v# has minimal
depth (cf. Fig. 2). For 2 k let wt be the father of v and let zt be the other son of wt.
Then

th (wt)= th (vl)+. + th (v,)+ x,

th (Zl)-- th (v)+" + th (V/--1)-- X

for some number x. Furthermore th (z)=< (1 a) th (w) since the underlying tree is in

BB[a]. Hence

th (v,)+’’’ + th (v,_)-< (1 a)(th (v,)+’’’ + th (v,))

184 KURT MEHLHORN

for 2 =< l-< k. By repeated application of the grouping axiom

Hence

and

a t- l--;

2 (a +" + a,). H aj:
1= 2 OLjl -[- + Ogjt

k

--< 2 (;,+’"+,1
/=2

ceh +" + ah

k-2

<---- E (1-a)l (a,+" "+a)
1=0

(1/ce) (%., + + ce).

P<-(1/H(a, l-a)). [H(ao,..., a,,)+ 1+ 1/a].

The implementation of D-trees with the alternate definition of active nodes is
considerably more difficult than the one suggested in 3. This comes from the following
fact: With the old definition of active j-node a different j-node can become active after a
transformation only if the distribution of the j-leaves with respect to the j-joint changes.
This can only be the case if the j-joint node is involved in the rotation or double rotation.
However, this is no longer true for the modified definition of active j-node. A different
j-node may become active if the distance of some j-node to the j-joint changes. This can
happen even if the j-joint is not involved in the tree transformation but rather the
transformation takes place far below the joint node. This forces us to include some
additional information in a D-tree.

For every j (0 _-< j =< n): The j-nodes and the j-joint are kept in a doubly linked list in
symmetric order. With each link of the list we associate the distance of the j-node (if the
j-node is of minimal depth) or the distance to the father of the j-node above. Figure 8
shows the D-tree of Fig. 5 with the additional data structure.

It remains to describe the search and update process. Assume we search for some
X (Bs, Bs+I). We descend the tree as directed by the queries and end up in the active
j-node. The nodes passed during the descent are stacked. In addition, the nodes are
entered into two linked lists, the R-list and the L-list. A node is stored on the R-list if it is
left via its right link; the L-list contains all nodes which are left via their left links.

Example. Assume that we search for X (B2, B3) in the tree of Fig. 8. Then the
stack contains

fR-list

3-joi_nt, 1-joint, B3, B2, active 2-node

L-list

with the R- and L-lists as shown. Furthermore the thickness of every node (including
the active j-node) encountered during the descent is increased by one. Then we ascend
(using the stack). Suppose we reach node v from node w. We may assume without loss of
generality that w is v’s right son.

DYNAMIC BINARY SEARCH 185

186 KURT MEHLHORN

Case 1. th (w)=< (1 a) th (v). Then everything is fine. We delete v from the stack
and the R- and L-list (whichever it is on) and ascend one more level.

Case 2. th (w) > (1 a) th (v). We distinguish two cases.
Case 2.1. w is a j-node for some j (see Fig. 9). Then w is the j-node with

X (Bj, B.+I). We split w into 2 j-nodes 14’1, W2 of thickness [th (w)/2J and [th (w)Z2J
respectively. Then o<=p(W)<=l/2<-(1-2a)/(1-a). Remember that a_-<1-42/2
and th (w)>= 2. By Fact 1 a rotation will rebalance the tree. We obtain Fig. 10.

W

FIG. 9

w

FIO. 10

If either v or w was the j-joint before the rotation then w is the j-joint afterwards.
In either case we insert Wl, w2 (and maybe w) into the proper place of the doubly linked
list of j-nodes. The rotation demotes u by one level. This might cause a node below u to
become inactive. Let (B, B.+ 1) be the leftmost leaf below u and let x be the first node on
the R-list. Three cases may occur (see Fig. 11).

FIG. 11

(a) x is the j-joint. Then we increase the number associated with the link from x to
the j-node below u by 1. Then we compare the number with the number associated with
the link to the left and change the query assigned to x if necessary. Note that this will
direct future accesses to X (Bi, B/+I) to the newly active j-node.

DYNAMIC BINARY SEARCH 187

(b) The other subtree of x is an j-node. Then we increase the distance from this
j-node to the j-node below u by 1.

(c) Neither of above. Then the active j-node is also below u and we have nothing to

do. This finishes Case 2.1. We delete v from the stack and the R- and L-list (whichever it
is on) and ascend.

Note that w is not a j-node for any j after the rotation is performed. This shows that
Case 2.1 occurs only in the first step of the ascent.

Case 2.2. w is not a j-node. We have Fig. 12. If p(w)<=(1-2a)/(1-a) then we
perform a rotation, otherwise a double rotation. Since a double rotation is just two
rotations we only have to treat the case of a rotation. A rotation about v demotes
subtree a one level and promotes subtree b one level. Hence we have to go through the
routine described above for the left- and rightmost leaves of subtrees a and b. We also
have to distinguish whether u is a j-node for some j or not. The details are left to the
reader.

FG. 12

We summarize the discussion. Modifications of the tree structure are limited to the
path of search. In each node of that path a constant amount of work is required. Hence
update time is proportional to search time. Theorem 1 is true even for the modified
definition of active nodes.

5. Compact D-trees. The tree structure of 3 achieves one main goal: search time
is logarithmically bounded and update time is proportional to search time. However,
our solution might use O(n. log W) storage cells. In addition, the depth of a node,
though being bounded by O(log Wt/q), can be arbitrarily large compared to n.
Consider the case that q 1 for all and W becomes large.

However, most of the nodes are only present to make rebalancing and book-
keeping easy to explain. In this section we propose a compact version of the tree
structure. It exhibits the same search time and update behavior as the basic structure of
3; in addition, it requires only O(n) storage cells and permits a linear time con-

struction. Also the depth of the active j-node is bounded by O(min (n, log Wt/q)).
We obtain a compact tree from a D-tree in the sense of 3, which we call an

extended tree from now on, by node deletion and path compression. The compact tree
is formed by the query nodes which contain active nodes in both subtrees, the joint
nodes and the active nodes. All other nodes are deleted. Applying this process to the
tree of Fig. 5 yields Fig. 13.

We remember the deleted nodes by storing expressions of the form [number,
number] along the compressed edges. For example between the node B4 and the active
4-node we deleted two left subtrees representing a total number of 3 leaves labeled
(B3, B4) and no leaves labeled (B4,). We denote this by the expression [3, 0] on the

188 KURT MEHLHORN

2

FIG. 13. e compact version of the tree in Fig. 5.

left side of the edge joining B4 and the active 4-node. The right subtree of the 1-joint
was deleted completely. It contained one 0-leaf and one 1-leaf. This is denoted by the
expression [1, 1].

More formally, the edge labels are assigned as follows. Consider any node x of the
extended tree which is not deleted and any edge emanating from it.

Case 1. x has no right (left)descendant which is not deleted. Then the right (left)
subtree of x contains no active node and hence at most two kinds of leaves. The right
(left) subtree is replaced by the expression [nl, n2] where nl (n2)denotes the number of
the first (second) kind of leaves. If the query assigned to x is "if Bj "and the edge is
right emanating then nl denotes the number of (B._I, B)-leaves and n2 denotes the
number of (Bj, Bi+l)-leaves. An analogous statement holds if the edge is left emanating.

Case 2. x has a right (left) descendant which is not deleted. Let y be such a
descendant of minimal depth. Then all proper descendants of x which are not
descendants of y were deleted. (Otherwise y is not minimal depth.) Hence the path
from x to y is compacted to a single edge.

[/1, /2] rl, r2]

The left (right) subtrees along the path from x to y contain no active node and hence at
most two kinds of leaves. Their respective numbers are stored in the expressions [11, 12],
It1, r2]. The above comment about the meaning of nl, n2 holds analogously.

Note also that more than one extended tree may be represented by the same
compact tree. For example, the compact tree of Fig. 13 above also represents the tree
whose right subtree looks like Fig. 14.

FIG. 14

DYNAMIC BINARY SEARCH 189

So every compact D-tree represents a whole class of extended D-trees. We will
operate on a compact D-tree as if we were operating on one of the extended D-trees
represented by that compact D-tree. Hence we need a method to (locally) construct an
extended tree from a compact tree. The method is based on the following facts about the
edge labels in compact trees.

LEMMA 2. Let Tbe an extended D-tree and let T be the compact D-tree constructed
from it.

1) Consider any edge

[1, 121 N
in Tc. Let l + [2 and r r + r and , /(1) where is the balancing parameter.
Then either

(a) l=r=0or
(b) t and (r y(l + t) or r=0) or
(c) r fit and (l y(r + t) or l= 0).
2) Consider any node x in the compact tree and an edge right emanating from it.

Then either

and x is a joint node, say the j-joint, and n qi/2 or

[/7
Then y has at least one active descendant. Let the active (j + 1)-node be the leftmost active
descendant ofy and let the active (k 1)-node be the rightmost active descendant ofy. Let
t= th (y).

190 KURT MEHLHORN

2.1) If 127 0 then j + 1 k 1, y is the active (j + 1)- node, r2 rl O, 12 + 1 <-_ ty
and either 11 + 12 <= ty or + l. + 1) <-_ (11 1)/3’.

2.2) If rl 0 then j + 1 k 1, y is the active (+ 1)-node, 11 12 O, rl + 1 t/),
and eitherrl +rz <=t/y or (t+rl + 1)=< (r2 1)/3,.

2.3) If ll 0 then x is a descendant of the -joint; if 127 0 then x is a descendant of
the (j + 1)-joint.

2.4) If r250 then x is a descendant of the (k-1)-joint; if r150 then x is a
descendant of the (k- 1)-joint.

2.5) If x is the]-joint then let [l1,],..., [l", be the edge labels on the left
lP) < qj/2frontier of the subtree with root y. Then 0 < Ii + Yp=

Proof. 1) The path from x to y in the extended D-tree has length k, k => 1. If k 1
then y is a son of x, no subtrees were deleted and hence r 0. Suppose k > 1. Let
w # y be the son of x on the path from x to y. Then th (w)= + r + t. Let Cl (c2) be the
thickness of that subtree of w which contains y (does not contain y). Then either c2 --< r
or c2 -<- and ct + c2 th (w). Furthermore,

c2 >-a th (w),

c,<-(1-a)th(w).

Hence c2 >-_ yc and therefore either >= y(t + r) or r >- y(l + t). If y is in the left (right)
subtree of w then the same argument applied to a node v (if it exists)on the path from x
to y such that y is a right (left) descendant of v finishes the proof.

2) If x has an edge right emanating from it but no right descendant then x does not
have active nodes in both of its subtrees. Hence x must be a joint node by the definition
of compact D-tree. Say node x is the j-joint. Then nl is the number of j-leaves to the
right of x and hence n _-< qj/2 since the active]-node is a left descendant of x.

Suppose x has a right descendant, say y. Since every node in a compact D-tree has
at least one active descendant (not necessarily proper), so does y. Let the active j + 1 be
the left-most active descendant of y and let the active k 1 node be the rightmost active
descendant of y. Suppose 12 0. 12 is the number of (j + 1)-leaves which are members
of the left subtrees of the path from x to y in the extended tree. Hence the (] + 1)-joint w
is a proper ancestor of y. w is either to the left of y or to the right of y in tree T. If w is
to the left of y then 11 0 and the left subtrees of the path from x to y in the extended tree
are (j + 1)-nodes. But then the active (j + 1)-node is not of minimal depth. Contradic-
tion.

Suppose that the (j + 1)-joint is to the right of y. Then k 1 j + 1 and there is only
one active descendant of y. Hence y is either the (j + 1)-joint or the active (j + 1)-node.
In the first case we have a contradiction since w was supposed to be the (j + 1)-joint. In
the latter case r2 0 and hence rl 0. In the extended tree the path from x to y has k _>- 1
left subtrees. All of them have to contain j-leaves because otherwise y would not be a
(j + 1)-node. The thickness of the left subtree of the father of y must be =<t/3, where
t= th (y) since the underlying tree is in BB[a]. This subtree contains 12 (j 4-1)-leaves
and at least 1 j-leaf. Hence 12 + I t/y. If k 1 then even 11 + 12 t/’y. If k >] let
s l + 12 > 12 be the thickness of the left subtree of the father of y and let l’ be the
thickness of the left subtree of the grandfather of y. Then s 12 4- 1 and
1 + "y(t+ s) 1 + T(t+ 12 + 1). This proves 2.1). A similar argument proves 2.2).

Suppose 11#0. Hence x has j-leaves below it in the extended tree and is a
descendant of the]-joint. This shows 2.3). The same argument proves 2.4).

Finally 2.5) follows from the definition of active]-node and the fact that the active
j-node is a proper left descendant of node x.

DYNAMIC BINARY SEARCH 191

Note as a consequence of Lemma 2 that at most two of the 4 numbers stored in the
labels of an edge can be #0. This reduces the space requirement of compact trees
somewhat. The crucial observation is that the conditions of Lemma 2 are strong enough
to characterize compact D-trees. Let T be a compact D-tree. In particular, the edge
labels of T satisfy Lemma 2. We want to construct an extended D-tree T such that
compacting T gives Tc. The construction will only use the properties of the edge labels
stated in Lemma 2.

Let x be any node in T and let Bj be the query assigned to node x. Consider any
edge right emanating from x. (Left emanating edges are treated similarly.) If the edge is
dangling, i.e., x has no right descendant, then let In1, n2] be the edge label. We have to
connect the dangling edge to a subtree with n j-leaves and n2 (j + 1)-leaves. If either
n 0 or n2-0 then we construct a j- or (j + 1)-node of the appropriate thickness.
Otherwise, suppose n =< n2 (the symmetric case is treated analogously). Then there
exists a p >=-1 with

3.2p na <= nl + n2 <= 3 2e+.

In this case we construct Fig. 15. It is easy to see that this tree is weight-balanced.

node]
n_- (2p+- 1)n

//// (+ 1)-node]
2P. n

node, n

j-node

FIG. 15

It remains to consider the case that x has a right son y in the compact tree. Let
[11, 12], It1, r2] be the labels of the edge from x to y. If 11 + 12 ra + r2 0 then there is

nothing to do. Assume otherwise. We treat the case ll + 12 0 # ra + r2, the other cases

being similar. Let r rl + r2. Then r >- yt where th (y) by Lemma 2. In the extended
tree there is a path from x to y such that the right subtrees along that path contain rl

(k- 1)-leaves and r2 k-leaves for some k. We show later how to determine k. If r <- ty
then we construct Fig. 16.

Note that the newly constructed node satisfies the balance criterion. Suppose
r > ty. Let s max (rl + 1, t). Choose p, p >-_-1, such that

2(e+)(s + t)--< (1 a)(t + r)=< 2(p+2)(s + t).

192 KURT MEHLHORN

x

Y
FIG. 16

a subtree with rl (k- 1)-leaves
and rz k-leaves constructed as
above

If s then p exists since

(1 ce)(t + r) _-> (1 a)(t + t/y)

=t(1-a).(l+l/y)

=t/y>2.

since y a/(1-c)<_-0.43 and hence 1/y_->2.3.
We construct the tree shown in Fig. 17. All newly constructed nodes satisfy the

balance criterion: The father of y satisfies it since rl + 1 -< t! y; the son of x satisfies it
since its thickness is + r, the thickness of its left subtree is 2p+ (t + S) and the choice of
p (remember that a=<l-x//2 and hence (1-a)/2>-c). The other nodes trivially
satisfy the balance criterion. This ends the description of the expansion process.

/

/

.k-node
r2--(2P+l --1)(s + t)--(s rl)

2P(s+t)

/

(s+t)

with rl (k 1)-leaves and s r k- leaves
constructed as above

FIG. 17

If s rl + 1 > and hence rl # 0, then p exists since

(1 c)(t + r)= (1 c)(t + rl + r2)

=>(1-ce)(t+rl+y(t+ rl+ 1)+ 1)

+ rl + 1 2-1+1(s + t).

DYNAMIC BINARY SEARCH 193

It remains to be seen that the extended tree obtained in this way is actually a
D-tree. The newly constructed nodes satisfy the balance criterion; the other nodes
satisfied the balance criterion as nodes of the compact tree and hence satisfy it as nodes
of the extended tree.

It is also easy to see that the joint nodes of the compact tree are still joint nodes of
the extended tree. Let x be the/’-joint in the compact tree. It follows from 2.3) and 2.4)
of Lemma 2 that the/’-joint in the extended tree cannot be below x. Hence x is the -joint
in the extended tree.

Finally, consider the active j-node z in the compact tree. We want to show that z is
the active -node in the extended tree obtained by the expansion process. Certainly z is
on that side of the j-joint which contains >=q/2 of the -leaves (by 2.5)). Hence if z were
not active in the extended tree then there must be a -node of smaller depth on the same
side of the/’-joint. Since this -node does not exist in the compact tree, it was constructed
during the expansion process. Hence there must be an edge x

in the compact tree such that the active j-node is the leftmost active descendant of y and
12 0 or it is the rightmost active descendant of y and rl 0. In either case y is the active
j-node (2.1) or 2.2) of Lemma 2) and either rl + r2 0 or 11 + 12 0. We treated the case
11 + 12 0, r 0 of the expansion process in detail above. It does not introduce any
j-nodes of smaller depth than y.

LEMMA 3. Let T be a compactD-tree. The expansion process applied to T yields an
extended D-tree T.

Proot Proof is by the discussion above.
Another property of the expansion process is useful in the sequel. Expansions can

be done locally, i.e., knowing the edge label and the thickness of the end point permits
proper expansion of an edge. Furthermore, it is possible to expand an edge partially,
say, only to generate father and grandfather of the end point y and son and grandson of
the starting point x.

We are now able to describe the searching process in compact D-trees. Assume we
search for some X (B, B+I). We descend the tree as directed by the queries and end
up in the active j-node. The nodes passed during the descent are stacked, their thickness
is increased by one and they are entered into an R-list and L-list as described in 4.
Then we ascend. Suppose without loss of generality we reach node x from its right son y.
Two things can happen which require an action. Either the edge label of the edge from x
to y does not satisfy Lemma 2 any more or node x has gone out of balance or both.

Case 1. The label of the edge from x to y does not satisfy Lemma 2 any longer.
Then either condition 1) or 2.1) or 2.2) is violated. Violations of conditions 2.1) and 2.2)
are treated analogously. So suppose 2.2) is violated. Then y is the active (] + 1)-node for
some j + 1. Let be the thickness of y before the search. Then (t + rl + 1) -< (r2- 1)//<
(t + rl + 2). Furthermore rl + 1 =< t/,. Hence r rl + rz <= c t for some constant c
dependent only on c. Hence the expansion of the edge from x to y yields a path of
bounded length, the bound only depending on . So we can afford to expand the right
subtree of x completely and operate on it as we did in the case of extended D-trees.
This shows how to handle violations of 2.1) or 2.2). Suppose now that condition 1) is

194 KURT MEHLHORN

violated. Then either 0 < < y(t + 1) or 0 < r < y(t + 1) (or r < y(r + t + 1) and <
y(r + + 1) and # 0 # r). Here denotes the weight of the right subtree of x before the
search. In the first two cases we have to expand the edge from x to y only near y
(generation of y’s father suffices and in the third case we can afford to expand the edge
completely. Note also that using the L- and R-lists it is possible to determine what kind
of leaves have to be constructed. In either case we reduced the operations on compact
trees to the corresponding operations on expanded trees.

Case 2. Node x has gone out of balance. A rotation or double rotation will
rebalance the tree. Performing the transformation may require partially expanding the
edges emanating from x. This ,causes no problems.

We summarize the discussion in
THEOREM 3. Consider a compact D-tree based on a BB[a]-tree with 0<a_-<

1 -x/-/2.
(a) Letq be the number searches forX (Bi, Bi+), O<-_j < n, performed up to time t

and let Wt= , q. Then at time a search for X (B, B,+) can be executed in time
O(cx log W/q}+c2) where c 1/log (1/(1-a)) and c2 1+c. The time needed to
update the tree structure is proportional to the search time.

(b) A compact D-tree has O(n) nodes and edges and thus requires storage space
O(n).

(c) Given a distribution (q0, ql, , q,) it is possible to construct a compact D-tree
for it in linear time O(n).

Proof. (a) This was proved by the discussion above.
(b) A compact D-tree has =<2n interior nodes and hence -<4n edges. In each node

and edge only a fixed constant number of fields are required.
(c) In 17] (cf. also 18]) an algorithm for constructing nearly optimal binary search

trees was introduced. It essentially constructs a compact-tree except for the labels of the
edges. The labeling process is easily incorporated in that procedure. The details are left
to the reader.

6. Extensions.
6.1. General search trees. So far, we considered only searches for elements not in

the name set, i.e. X {B1,""", Bn}. We drop that restriction and return to the model
described in the Introduction. Let p (qi) be the number of searches conducted for
X Bi(X (Bi, Bi/)) up to now and let

W= Z p,+ f_. qi
i=1 i=0

be the total number of searches conducted so far. Then fl p/W (ai q/W) is the
relative access frequency of X B (X e (Bi, Bi+l)) at this point of time.

Define new frequencies q}, 0 =< j _-< n, by q q0 and q qi + pi for 1 <-] <- n, i.e. we
change the open intervals (Bi, Bi+l)into the half-open intervals [B, Bi+a), and construct
the tree structure of 3 (the compact tree of 5) for the new set of frequencies. A search
for a name X is carried out as above. With search argument X e [B, Bi+) we will reach
the]-active node. (Note that we assigned queries of the form "i[X <B hea left else
right".) In the]-active node we will distinguish between X B and X e (B, B+) by
one more comparison. A search for X e[B,B+I) will take time O(log W/q)=
O(log W/pi) (= O(log W/q)), i.e. we still have logarithmic behavior. The trick used
here is due to D. E. Knuth [14, 6.2.2, exercise 36].

6.2. Insertions. Suppose we want to insert a new name B{B, ., B,,} into the
name set, say B e (B., B+). A search for B will end in the active j-node representing the

DYNAMIC BINARY SEARCH 1 95

half open interval [Bj, Bj+I). We have to split the interval IBm, B]+I) and the associated
frequency pi + q. into two intervals [Bj, B) and [B, B./I) with frequencies p + q. and
1 + q’} respectively (1 is the frequency of name B and q q + q’). The splitting of q into
q; and q’; may be prescribed arbitrarily.

Using the distribution of j-leaves with respect to the j-joint (stored in the j-joint)
and the thickness of the various]-nodes we identify that j-node v such that the j-nodes
to the left (right) of v contain =<q. (=< 1 + q’})]-leaves. We split this j-node into two nodes
of type [Bj, B) and [B, B./I). Then we perform the required changes to the tree
structure. The]-joint gets new distribution numbers, the active j-node may change and
we need to create a new [B, Bi/l)-joint (the father of node v). It is easy to see that these
changes can be carried out in time proportional to the depth of the newly created nodes
of type [B, B) and [B, B+I). This depth is bounded by O(log max (w/q, w/q’)) in the
case of extended D-trees and by O(min (n, max (w/q, w/q’}))) in the case of compact
trees.

7. Experimental results. A node of a compact D-tree is represented by six
components, the query, the pointers to the two sons, the thickness, and the labels of the
incoming edge. The distribution of j-leaves with respect to the j-joint is stored in the son
pointers of the active j-node. The type of a node is stored in the sign bits. Since a
compact D-tree has between 2n and 4n nodes and leaves the storage requirements are
between 12n and 24n storage cells. Some additional savings are possible. Lemma 2 of
5 states that the label of an edge has only one nonzero component except in two

special cases. This observation can be used to reduce the space requirement somewhat.
A more promising approach is to delete all interior nodes which do not have active
nodes in both subtrees. The updating is more complicated in this case but space
requirement goes down to 12n.

Experiments of the following form were carried out. Starting with an arbitrary tree,
searches were performed according to a fixed probability distribution. After some
number of searches the weighted path length PD of the D-tree was computed and
compared with the weighted path length Popt of an optimal tree for the fixed underlying
probability distribution. The optimal tree was constructed by means of the Hu and
Tucker algorithm. Two probability distributions were used.

Distribution 1: n 200; pi e-l(lO0i/i!), 1 <- i<= 200, Poisson distribution.
Distribution 2"n 200; the second distribution was obtained by counting the

number of words in a German dictionary starting with different two letter combinations.
Table 1 shows the statistics for the first 5000 searches in the case a 0.25. The

TABLE
0.25, different distributions.

Distribution Distribution 2

of searches (PD-Popt)/Popt.lO0 R+DR (Po-Popt)/Popt "100 R+DR

0 48.6 0 31.5 0
100 36.3 13 14.4 52
200 33.4 18 12.4 71
500 20.9 22 8.1 106
1000 15.3 25 5.9 145
2000 8.8 33 5.4 187
3000 6.3 34 5.2 207
4000 5.2 34 5.2 229
5000 4.9 35 4.9 244

196 KURT MEHLHORN

table shows the deviation (in percent) from the weighted path length of the optimum
tree (PD-Popt)/Vopt’lO0 and the total number of rotations and double rotation
(R+DR).

Table 2 shows the statistics for the same initial tree, but different values of a. The
second distribution was used. In Table 2 deviation is written to abbreviate (PD--
Popt)/Popt" 100.

TABLE 2
Same initial tree, 2-rid distribution, different values of a.

0.1 0.2 0.25
#of

searches deviation # R +DR deviation 4 R+ DR deviation # R+DR deviation 4 R +DR

0 22.9 0 22.9 Oo 22.9 0 22.9 0
100 23.5 0 22.7 7 18.3 22 14.5 52
200 20.6 20 16.0 38 12.6 79
500 23.9 9 17.0 47 14.5 74 9.9 148
1000 23.3 18 15.1 80 11.7 115 7.6 207
2000 19.9 37 14.6 109 10.5 166 6.7 273
3000 19.6 43 14.4 135 10.5 208 6.2 315
4000 20.9 48 13.9 150 10.1 232 6.0 345
5000 19.4 54 13.8 165 10.1 248 5.8 370

The examples in the tables show that the weighted path length of the compact
D-tree approaches the weighted path length of the optimum tree quite rapidly. They
also show that the overhead for maintaining the D-tree is not very large. The maximal
number of rotations and double rotations in the first 5000 searches were 370. It is
interesting to observe here that Blum and Mehlhorn [24] have shown that at most c n
rotations and double rotations suffice to perform n insertions and deletions on an
initially empty BB[a] tree. c is a constant independent of n. This is in sharp contrast to
the self-organizing binary search trees proposed by Allan and Munro: A rotation about
every node on the path of search is required there. In our examples the weighted path
length of the optimum tree was about 6.8. Hence about 5000 6.8 34000 rotations
would be required for the first 5000 searches. This shows that with respect to efficiency
self-organizing binary search trees are not competitive with D-trees. However, they use
less space.

8. An al}l}lication to TRIES. An alternative to searching based on key comparison
is digital searching. Here a key is identified by successive identification of its component
characters. One such method is the TRIE (cf. 14]). A set of strings over some alphabet
,E is represented by its tree of prefixes. So every node of a TRIE corresponds to a word
over Z. Several implementations of TRIES were proposed.

1) Each node of the TRIE is represented by a vector of length lY_,I. Identification of
a character is done by indexing this vector. This method is very fast (one access per
character) but it uses a large amount of storage.

2) Each node of the TRIE is represented by a linear list (Sussenguth [22]). In a
node w this list contains only those characters a Y_, such that wa is a prefix of some key.
Identification of a character is done by a linear search through the list. This method is
slow (up to I,EI comparisons per character) but it mostly saves storage space.

3) Each node of the TRIE is represented by a binary search tree (Clampett [4]). In
a node w otthe TRIE this tree contains those characters a Y,, such that wa is a prefix of
some key. Identification of a character is by tree searching. This method is a
compromise in speed and space requirement.

DYNAMIC BINARY SEARCH 197

There is no a priori reason why the identification of characters has to proceed from
left to right; any order will do. Comer and Sethi [5] show that it is NP-complete to find
the ordering which minimizes average search time under implementation 1.

However, with respect to implementation 3 and nearly optimal average search
time, all orderings will do. Let S {B1, , B,,} be the set of keys and suppose all keys
are of equal length m. For a string w Y_,* let

Pw I{B w is a prefix of Bi}l.
We represent a node w of aTRIEby aD-Tree (or any other kind of nearly optimal search
tree) for the distribution {Pwa’, a5}. A key B= ala,.", aim is identified by
successively identifying the character ak in the tree corresponding to the node
a, , ai(k-)of the tree. It takes time O(ca log Pa, a,...,a,t-)/Pa, a,...,a,: + C2) to identify
ag where ca, c2 only depend on the balance parameter (cf. Lemma 2). Hence B can be
identified in time O(c log p/p,,....,,,,., + c2" m) O(ca log n + c2m). Since log n
comparisons are required in any scheme based on comparisons with binary outcome
and every character of the input has to be inspected we have nearly optimal TRIES
under implementation 3. This problem is discussed in greater detail in Fredman [7] and
Grittier, Mehlhorn, Schneider and Wernet [10].

We use D-trees to implement the nodes of a TRIE because we want to deal with
updates, i.e. insertions and deletions of names. Suppose we want to insert a new name B
into the set S. This amounts to increase pw by 1 for all prefixes of w. Retaining near
optimality is no problem since we used D-trees to implement the nodes of a TRIE.
Conversely, suppose we want to delete a name B from the set S. This amounts to
decrease p by 1 for all prefixes of B. Again it is no problem to retain near optimality
since we use D-trees to implement the nodes of a TRIE. (Although we assumed in

3-6 that a search increases the frequency of a node by one we used in the proofs only
that it changes the frequency by at most one. A slight complication arises in the case of
compact D-trees since the active node can switch sides with respect to the joint node;
the reader should have no difficulties in remedying that problem). This leads to the
following

THEOREM. Let S be a set of keys ofm characters each. Ifa TRIE is used to represent
the set S and every node of the TRIE is implemented as a D-tree, then searching]:or a key
in S, inserting a new key into S and deleting a key from S can be done in time
O(log ISI + m).

In database applications keys frequently are m-tuples and comparison between
keys is no longer an elementary operation. Balanced tree schemes based on key
comparisons (AVL-trees, B-trees, .) lose some of their usefulness in this context. In
this case TRIES combined with D-trees may prove a real alternative.

We restricted our discussion to keys of uniform length and equal probability. The
results are readily extended to the general case [19].

9. Conclusion. We introduced D-trees as an extension of weight-balanced trees.
D-trees permit near optimal access under time-varying access probabilities. More
precisely, let p be the number of accesses to object B and let W be the total number of
accesses up to time to. Then at time to an access to object B can be performed with
c. log(W/p)+c2 comparisons between keys for some small constants c,c:z.
Furthermore, updating the tree structure is limited to the path of search and takes time
O(c log W/p + c2). On the average only a constant amount of work is required [20],
[24].

Two different versions of D-trees are introduced, one favoring access time, the
other favoring update time. Compact D-trees were introduced to cut down on the space

198 KURT MEHLHORN

requirement of the basic scheme. Finally, an application to TRIES is given. Searching in
a set S of multi-attribute keys (length m), inserting into and deleting from it can be done
in time 0(cl log ISI + c2" m).

Similar problems were considered by Allan and Munro 1 l, Baer [2] and Unterauer
[23]. Unterauer and Baer also describe extensions of weight-balanced trees. Unterauer
proves bounds on the search time (similar to ours); however update time may be f(n2)
in the worst case. It is O (search time) in the average case. Baer only gives empirical
results. Allan and Munro describe an extension of self-optimizing linear list schemes to
trees. They derive a bound on the asymptotic average search time; updating is limited to
the path of search; however, a rotation about every node of the path of search is
necessary.

Acknowledgment. Compact D-trees were implemented by H. Reinshagen and A.
Del Fabro. They kindly provided some of the results of their experiments.

REFERENCES

1] L. ALLAN AND J. MUNRO, Self-organizing binary search, Proc. 17th IEEE symposium on Foundation
of Computer Science, 1976.

[2] J. L. BAER, Weight-balanced trees, Proc. AFIPS National Computer Conference, Vol. 44 (1975), pp.
467-472.

[3] P. BAYER, Improved bounds on the costs ofoptimal and balanced binary search trees, Dept. of Computer
Science, Mass. Inst. of Technology, Cambridge, 1975.

[4] H. A. CLAM’ETT, Randomized binary searching with the tree structures, Comm. ACM, 7 (1964), no. 3,
pp. 163-165.

[5] M. COMER AND R. SETHI, Complexity of Trie index construction, 17th IEEE Symposium on Foun-
dations of Computer Science, 1976, pp. 197-207.

[6] E. FREDKIN, Trie memory, Comm. ACM, 3 (1960), no. 9, pp. 490-499.
[7] M. L. FREDMAN, Two applications of a probabilistic search technique: Sorting X+ Y and building

balanced search trees, Proc. 7ttt Annual ACM Symp. on Theory and Computing, 1975.
[8] E. N. GILBERT AND E. F. MOORE, ’Variable length binary encodings, Bell System Tech. J., 38 (1959),

pp. 933-968.
[9] C. C. GOTLIEB AND W. A. WALKER, A top-down algorithm for constructing nearly optimal lexico-

graphical trees, Graph Theory and Computing, Academic Press, 1972, pp. 303-323.
10] R. GBT’rLER, K. MEHLHORN, W. SCHNEIDER AND N. WERNET, Binary Search Trees: Average and

Worst Case Behaviour, GI-Jahrestagung 1976, Informatik Fachberichte Nr. 5, Springer-Verlag,
Berlin, 1976.

[11] G. HOTZ, Schranken far die mittlere Suchzeit bei ausgewogenen Verteilungen, Theoretical Computer
Science, 3 (1977), pp. 51-59.

12] T.C. Hu AND A. C. TUCKER, Optimal computer search trees and variable length alphabetic codes, SIAM
J. Appl. Math., 21 (1971), pp. 514-532.

[13] D. E. KNUTH, Optimum binary search trees, Acta Informatica, (1971), pp. 14-25,270.
[14] , The Art of Computer Programming, Vol. III, Addison-Wesley, Reading, MA, 1973.
15] J. VAN LEEUWEN, On the construction ofHuffmann trees, Proc. 3rd Coll. on Automata Languages and

Programming, 1976, S. Michaelson, ed., University Press, Edinburgh.
[16] K. MEHLHORN, Nearly optimal binary search trees, Acta Informatica, 5 (1975), pp. 287-295.
17] , Best possible bounds on the weighted path length of optimum binary search trees, this Journal, 2

(1977), pp. 235-239.
[18], Effiziente Algorithmen, Teubner-Verlag, Stuttgart, 1977.
[19], Some Remarks on Digital Searching, Troisi6me Colloque de Lille, Feb. 1978, Lille, France.
[20] J. NIEVERGELT AND E. M. REINGOLD, Binary search trees ofbounded balance, this Journal, 2 (1973),

pp. 33--43.
[21] J. RISSANEN, Bounds for weighted balanced trees, IBM J. Res. Develop., 17 (1973), pp. 101-106.
[22] E. H. SUSSENGUTH, Use of tree structures for processing files, Comm. ACM, 6 (1963), no. 5, pp.

272-279.

[23] K. UNTERAUER, Optimierung gewichteter Biniirbiiume zur Organisation geordneter dynamischer
Dateien, Doktor-arbeit, TU Miinchen, 1977.

[241 N. BLUM AND K. MEHLHORN, On the average behavior of weight-balanced trees, Technischer
Bericht-, FB 10 der Universitit des Saarlandes, Saarbriicken, West-Germany, 1978.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802-0007 $01.00/0

A COUNTEREXAMPLE TO REINGOLD’S PUSHDOWN PERMUTER
CHARACTERIZATION THEOREM*

CARL R. CARLSONt

Abstract. There is a well-known class of algorithms for permuting symbols which has been formally
characterized by a device called a pushdown permuter. A theorem attempting to characterize the type of
permutations that can be achieved by a pushdown permuter has appeared in the literature. This paper
presents a eounterexample to this theorem.

Key words, algorithm, permutation, pushdown permuter, stack

1. Introduction. In the theory of computing, there is a well-known algorithm
which reads infix arithmetic expressions one symbol at a time from left to right and
produces the postfix form of these expressions. This algorithm is of interest here
because it is representative of an important class of algorithms which are frequently
used by software engineers. This class is characterized by its use of a single pushdown
stack and a finite number of random access memory cells as temporary memory
locations for storing symbols which are read, one at a time, from an input string and are
later placed in the output string. Reingold [1] has developed a formal model for this
class of algorithms, which he calls a pushdown permuter, and has attempted to
characterize the type of permutations that can be achieved by a pushdown permuter. In
this paper, a counterexample to Reingold’s pushdown permuter characterization
theorem is presented.

2. Pushdown permuter. Reingold defines a pushdown permuter to be a variant of a
one-way deterministic finite state pushdown transducer with a finite number of random
access memory cells. At each time step, a pushdown permuter (p.d.p.)can perform any
one of the following actions: (a) It can read the input string one symbol at a time from
left to right until it reaches an end-marker. Each symbol read from the input string can
be either placed in the output string, which is also produced one symbol at a time from
left to right, or placed on top of the pushdown stack or placed in a vacant memory cell.
Once a symbol has been placed in the output string, it becomes inaccessible. (b) At any
time, the only symbol accessible on the stack is the top symbol, which can be removed
from the stack and either thrown away or placed in a vacant memory cell or placed in the
output string. (c) At any time, a symbol stored in any one of the memory cells can be
removed from that cell and either thrown away or placed on the pushdown stack or
placed in the output string.

When the function of a p.d.p, is limited to just the permutation of the symbols from
the input string, then the capability of a p.d.p, to throw away symbols (described in (b)
and (c)) is not needed. Thus, for the purposes of both this and Reingold’s papers, this
capability could have been eliminated from the definition of a pushdown permuter.

3. Counterexample. Reingold’s theorem states that a p.d.p, with M memory cells
can permute the input string 1 2...n to plpz’"p,, if, and only if, there is no
subsequence x, yl,’" ", YM+I, Zl," "’, ZM+ of PlPz’’’Pn such that for all and],
x>zi>Yi.

* Received by the editors May 8, 1978.
f Electrical Engineering and Computer Science Department, Northwestern University, Evanston,

Illinois 60201.
Reingold states that Pil, Pi2, ",Pik is a subsequence of PiP2 P,, provided that -_< ix <" < ik <= n.

199

200 CARL R. CARLSON

Input string" 1 2 3 4 5 6

Output string: 4 1 6 2 3 5

FIG. 1. Counterexample to Reingold’s theorem.

The permutation shown in Fig. 1 contradicts the "if" part of this theorem. That is,
for M 1, there is no subsequence x, yl, y2, zl, z2 of the output string such that for all
and], x > zi > yj. Thus, according to the theorem, there should exist a p.d.p, having just
one memory cell which can perform the specified permutation. However, as the reader
will soon see, no such p.d.p, exists.

TABLE
Steps taken by a p.d.p, with one memory cell.

Memory
Steps Input String Output String Stack* (M-- 1)

123456
23456

2 3456 2
3 456 32
4 56 4 32
5 56 41 32
6 56 41 2 3
7 6 41 52 3
8 416 52 3

The leftmost symbol occupies the top position the stack.

Table 1 shows the sequence of steps taken by a particular p.d.p, with only one
memory cell. This p.d.p, is unable to perform the permutation described in Fig. 1,
because symbol 2 is below the top of the stack and, therefore, inaccessible when it is to
be placed into the output string. From the following discussion about the steps taken by
this particular p.d.p., it should be clear that no other p.d.p, with only one memory cell
can perform the desired permutation either.

Steps.
(1-3) When symbol 1 is read, it can be placed either on the stack or in the single

random access memory cell. If it is placed on the stack, then either symbol 2 or 3 will be
on top of it in the stack when symbol 4 is read and placed in the output. Thus, symbol 1
would be inaccessible when it is to be placed in the output. If symbol 1 is placed in the
single random access memory cell, then the only place to store symbols 2 and 3 is on the
stack.

(4-5) When symbol 4 is read from the input string, it is placed in the output string
directly. Symbol 1 can then be placed in the output string, since it is accessible.

(6-8) Symbol 5 must be read from the input string in order to gain access to symbol
6, which is the next symbol to be placed in the output string. Because of the decision to
place symbol 3 in the vacated memory cell (step 6), the only place to store symbol 5 is on
the stack. Had step 6 not been taken, then symbol 5 could have been stored in the single
memory cell instead. However, in both cases the results are the same. Symbol 6 is then
read from the input string and placed in the output string directly. At this point the
p.d.p, is unable to write symbol 2, which is the next output symbol, because it is below
the top of the stack. It should be clear from this that no p.d.p, with only one memory cell
can perform the desired permutation of the input string. Thus, the "if" part of the

COUNTEREXAMPLE TO REINGOLD’S THEOREM 201

theorem is false. It should be noted that this is not an isolated counterexample. Rather,
several counterexamples can be constructed for each value of M.

REFERENCE

[1 E.M. REIrGOLD, Infix to prefix translation" The insufficiency ofa pushdown stack, this Journal, 1 (1972),
pp. 350-353.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802-0008 $01.00/0

COMBINATORIAL ANALYSIS OF AN EFFICIENT ALGORITHM FOR
PROCESSOR AND STORAGE ALLOCATION*

E. G. COFFMAN, JR." AND JOSEPH Y-T. LEUNG*

Abstract. An NP-complete bin-packing problem is studied in which the objective is to maximize the
number of pieces packed into a fixed set of equal capacity bins. Applications to processor and storage
allocation in computer systems are discussed, and an efficient approximation algorithm is defined and studied.
The main results are bounds on the complexity of the algorithm and on its performance.

Key words, bin-packing, storage allocation, scheduling theory, combinatorial algorithms, approximation
algorithms, worst-case performance bounds

1. Introduction. Allocation problems arising in computer operation include
maximizing the number of records stored in multiple, autonomous storage units and
maximizing the number of tasks that can be executed on multiple processors over a fixed
time interval. Solutions to the former problem lead to efficient accessing patterns
(maximizing the number of records in fast-access storage), and solutions to the latter are
clearly appropriate to deadline or real-time scheduling on several processors. Both of
these allocation problems are mathematically equivalent to the abstract bin-packing
problem in which the number of bins is fixed and the object is to maximize the number
of pieces packed.

To fix on specific applications, consider the case where storage must be assigned to
a large collection of variable-length records (data-sets, programs, etc.). Fast storage
consists of multiple, autonomous units; these could be disk cylinders, or they could be
pages in a paged memory system. Assuming that each record is to be accessed with
equal likelihood (an assumption that is often necessary by default), the problem is to
maximize the number of records stored in fast memory. For in this way we achieve a
minimum average access time to the records.

In real-time multiprocessor applications it may be desirable to maximize the
number of independent tasks that can be completed prior to a given deadline. In fact,
the real problem may be to select a minimum deadline by which all of the tasks can be
completed. As can be seen, the link between the allocation and sequencing applications
of any bin-packing problem is obtained from the term associations: Storage unit--
processor, storage capacitydeadline, records--tasks.

Algorithms for the classical bin-packing problem in which the object is to minimize
the number of bins used are proposed and analyzed in [1]-[3]; an application to
multiprocessor scheduling is studied in [4]. Recently, fast heuristics for our problem of
maximizing the number of pieces packed have been proposed and analyzed in [5]. In the
sequel we shall mention these results, and then propose a new algorithm which, at a
modest increase in complexity, is still very fast and provides a significantly superior
performance.

Each of the problems we have mentioned or referenced is easily shown to be
NP-cornplete [6], [7]. For this reason we are moved to consider fast (polynomial-time)
heuristic algorithms; our approach to the characterization of their performance will be
the usual one of assessing their worst-case performance relative to the best achievable.

* Received by the editors September 29, 1977, and in revised form August 1, 1978.

" Department of Electrical Engineering and Computer Science, University of California, Santa Barbara,
California 93106.

Department of Computer Science, Northwestern University, Evanston, Illinois 60201.

202

COMBINATORIAL ANALYSIS 203

As we shall see, fast heuristics can be devised for our particular problem which produce
packings never having fewer than 6/7 the number of pieces in an optimum packing. This
improves substantially over earlier heuristics which could produce packings having as
few as 3/4 the number of pieces in an optimum packing.

In the next section we shall describe the basic model and present the main results.
In 3 we shall summarize results and draw some conclusions.

2. The model and main results. In this section our terminology will refer to abstract
bin-packing models; the mapping of this terminology into the practical problems
mentioned in other sections will be obvious.

We assume a fixed set of rn >_- 1 identical, equal capacity bins B 1, , B,,, and for
convenience we assume that the common capacity is unity. We are given a list of n _-> 1
pieces, L (pl, p2, P,); the piece sizes (as well as names) are denoted by Pi, 1 _-< _-< n,
and are constrained to be in the interval (0, 1]. We wish to consider algorithms for
packing into the m bins as much of L as possible.

In a search for approximation algorithms we can make use of the simple obser-
vation that we need only consider packing sets of smallest pieces; i.e. if pl -<-" --< p,,
then we can restrict ourselves to algorithms for packing prefixes of the list L. As a
cortsequence we shall hereafter assume that L is in the above nondecreasing order of
piece size;

In view of the results for classical bin-packing, an algorithm that quickly comes to
mind is the one that scans L from left to right, placing successive pieces into the lowest
indexed bin into which they will fit. Because of the assumed ordering of L, this is called
the first-fit-increasing (FFI) algorithm. Figure 1 shows an example. Note that the bins
are filled one by one; as soon as B begins to be filled, B1, , B_ remain fixed for the
remainder of the packing sequence.

Let nFI(L, m) and no(L, m) denote the number of pieces packed from L into m bins
by the FFI algorithm and an optimization algorithm, respectively. It is known [5] that
for all L and m

no(L, m)-< 4/3nFI(L, m)(1)

In an effort to improve on this worst-case performance we consider the iterated
first-fit-decreasing (FFD*) algorithm which works as follows, The algorithm first scans
L to find the maximum length prefix L) (pl, pt)= L such that Y’.i=* p -< m’, The
algorithm then packs L(1) into as many, say rn’, bins as required, by scanning right to left
and placing the next smaller piece into that bin with lowest index into which it will fit.
The algorithm terminates successfully if rn’_-< rn; otherwise, the algorithm constructs
L(2) L(x) by discarding the largest piece in L() and then proceeds as above to pack L(2)

16

a 5__
16

g 2 6

nOPT--" 12 nFFI 11

FIG. 1. An FFI example.

204 E. G. COFFMAN JR. AND JOSEPH Y-T. LEUNG

1st (unsuccessful) pass

1

1

1

2nd (successful) pass

nFD* 11

nopT 12

FIG. 2. An FFD* example (L as in Fig. 1).

by the FFD rule. This process is repeated until for some/’, L) has been packed into
m’<=m bins. Figure 2 shows an example of the iterations involved in the FFD*
algorithm.

In contrast to the FFI algorithm the FFD* algorithm does not possess a simple
structure. First of all, it is iterative by nature, and secondly it is not on-line with respect
to the bins. Moreover, it possesses certain anomalies; e.g. one can shorten certain lists
by one piece only to find that more iterations are required by FFD*. Similarly, by adding
only one piece to certain lists that FFD* packs into m 1 bins we can produce lists that
FFD* can only pack into m + 1 bins. The basis for such anomalies can be found in
examples described in [3], [4], where it is noted that the presence of such anomalies
effectively rules out the possibility of relatively simple induction arguments for analyz-
ing the performance of algorithms based on the FFD rule.

In view of such anomalies it may be somewhat surprising to discover that the FFI
algorithm never outperforms the FFD* algorithm.

THEOREM 1. Let nFD*(L, m) denote the number ofpieces that the FFD* algorithm
packs from L into m bins. Then for all L and m >- 1, nrD*(L, m)>--nv(L, m).

Proof. Consider the FFI packing B,..., B,, of a prefix L’ of a given list L. Let
1(1<i<B =B,_+ =m); i.e. B,... B’,, is the reverse of the FFI sequence. Let

B, B be the FFD packing of L’ into m bins. It is routine to show that the FFD
packing of L’ is such that p s B implies p B’ for some j _-< i. It follows easily that the
FFD* algorithm must pack a (possibly proper) superset of L’ in L. [3

Next, it can be shown that, as a function only of n, the number of pieces, the FFD*
algorithm has the same O(n log2 n) worst-case time complexity as the FFI algorithm
(resulting from the initial ordering of L). Moreover, as a function only of m the
complexity of the FFD* algorithm is O(m log2 m). Specifically, we have the following
result.

COMBINATORIAL ANALYSIS 205

THEOREM 2. TheFFD* algorithm requires no more than m iterations; the worst-case
time complexity of the FFD* algorithm is therefore O(n log2 n + mn log2 rn).

Proof. The time required by one iteration of the FFD* algorithm is easily shown to
be O(n log2 m) at worst. Thus, the result is obtained from the following proot that the
algorithm requires at most rn iterations.

Assume on the contrary that L (pl, , pn) violates this assertion in m bins. Let
be the index such that L’= (pl,’"’, pt) is the maximum-length prefix of L with the
property that Y’.i=l Pi--< m. From the definition of FFD*, the algorithm must start its
initial iteration with L’, successively discarding the largest piece until all remaining
pieces fit in an FFD packing of no more than rn bins. Now consider the FFD packing
produced at the mth iteration. The pieces pt, p-l,’" ", p-(,,-1+1 must have been
discarded. Moreover, by our assumption that L violates the assertion in m bins, there
must be a piece p, that cannot be made to fit in the first m bins of the FFD packing. Each
of the first m bins of the FFD packing must have a level exceeding 1 -p. Therefore, we
have

t--m+l, Pi > m(1-pr)+p, m -(rn 1)pr.
i=1

Since pi >-p for (rn 1) + 1 -< -<_ t, we have

t--m+1

Y.p= Y. p+ Y. p>m-(m-1)p,+(m+l)p,=m.
i= i= t--(m--1)+

This contradicts the fact that Y-1 pi -<- m, and hence the result follows. 1
It follows directly from the above result that

(2) no(L, m)<-nvo.(L, m)+m- 1.

So far we know only that the FFD* algorithm is never worse than the FFI
algorithm. The next theorem, which comprises the main result, shows that the worst-
case FFD* performance is substantially closer to that of an optimization algorithm than
is the worst-case FFI performance. Unfortunately, a detailed proof of this result [8]
requires well over 100 pages and hence can not be presented here in full. However, the
structure of the proof can be presented and fully illustrated; that part of the proof
omitted is largely mechanical.

THEOREM 3. For all L and m >- 1, we have

(3) no(L, m)< 7/6nFr.(L, m)+ 3.

Moreover, them exist lists for every even m such that

no(L, m) (8/7)nFD.(L, m).

Proof. Let m be even and consider a list L of n 4m pieces such that pi 1/4-e
for 1 <- <-_ 2m and p 1/4 + e for 2m + 1 <-- <- 4m, where 0 < e < 1/20. It is routine to
show that no(L, m)= (8/7)nvr,.(L, m). Figure 3 shows the general case.

The proof of the upper bound proceeds by contradiction, assuming that there is a
list L (pl,"’", p,) violating (3). We begin by characterizing in a general way the
nature of such a counterexample, concluding that only a finite number of cases need to
be considered; the remainder of the proof verifies that (3)is in fact satisfied by each case.

We may suppose that all of the pieces in the list L violating (3) can be packed into m
bins by an optimization algorithm. With this assumption it is now more convenient to
suppose that pl --> p2 >- -> p, and that each iteration of the FFD* rule packs pieces in
a sequence pj, Pi/l, , p, for some 1 -< / <- n. At any given iteration we define the FFD

206 E. 3. COFFMAN JR. AND JOSEPH Y-T. LEUNG

a

a b

Bin
Final FFD* Packing

b b

B1 B2 Optimal Packing
a=l/4+e b=ll4-e
FIG. 3. The 8/7 example.

packing of pj, , p, to consist of only those pieces packed in the first m bins when first
a piece is assigned to the (m + 1)st bin, or when p, is packed, whichever occurs first.
We use nED to denote the number of pieces in an FFD packing.

Now consider the penultimate pass of the FFD* algorithm and define the indices u
and v such that pu, pu+l,"’,po-1 are just those pieces in the FFD packing of
pu, , pn, 1 <= u < v _-< n. Thus, p,/l, , po, , Pn are the pieces packed in the final
iteration and we have nED*(L, m) nED((pu, ", Po), m)+ (n v). Since no(L, m)
no((pl,’",pv),m)+(n-v) it is easily seen that violation of (3) implies
n0((pl, ", pv), m)> (7/6)nED((p," , Po), m)+ 3. Thus, we may now concentrate on
the comparison of the FFD packing of (p,,..., Po). In other words, our reduced
problem consists of two sub-lists LI=(pl,.’" ,p,-1) and L2=(p,, ,po), pi>=pi
(i -</’), such that

(i) the FFD rule packs all but the smallest piece (Po) of L2 into m bins,
(ii) an optimization algorithm packs all pieces of both L1 and L2 into m bins, and
(iii) if nED V--U and no v denote the respective numbers packed, then

(4) no> (7/6)nED + 3.

The proof now focuses on the reduced problem and verifies that (4) can not in fact
hold. Let us assume, as we may, that given L1, L2 and m are respectively the smallest list
and number of bins for which (i)--(iii) hold. This assumption implies a number of
properties which greatly simplify our problem.

CLAXM 1. TheFFDpacking, PF, ofL2 in m bins (which fails to pack only the smallest
piece pv) has at least two pieces per bin. Hence, nED----> 2m.

Proof. From the nature of the FFD rule pieces uniquely occupying bins in PF must
also uniquely occupy bins in an optimum packing. By eliminating such pieces it is readily
seen that we can construct a smaller list L2 satisfying (i)-(iii) in a smaller number of
bins. I-I

COMBINATORIAL ANALYSIS 207

CLAIM 2. Pu > 1/6 and hence pi > 1/6, 1 =< =< u.

Proof. If pu-<_1/6, then there are at least six pieces per bin in PF, and
hence nFt>-6m. From (2) and the definition of u we have no--nFD=U
no(L, m)--nFD(L, m)<--m 1. Thus, no/nFD= 1 +(no--nFo)/nFD <- 1 +(m-- 1)/(6m)<
7/6 which contradicts (4).

CLAIM 3. I[pu <= 1/ k, then po <= 1/ k + 1).
Proof. Suppose on the contrary that p (1/(1 + k), 1/k] for all p in PF. Then there

are k pieces per bin in PF. But there are no k or more pieces in L1 or PF with which Po
can be packed in a single bin. Hence, we have the contradiction that Pv cannot be placed
in any optimum packing along with the km pieces of the FFD packing.

CLAIM 4. Letp,(1/(l+k), l/k]. Then po>k/[6(k +1)]]or k >-2 and pv> 1/6
fork= l.

Proof. The cumulative size of the pieces in an optimum packing must not exceed the
total capacity, m. Therefore, Y’ pi +Y..= p +po -< m. Since po does not fit into the
FFD packing of (pu,""", po-1)we have

, Pi > (1 -pv)m.
i-’u

Thus, by making use of p >- pu, 1 <_- -<_ u, we can write

(no-nvo-1)p +(1-po)m +Po < m

or

(5) (no- nFD- 1)p,/m.

By hypothesis no>(7/6)nFD+ 3 and hence no- nFD-- 1 > (1/6)nFD+ 2. But since p. <_-

l/k, we have nvo>- km and consequently no-nFD-- 1 > km/6+ 2. Substituting into (5)
and using p. > 1/(1 + k) we get po > k/[6(k + 1)] as desired.

Since there must be at least two pieces per bin even when k 1, we obtain from (5):
pv>(2m/6+2)pu/m>l/6, whenp>l/2.

As a result of Claims 2-4 the remaining possibilities can be accounted for by
disposing of each of the cases shown in Table 1. (Division of the ranges of p, and po into
intervals bounded by unit fractions is motivated by the implication that there are exactly
k pieces in a bin when each piece-size is in the interval (1/(k + 1), i/k].)

TABLE
List of cases.

Pu Pv

Cases A1-A4; (1/2,];
Cases B1-B6; (1/3, 1/2];
Cases C1-C4; (1/4, 1/3];
Cases D1-D3; (1/5, 1/4];
Cases El-E2; (1/6, 1/5];

(1/3, 1/21, (1/4, 1/3], (1/5, 1/41, (1/6, 1/5].
(1/4, 1/3], (1/5, 1/4], (1/6, 1/5], (1/7, 1/6], (1/8, 1/7], (1/9, 1/8].
(1/5, 1/4], (1/6, 1/5], (1/7, 1/6], (1/8, 1/7].
(1/6, 1/51, (1/7, 1/6], (2/15, 1/7].
(1/7, 1/6], (5/36, 1/71.

The basic strategy in disposing of the above cases is by means of what we shall term
a weighting argument. Such an argument has the effect of reducing the combinatorics of
the general problem to those concerned with the configurations of pieces within
individual bins. In particular, a weighting function, f, is defined which is a nondecreasing
step function of piece-size, mapping (0, 1] into a finite set of rationals in.(0, 1].

208 E. G. COFFMAN JR. AND JOSEPH Y-T. LEUNG

With certain variations the weighting function is used as follows. First, for some
given a it is shown that the total weight in each bin of an optimum packing (i.e., the sum
of the weighting-function values for the pieces in each bin)can not exceed a. Next, it is
verified for a given/3 < a that each bin in the FFD packing, except for a small number of
so-called deficit bins, has a weight no less than/3.

The total weight of pieces in an optimum packing can not be less than the sum of the
weights of pl, , p,,-1, the weights of the pieces in the FFD packing, and the weight of
pv. Thus, since Px --> p2 >= >- Pu, we have

WF + (U 1)f(pu +f(P,) -< Wo

where wF and Wo are the respective total weights of the FFD and optimum packings.
Hence, m- wa + (u 1)f(p,) +f(po) <= ma, or

1
u <- ,.;’ [m (o)+ wa f(p,,)] + 1

fl,Pu)

where wa is the total (deficit) by which the weight of the, say d, deficit bins is exceeded by
d/. Finally, a lower bound g(m) is introduced for nFD. By Claim 1 g(m)>-2m, but in
certain cases a tighter bound is necessary. Using nFo -> g(m) we derive

m(a -) Wd--f(Po)
U nFo+ + 1.

f(pu)g(m) f(pu)

The argument concludes with the contradiction that for the given parameter values

1_ wa -f(Po)m(a /3)
-<6’ + 1_-< 3.(6) g(m)f(p)- f(p,)

As will be observed, the number, d, of deficit bins will be independent of m (in fact,
d <_- 17 for all cases); hence, their effect is restricted to an additive constant.

Variations in the above argument concern computations of the bounds Wo and WF
which are slightly more complicated than those outlined above. The proofs of the
bin-weight bounds a and/3 are rather arduous enumerations in a number of cases. For
this reason we shall tabulate much of the proof, listing only relevant bin configurations
along with their bin weights. The pieces will be classified, with a distinct name for each
class, according to the interval in which their size falls. Thus, we shall define A-pieces,
B-pieces, etc. Piece class-names increase in lexicographic order as the size decreases.
Also, a bin whose largest piece is a A-piece for some A will be called a A-bin. Bin
configurations will be identified by piece-name sequences in increasing lexicographic
order (decreasing size). Thus, the configuration A C C D refers to an A-bin with an
A-piece, two C-pieces, and a D-piece. These conventions are made clear in cases A2
and following.

We now proceed to the case analysis. Because of the space required, we have
omitted the proofs of many of the cases listed in Table 1. However, a full version of this
paper containing them is available from the authors; it can also be found in [8]. We shall
limit ourselves here to proving cases A1, A2, A3, B 1, B2, and B6. These cases are fully
representative of the arguments used in the cases not presented.

CASE A1. Pu e (1/2, 1] and pv e (1/3, 1/2].
Proof. We do not need a weighting argument here, for in this case no bin can

contain more than two pieces in any packing. Since each bin in the FFD packing has at
least two pieces by Claim 1, we have the contradiction that, in order to pack pv, an
optimum packing must have a bin with three pieces. U

COMBINATORIAL ANALYSIS 209

CASE A2. p (1/2, 1] and po (1/4, 1/3].
Proof. Let p, 1/4 + 8, 0 < 1/12. The weighting function, along with the

classification of the pieces, is given as follows.

l1 /2 1/2 < p =< 1 A-piece

3/8 3/8-8/2 <p <- 1/2 B-piece

(P)=/1/4 B1-piece

[1/4 1/4 + <- p <- 1 /3 C-piece

Clearly, the FFD packing consists of a sequence of A-bins, followed by a (possibly
empty) sequence of B-.bins, followed by a (possibly empty)sequence of B 1-bins,
followed finally by a (possibly empty) sequence of C-bins. Figure 4 illustrates such a

C B1 B1 B
B B B

A A A

BI
C C C

B B B
B1

B1
C C C

B1 C C C

FIG. 4. FFD packing (Case A2).

packing. In any FFD packing the last A-bin, for any A A, B, , will be called the
deficitA -bin. All other bins will be called regular bins. In drawings such as Fig. 4 we shall
endeavor to illustrate all sequences of regular bins. However, it is not possible to show
all possible deficit-bin configurations; this will become obvious below.

The next step of the proof determines an upper bound for w0. This bound can be
taken from Table 2A which enumerates the possible bin configurations in an optimum
packing and lists the corresponding bin weights. Note that we have not considered bins
with more than three pieces in an optimum packing, since the smallest piece size

TABLE 2A
Bin weights in an optimum packing (a 7/8).

2-piece Bins 3-piece Bins

A A impossible A A A A A B
A B 7/8 A A B1 A A C
A B1 3/4 A B B A B B1
A C 3/4 A B C A B1 B1
a B 3/4 A B1 C A C C
B B1 5/8 B B B B B B1
B C 5/8 B B C a B1 B1
B1 B1 1/2 B B1 C 7/8
B1 C 1/2 B C C 7/8
C C /2 B B B impossible

B1 B1 C 3/4
B1 C C 3/4
C C C 3/4

impossible

210 E. G. COFFMAN JR. AND JOSEPH Y-T. LEUNG

exceeds 1/4. Also, we do not explicitly account for 1-piece bins; it is easy to check that
f(p) -< a holds for the definitions of f and a here, and in all of the remaining cases. The
configurations marked impossible simply denote sets of pieces whose cumulative size
exceeds unity. From the table we find that no bin weight exceeds a 7/8 and hence
Wo<=7m/8.

In many subsequent descriptions of optimum packings a full listing of all
configurations, such as in Table 2A, would be prohibitively long. For this reason, we
shall hereafter not list any impossible or dominated configurations. (A configuration
h h2"’" hr is dominated if there is already listed another configuration h hz h’,
such that for each (1 -<_ _-< r)h is lexicographically no smaller than h I.) Thus, configura-
tions such as B 1 B 1 C (dominated by B B 1 C) in Table 2A will not be listed. Indeed
with these conventions Table 2A reduces to the single entry, A B, for 2-piece bins and
the single entry, B B 1 C, for 3-piece bins.

We now turn to the FFD packing and verify that every bin, except possibly certain
deficit bins, has a total weight at least/ 3/4. This bound follows from Table 2B where
we have enumerated all valid bin configurations. In constructing this table the bin
capacity constraint and the fact that po exceeds all unused bin capacities are used to
determine valid bin configurations. For example, B B C can not appear as a B-bin
configuration, since two B-pieces and a C-piece would exceed the bin capacity. Also,
B 1 B 1 can not appear as a B 1-bin configuration, since po can always fit into a bin along
with two B 1-pieces.

In the deficit-bin column only those valid configurations which are not valid
regular-bin configurations are listed. We shall further reduce the number of entries in
the tables describing FFD packings, but the conventions are best deferred to the more
appropriate case (Case A3) that follows.

As can be seen from Table 2B every regular-bin weight is at least 3/4. This also
applies to deficit-bin weights, except for the B C and B B 1 configurations in a deficit
B-bin, which have a weight 3/8 + 1/4 3/4-1/8, and hence a deficit of 1/8. To
complete the proof it remains only to verify that (6) holds for the parameter
values t =7/8, /3= 3/4, wa 1/8, /(pu) 1/2, f(po) 1/4, and g(m)=2m (from
Claim 1). IS]

TABLE 2B
Bin weights in an FFD packing (/3 3/4).

Bin Regular Weight Deficit Weight

A A B 7/8
A 81 3/4
A C 3/4

B B B 3/4

B1 B1 B1 C 3/4
C C C C 3/4

B B1 3/4-1/8
B C 3/4-1/8
B C C 7/8
B1 C C 3/4

CASE A3. p (1/2, 1] and po (1/5, 1/4].
Proof. Let po 1/5 + t, 0 < 8 <_- 1/20. We divide this case into two sub-cases which

are determined by certain bin configurations in the FFD packing.
CASE A3.1. In the FFD packing, whenever a bin contains a piece with size

exceeding 1/2, it also contains a piece with size exceedinz 2/5-5/2.

COMBINATORIAL ANALYSIS 211

Proof. The weighting function and piece classification is as follows.

d(p)

1/2 1 /2 <p -< 1 A-piece

2/5 2/5-3/2 < p <=1/2 B-piece

3/10 1/3<p<-_2/5-/2 B 1-piece

4/15 4/15-/3<p<-_1/3 C-piece

1/5 1/4<p<-_4/15-/3 Cl-piece
1/5 1/5+<p<-_1/4 D-piece

The assumption of the present sub-case will appear in the restricted A-bin configura-
tions. Note that if 3 1/20 (pv 1/4), then the class of Cl-pieces ceases to exist.
Similar to the previous case the FFD packing consists of a sequence of A-bins, followed
by a (possibly empty) sequence of B-bins, etc. Figure 5 illustrates such a packing; note
that by our assumption each A-bin contains a B-piece.

B B C C C
D

A A

B B B
B1 B1 B1

c c c

A B B B
B1 B1 B1 C C C

CI

C1

C1

C1

C1
D

C1 D

D D

D D

FIG. 5. FFD packing (Case A3.1).

Table 3A verifies that no bin weight in an optimum packing exceeds 29/30 and
hence that we have the bound w0 -< 29m/30. (Recall that all impossible and dominated
configurations are now suppressed.) For the special case 1/20 the Cl’s in this and
the following table should be replaced by D’s.

Table 3B demonstrates that the weight of each regular bin in the FFD packing is at
least 4/5. Recall that size constraints and the fact that pv fits into no FFD bin are used to
identify valid configurations. We have simplified the regular-bin column by listing only
that valid configuration which has least weight. Thus, in Table 3B a configuration such
as B 1 B 1 C is not listed.

TABLE 3A
Bin weights in an optimum packing (a 29/30).

2-piece bins

A B 9/10

3-piece bins

A B C 29/30
B B1 C 29/30

4-piece bins

B1 C1 D D* 9/10
C C C1 D* 14/15

* For the special case 8 1/20 this configuration is impossible even after replacing the Cl’s by D’s.

212 E. G. COFFMAN JR. AND JOSEPH Y-T. LEUNG

TABLE 3B
Bin weights in the FFD Packing (fl 4/5).

Bin

A
B
B1
C
C1
D

Regular

A B 9/10
B B 4/5
B1 B1 D 4/5
c c c 4/5
C1 C1 C1 D 4/5
O O O D 4/5

Deficit

B B1
B1 C D
C C1 D

1/10
1/30
2/15

Global deficit wa 4/15

In the deficit-bin column the numbers shown are the deficits, i.e., the amounts by
which the bin weights fall short of/3. Dashes appear where there are no deficit bins
which produce a nonzero deficit. The listed deficit-bin configurations are restricted to
those which produce a maximum global deficit over the entire packing. For example,
the configuration B C would give a greater B-bin deficit, but such a configuration would
imply the absence of Bl-bins and hence the absence of a Bl-bin deficit. Because of
space required the routine details of determining minimum-weight, regular-bin
configurations and maximum global-deficit configurations must be left to the interested
reader.

From the tables we use c =29/30, / =4/5, and wa=4/15; using/(p)= 1/2,
/(pv) 1/5, and g(m)= 2m from Claim 1 we once again arrive at the contradiction in
(6).

CASE A3.2. In the FFD packing there exists a 2-piece bin containing a piece ofsize
greater than 1/2 and a piece of size no greater than 2/5- 8/2.

Proof. We have the following weighting function and piece classification.

f(p)=

3/5 8/15-28/3 < p <_- 1 A-piece

8/15 1/2 <p-< 8/15-28/3 Al-piece

2/5 2/5-8/2 < p -< 1 /2 B-piece

3/10 1/3<p<-2/5-/2 B 1-piece

4/15 4/15-8/3<p_-< 1/3 C-piece

1/5 1/4 < p<-_4/15-/3 Cl-piece

1/5 1/5+8<-p<-1/4 D-piece

By hypothesis the FFD packing has at least one A or Al-bin with a B1, C, C1 or
D-piece. Figure 6 illustrates the FFD packing.

We now derive the tighter bound g(m)= 7m/3 which is to be used for the present
case. Let y denote the sum of the numbers of A, A1, and B-bins. Next, observe that the
pi, 1 <_- <= u 1, and the A, A1, and B-pieces must occupy u 1 + y bins. The only way
fewer bins could be used is for more B-pieces to be paired with the A-pieces, A1-pieces,
or the p, 1 <_- <_- u 1. That this can not be possible follows from our assumption that
there is an A or Al-bin with a piece smaller than any B-piece; i.e. either there were no
more B-pieces to pack in such a bin, or they were all too large to fit. Thus, we must have
u+y-l<-m. But since we are proceeding by contradiction we have u-l>
nFt/6 + 2 >-_ 2m/6 + 2 > m/3 by Claim 1. Therefore, y _-< 2m/3. Finally, it is easily
verified that there must be at least three pieces in every B 1, C, C1, and D-bin. Hence,
nFD >=2y + 3(m y)= 3m y and

nlD >= g(m) 7m/3.

COMBINATORIAL ANALYSIS 213

214 E. G. COFFMAN JR. AND JOSEPH Y-T. LEUNG

Table 4A is now used to establish a 1. (For the special case 8 1/20 the C1 and
Al-pieces no longer exist; wherever they appear in this and the following table they are
to be replaced by D and A-pieces, respectively). Table 4B establishes/3 =4/5 and a
maximurri global deficit of Wd 4/ 15 along with f(p,) >- 8/ 15, f(Po) 1 / 5, and g(m)
7m/3 we see that (6) holds. I-I

TABLE 4A
Bin weights in an optimum packing (a 1).

2-piece bins

A B

3-piece bins

A C1 D*
A1 C D*
B B1 C 29/30

4-piece bins

B1 C1 D D* 9/10
C C C1 D* 14/15

* For the special case 1/20 this configuration is impossible even after replacing the Cl’s by D’s,
and/or the Al’s by A’s.

We note that the proof of case A4 is similar to the proof of case A3, although a
different weighting function is employed. Because of space limitations we shall shorten
the proofs of the remaining cases by omitting the tables of bin weights in the optimum
and FFD packings. Furthermore, we shall not draw the diagrams illustrating the FFD
packings, trusting that the reader can construct them without difficulty. This allows us to
fully illustrate the computations of tighter bounds for w0 and WF that are necessary in
certain cases.

TABLE 4B
Bin weights in the FFD packing (/ 4/5).

Bin

A
A1
B
B1
C
C1
D

Regular

A D 4/5
A1 C 4/5
B B 4/5
B1 B1 D 4/5
C C C 4/5
C1 C1 C1 D 4/5
D D D D 4/5

B
B1
C

Deficit

B1 1/10
C D 1/30
C1 D 2/15

Global deficit wa 4/15

CASE B1. pu (1/3, 1/2] and po (1/4, 1/3].
Proof. Let Pv 1/4 + 8, 0 < 8 =< 1/12. The weighting function is as follows.

(3/8 3/8-8/2 < p <_- 1 B-piece

f(p)= l/4 1/3<p<-3/8-8/2 Bl-piece

1,1/4 1/4+8<-p<-1/3 C-piece

Note that the FFD packing must have at least one B-piece in it. For if not, then each
bin in the FFD packing would have three pieces in it. Since no bin can contain more than

COMBINATORIAL ANALYSIS 215

three pieces in any packing, we have the contradiction that, in order to pack pv, an
optimum packing must have a bin with four pieces.

The next step of the proof determines the parameter values c, B, and wa. It can be
shown that no bin weight in an optimum packing exceeds 7/8, and that the weight of
each regular bin in the FFD packing is at least 3/4. The maximum deficit, wa, is obtained
from the deficit B-bin with configuration B B1; hence wa 1/8.

Using the parameter values a 7/8, B 3/4, and wa 1/8, along with/(pu)
3/8,/(po) 1/4, and g(m)= 2m (from Claim 1), we obtain (6) immediately. U

We note that the proofs of cases C1, D1, El, and E2 are similar to the proof of case
B1.

CASE B2. p e (1/3, 1/2] and po (1/5, 1/4].
Proof. Let po 1/5 + 8, 0 < 8 <_- 1/20. The weighting function is given as follows.

I2/5
/3/10

f(p)=4/15

1/5

2/5-8/2 < p =< 1 B-piece
1/3<p =<2/5-8/2 Bl-piece
4/15-i/3<p <= 1/3 C-piece
1/4 <p =<4/15-8/3 Cl-piece
1 /5 + 8 _-< p <= 1/4 D-piece

The next step of the proof determines an upper bound for Wo and a lower bound for
wF. First, it can be shown that the weight of each regular bin in the FFD packing is at
least 4/5, and that the maximum global deficit is 4/15 (which is obtained from the deficit
B, B 1, and C-bins with respective configurations B B 1, B 1 C D, and C C1 C1). Next,
it can be verified that in an optimum packing any bin containing zero, one, and two
B-piece(s) must have a weight not exceeding 14/15, 29/30, and 4/5, respectively. Note
that we have introduced three different bin-weight bounds which depend on the
number of B-pieces contained in the bin. These bounds are necessary here since we
need to refine Wo using different techniques in each of the following subcases. The
number of B-pieces in the FFD packing will determine our calculation of Wo in the
subcases identified below.

CASE B2.1. There is at least one B-piece in the FFD packing.
Proof. Let y denote the number of B-bins in the FFD packing. We have nFt >-

2y + 3(m -y)= 3m -y. Thus, if y <_- 13m/20+ 1/2 then nFD 77m/30- 1/2. Using
a 29/30,/3 =4/5, wa 4/15, f(p,) 2/5,f(pv)= 1/5, and g(m)= 77m/30-1/2, we
find that (6) holds.

But if y > 13m/30+ 1/2 we use g(m)= 2m and refine the calculation of w0 as
follows. Let y0 be the number of bins with two B-pieces in an optimum packing, and let z
(respectively z0) denote the number of B-pieces in the FFD (respectively an optimum)
packing. Routinely, we have z>=2y-l>2(13m/30+l/2)-I 13m/15. Since the
theorem is assumed false we have as before u 1 > nFD/6 + 2 >-- 2m/6 + 2 > m/3.
Therefore, Zo> 13m/15+m/3=6m/5. Thus, a lower bound on the number of bins
with two B-pieces in an optimum packing is obviously yo > 6m/5 m m/5. It follows
that Wo=4yo/5+29(m-yo)/30 29m/30-yo/6 and hence WoN 14m/15.

Thus, we may use our standard argument with a 14/15. Along with B =4/5,
we =4/15, g(m)= 2m, f(pu) 2/5, and/(p) 1/5 we see that (6) is satisfied.

CASE B2.2. There are no B-pieces in the FFD packing.
Proof. Immediately, we see that nFD --> 3m, for there are at least three pieces per bin.

Now let y’ and y" denote the numbers of B-pieces and B 1-pieces, respectively, in an
optimum packing but not the FFD packing. Clearly, u- 1 y’+ y". Using the bin-
weight bounds we find

(7) Wo-<_ 29y’/30+ 14(m y’)/15 14m/15 + y’/30.

216 E. G. COFFMAN JR. AND JOSEPH Y-T. LEUNG

Using wF+wu+f(pv)=Wo, where wu is the cumulative weight of the pieces
Pl,""", p,-1, we obtain

(8) Wo>=Bm-wa+2y’/5+3y"/lO+l/5.

Since/3 =4/5, and since wa 1/6 when there are no B-bins, we get from (7) and (8)

14m/15 + y’/30>-4m/5 1/6+ 2y’/5 + 3(u y’- 1)/10 + 1/5,

from which we derive

u<-4m/9-2y’/9+8/9.

Substituting nFt->-3m we obtain the desired contradiction

u _-< 4nFt/27 2y’/9 + 8/9 < no/6 + 3.]

The analyses of cases, B3, B4, B5, C2, and C3 are similar to case B2.
CASE B6. Pu (1/3, 1/2] and p, (1/9, 1/8].
Proof. Let po 1/9 + 8, 0 < 8 <_- 1/72. The weighting function is given as follows.

4/9
7/t8
8/2
41/108
10/27
tl/30
16/45
25/72
8/27

f(p)= 7/27
2/9
7/36
8/45
7/45
4/27
7/54
8/63
1/9
1/9

4/9-/2 <p <- 1

8/21-38/7 <p <- 4/9-/2
47/126-/2 < p <- 8/21-38/7
10/27-58/12 <p <= 47/126-/2
13/36-8/2 < p <- 10/27-5/12
16/45-28/5 <p <= 13/36-8/2
31/90-8/2 <p <- 16/45-2/5
1/3<p<=31/90-/2
8/27-8/3 < p <= 1/3
1/4 < p -<_ 8/27-8/3
2/9-/4 < p -<_ 1/4
1/5<p<-2/9-/4
8/45-t/5 < p -<_ 1/5
1/6<p<-_8/45-/5
4/27-8/6 < p <-- 1/6
1/7 < p -< 4/27-/6
8/63-/7 < p =< 1/7
1/8 <p -< 8/63-/7
1/9+p<=1/8

B-piece
B1-piece

B2-piece
B3-piece

B4-piece
B5-piece
B6-piece
B7-piece
C-piece
Cl-piece
D-piece
D1-piece
E-piece
El-piece
F-piece
Fl-piece
G-piece
Gl-piece
H-piece

It can be shown as before that no bin weight in an optimum packing exceeds 28/27,
and that the weight of each regular bin in the FFD packing is at least 8/9. The maximum
global deficit is 236/315; it is obtained from the deficit B, B1, B2, B3, B4, B5, B6, B7,
C, C1, D, D1, E, El, F, F1, and G-bins with respective configurations B B1, B1 B2 H,
B2 B3 G, B3 B4F1, B4B5 F, B5 B6E1, B6B7 E, B7 CD1, CC1 C1, C1 D DH,
DD1D1D1, D1EEEH, EEIE1EIE1, E1FFFFH, FF1F1F1F1F1,
F1 G G G G G H, and G G1 G1 G1 G1 G1 G1. We consider the following two sub-
cases.

CASE B6.1. There is at least one B-piece in the FFD packing.
Proof. In this case we have g(m)= 2m. Using a 28/27,/3 8/9, Wd 236/315,

/e(p) 4/9, and f(po) 1/9 we find that (6) holds.

COMBINATORIAL ANALYSIS 217

CASE B6.2. There are no B-pieces in the FFD packing.
Proof. With no B-Pieces we must have nFD>=3m and a maximal global deficit

w,=437/630. Using these together with a =28/27, / =8/9, f(pu)>-25/72, and
f(pv) 1/9 in (6) gives us the desired contradiction.

We conclude our proof of Theorem 3 by noting that the analyses of cases C4, D2
and D3 are similar to case B6.

Concluding remarks. We should emphasize that the bound of 8/7 is only con-
jectured to be best asymptotically; i.e., as no(L) tends to infinity. We make this point in
view of "edge" effects resulting from small values of m. For example, with m 2, a
suitable e > 0, and L (1/3 + 2e, 1/3, 1/3, 1/3 e, 1/3 e), we obtain a ratio
no/nFD,=6/5.

We have shown that at most m largest pieces need be discarded before an FFD fit is
assured. Thus, one might reasonably question whether it is not better to organize a
binary search over this range, rather than a linear one. This would reduce the
complexity of FFD* to O(n log n + n(log m)2). However, a difficulty arises in proving
bounds for this variation (which of course can never produce a packing with more pieces
than the one produced by a linear search). Specifically, we have as yet been unable to
prove that if FFD fails when the x largest pieces are discarded, then it must also fail
when the x- 1 largest pieces are discarded. Such FFD anomalies occurring when one
piece is removed are known to exist [3], but anomalies which are restricted to the
removal of a largest piece have not been found.

An alternative algorithm for our problem is the iterated largest-first algorithm
which is organized like FFD*, but which applies to the largest-first (level) [3] algorithm
in each iteration instead of the FFD algorithm. However, it is not difficult to find
examples that verify an inferior worst-case performance.

The problem we have studied is just one of a number of bin-packing type problems
that occur in operating system design. These problems differ in the measure of
performance used, but they all reflect the desire for maximum storage of information
with minimum access times, and a maximum throughput of jobs with a minimum
average turnaround time. Our analysis has in itself been of interest in that yet another
application of a "weighting function" approach has been found successful.

REFERENCES

[1] D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM, Worst-case
per’ormance bounds/or simple one-dimensional packing algorithms, this Journal, 3 (1974), pp.
299-326.

[2] D. S. JOHNSON, Fast algorithms for bin-packing, J. Comput. System Sci., 8 (1974), pp. 272-314.
[3] R. L. GRAHAM, Bounds on the performance ofscheduling algorithms, Computer and Job-Shop Schedul-

ing Theory, E. G. Coffman, Jr., ed., John Wiley, New York, 1976.
[4] E. G. COFFMAN, JR., M. R. GAREY AND O. S. JOHNSON, An application of bin-packing, to

multiprocessor scheduling, this Journal, 7 (1978), pp. 1-17.
[5] E. G. COFFMAN, JR., J. Y-T. LEUNG AND D. TING, Bin-packing: Maximizing the number of pieces

packed, Acta Informat., 9 (1978), pp. 263-271.
[6] R. M. KARl’, Reducibility among combinatorial problems, Complexity of Computer Computation, R. E.

Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972.
[7] J. D. ULLMAN, Complexity o]: sequencing problems, Computer and Job-Shop Scheduling Theory, E. G.

Coffman, Jr., ed., John Wiley, New York, 1976.
[8] J. Y-T. LEUNG, Efficient algorithms/’or storage allocation problems, Ph.D. Thesis, Computer Science

Dept., Pennsylvania State Univ., Middleton, PA, 1977.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802-0009 $01.00/0

EQUIVALENCES AMONG RELATIONAL EXPRESSIONS*

A. V. AHOY’, Y. SAGIV AND J. D. ULLMAN

Abstract. Many database queries can be formulated in terms of expressions whose operands represent
tables of information (relations) and whose operators are the relational operations select, project, and join.
This paper studies the equivalence problem for these relational expressions, with expression optimization in
mind. A matrix, called a tableau, is proposed as a natural representative for the value of an expression. It is
shown how tableaux can be made to reflect functional dependencies among attributes. A polynomial time
algorithm is presented for the equivalence of tableaux that correspond to an important subset of expressions,
although the equivalence problem is shown to be NP-complete under slightly more general circumstances.

1. Introduction. Codd’s relational algebra is a high-level query language in which
questions can be posed simply and succinctly [9], 11]. Concepts from relational algebra
have been incorporated into the design of several new database query languages [13].

Expressions in relational algebra manipulate tables of information (called rela-
tions) by means of high-level operations such as select, project, and join. A disad-
vantage of relational algebra as a query language is that the efficiency with which a
query can be answered varies considerably with the manner in which the query is
formulated. The very flexibility of the language makes it easy to express queries that are
hard to implement or for which efficient implementations are hard to find.
Consequently, a number of papers [17], [19], [20], [21], [23], [25] have considered
transformations that "optimize" relational queries. Like most work in code "optimiza-
tion," however, these transformations improve expressions under some cost criterion,
but do not claim to produce an equivalent expression of least cost. Chandra and Merlin
[8] show how to perform true optimization on a large class of queries, but their
algorithm is exponential in the size of the query.

In this paper we consider the inherent computational complexity of determining
whether two queries are equivalent, with an eye toward globally optimizing queries
under a variety of cost measures. We restrict the relational algebra to include only the
three operators" select, project, and join. We show that the optimization problem for
even this restricted subset of relational algebra is computationally difficult (NP-
complete).

We introduce tableaux, two-dimensional representations of queries. Tableaux
may be viewed as a form of Zloof’s "Query-by-Example" language [27] and also as a
stylized notation for a subset of Chandra and Merlin’s "conjunctive queries" [8]. The
tableau immediately removes one objection (see [24], e.g.) to relational algebra as a
query language, since tableaux are nonprocedural representations of queries in exactly
the sense that relational calculus [9], [11] is nonprocedural.

We reduce the equivalence problem for queries to the analogous problem for
tableaux. One advantage of the tableau approach is that it allows us to deal with
functional dependencies mechanically, a feature not possessed by more direct tech-
niques. We then show how to minimize the number of rows in a tableau, an operation
that corresponds to minimizing the number of joins needed to evaluate a query. Since
join is typically a very expensive operator to implement, this approach is a good "first
crack" at reducing the cost of evaluating a query. Row minimization also serves to
eliminate common subexpressions from a query.

* Received by the editors March 23, 1978. This work was supported in part by the National Science
Foundation under Grant MCS-76-15255.

" Bell Laboratories, Murray Hill, New Jersey, 07974.
Princeton University, Princeton, New Jersey. Now at Department of Computer Science, University of

Illinois at Urbana-Champaign, Urbana, Illinois 6180.
Princeton University, Princeton, New Jersey 08540.

218

RELATIONAL EXPRESSIONS 219

Next we introduce "simple tableaux," a subclass of tableau for which we can show
the equivalence and optimization problems that were computationally difficult for
general tableaux are now tractable. Although the set of queries having simple tableaux
is a proper subset of the set of relational expressions, we nevertheless feel that most
practical queries that contain only selects, projects, and joins can be represented by
simple tableaux. We conclude the paper with a discussion of some remaining problems.

2. Basic definitions. In this section we define our restricted subclass of relational
expressions. We also show that there are several possible definitions of expression
equivalence.

2.1. Relation schemes and relations. We assume the data are stored in a set of
two-dimensional tables called relations. The columns of a table are labeled by distinct
attributes and the entries in each column are drawn from a fixed domain for that
column’s attribute. For the purposes of this paper we assume the ordering of the
attributes of a table is unimportant. Each row of a table is a mapping from the table’s
attributes to their respective domains. A row is often called a tuple or record. If r is a
relation that is defined on a set of attributes that includes A, and if/x is a tuple of r, then
tz (A) is the value of the A-component of

A relatian scheme is the set of attributes labeling the columns of a table. When
there is no ambiguity, we shall use the relation scheme itself as the name of the table. A
relation is just the "current value" of a relation scheme. The relation is said to be defined
on the set of attributes of the relation scheme.

Example 1, Suppose we have the two relation schemes PAT and PR, representing
two tables, one with columns P, A, and T, the other with columns P and R. (P stands for
Paper-number, A for Author, T for Title, R for Referee.) Figure 1 shows two relations
that might be current values of these relation schdmes.

P A

Brown
Blue

All About Horses
All About Dogs
All About Cats

FIG. 1. Two tables.

P R

Turtie
Snake
Turtle
Ox

2.2. Dependencies. Often the values of entries in relations satisfy certain con-
straints. Functional [4], [9] and multivalued [7], [14], [15], [26] dependencies are
examples of such constraints. In this paper we assume all dependencies are functional.
Our theory carries over to multivalued dependencies as well, although an efficient
equivalence test in that case is elusive.

A functional dependency is a statement X-, Y, where X and Y are sets of
attributes. A relation r satisfies this functional dependency if and only if for all/z and u
in r the following condition holds: If/z (A)= u(A) for all A in X, then (B)= u(B) for
all B in Y. That is, if two rows of r agree in the columns for X, then they must agree in the
columns for Y. Note that if r satisfies a given set of dependencies, then it may also satisfy
additional dependencies, e.g., if r satisfies A -> B and B --> C, it also satisfies A --> C.

For a set of attributes X, we define X*, the closure of X, as follows:
(1) x _x*.
(2) If Y

_
X*, and Y Z is a iven functional dependency, then Z X*.

(3) No attribute is in X* unless it so follows from (1) and (2).

220 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

We write X Y if Y
_
X*. Essentially, X Y means that the functional dependency

X--> Y is in, or can be derived from, the given set of dependencies. Two sets of
dependencies are equivalent if, for all X, the set X* is the same under either set of
dependencies. It is well known that any set of dependencies is equivalent to a set in
which each right side consists of a single attribute, and we henceforth assume all sets of
functional dependencies are of this form.

2.3. Restricted relational expressions. In this paper we shall consider relational
expressions in which the only operators are select, project, and (natural) join. The
operands are relation schemes. The operators are defined as follows.

(1) Select. Let r be a relation on a set of attributes X, A an attribute in X, and c a
value from the domain of A. Then the selection A c, written O’A=c(r), is the set

{IX[is in r and Ix (A)= c}

that is, the subset of r having value c for attribute A.
(2) Pro]ect. Let r be a relation on a set of attributes X. Let Y be a subset of X. We

define ry(r), the pro]ection of r onto Y, to be the relation obtained by removing all the
components of the tuples of r that do not belong to Y and identifying common tuples.
That is, Try(r)= {ulu has components for all and only the attributes of Y, and for some Ix
in r, u(A) Ix (A) for all A in Y}.

For example, if r is the second relation of Fig. 1, then rp(r)= {1, 2, 3}.
(3) Join. The join operator, denoted by tXl, permits two relations to be combined

into a single relation whose attributes are the union of the attributes of the two
argument relations. Let R and R2 be two relation schemes with current values rl and r2.
Then

rl IXl r2 {Ix [Ix is a tuple with components for all and only the attributes in R LI R2,
and there exist tuples r,1 in rl and u2 in r2, such that ul(A) Ix(A) for all A
in R and u2(A) Ix (A) for all A in R2}.

Example 2. If rl and r2 are the two relations of Fig. 1, then rl r2 is the relation

P A T R

Black
Black
Brown
Blue

All About Horses Turtle
All About Horses Snake
All About Dogs Turtle
All About Cats Ox

Even with these three simple operators we can pose a variety of interesting queries.
Here are two examples that refer to the database in Fig. 1.

(1) The query "List the author of the paper All About Dogs" can be represented
by the expression 7rA(tr T="All About Dogs" (PA T)).

(2) "List the authors and titles of all papers refereed by Turtle" becomes

"I’I’AT (O"R--"Turtle" (PATtPR)).
With these operators we can also define Cartesian product (if in a join the sets of

attributes for the two relations are made disjoint) and intersection (which is a special
case of the natural join where the two relations are over the same set of attributes). The
relational algebra of Codd [9], 11] includes other operators, and to make a "complete"
set we would need to add union, set difference and selections involving arithmetic
comparisons between two components of a tuple.

RELATIONAL EXPRESSIONS 221

2.4. Expression values. The notion that a relation is the "value" of a relation
scheme can be generalized to expressions. Let E be an expression with operand relation
schemes R1, R2,.’’ ,Rk. An assignment associates a relation ri with each relation
scheme Ri, 1 -< -<_ k. Given an assignment a of relations to relation schemes, the value
of E, denoted ,,,(E) or ,(E) if c is understood, is computed by applying operators to
operands in the following natural way.
(1) If E is a single relation scheme R, then ,(E)= r.
(2) (a) If E O’A=c(E1), then ,(E)= O’A=c(,(E)).

(b) If E- 7rx(El), then ,(E) 7rx(,(Ex)).
(c) If E E IxlE2, then ,(E)= ,(E)lxl ,(E2).

We may also regard expression E as a function, mapping assignments of values for
its operands to values for the expression. That is, if E is an expression with operands
R1, RE,’’’, Rk, we define V(E) to be the mapping that sends each assignment a of
relations rt, rE, rk for R, RE, Rk to ua(E). Intuitively, two expressions Ex and
E2 are equivalent if V(Et) and V(E2) are the same mapping. However, we may not wish
to allow completely arbitrary sets of R’s and r’s. We have therefore isolated three
distinct notions of equivalence, which we shall discuss in turn.

2.5. Algebraic equivalence. If we do not fix the Ri’s, that is, allow each relation
scheme to be a variable set of attributes, we obtain a notion of algebraic equivalence.
For example, the commutative law of joins R t S S R is true independent of R and
S. It is not clear how the select operator can be brought into this framework, although
the project operator ’x can be covered if we regardX as a variable set of attributes. We
shall not discuss algebraic equivalence further in this paper.

2.6. Strong equivalence. We may, instead, regard each R1, R2,’’’, Rk as a
relation scheme with a fixed set of attributes, and call two expressionsE and E2 strongly
equivalent if V(E)-- V(E2) under this assumption. That is, we regard E and E2 as
equivalent if they define the same mapping. Strong equivalence appears to be the notion
underlying previous attempts at expression optimization, and is probably the notion
with which most people would feel secure.

2.7. Weak equivalence. A variety of papers such as [1], [4], [7] have viewed a
database as though a single universal relation exists at each instant of time. In this
framework we restrict assignments of values to relation schemes R, R2,"’, Rk by
insisting that there be some relation I on the set of attributes LI k

i= 1Ri such that the value
ri assigned to R is 71"Ri (I). We call such a relation I an instance ofthe universe, or just an
instance. If ,, (El)= ,,, (E2) for all assignments a obtained in this way from an instance,
then we say E and E2 are weakly equivalent, and write E E2.

The notion of weak equivalence is also well motivated. It is essential when we deal
with equivalences between expressions whose operands are different relation schemes.
For example, it allows the treatment of lossless joins, as in [1], [22], [26], and it is the
notion of equivalence underlying the normal form decompositions of [9], [10].

We shall deal with weak equivalence, which we hereafter call simply equivalence,
almost exclusively in this paper, ending with a demonstration of how our ideas carry
over to strong equivalence as well. The motivation for so doing is not our belief that
strong equivalence is an inferior notion; rather our ideas are more simply expressed
when (weak) equivalence is considered. In particular, we may take advantage of the
presence of universal instances to regard the value of an expression as a mapping from
instances to relations. That is, if I is an instance, ,t (E) is the value of expression E when
each argument R of E is replaced by ’rrR,(/).

222 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

Example 3. Consider the expression E "rrAn(An NBC). Here, A, B and C are
attributes, and relation schemes are denoted by strings of attributes, i.e., AB stands for
{A, B}. if there is a univeral instance I over attributes A, B and C, in that order, then
the value ran for relation scheme AB is

{ablfor some c, abc is in I }

and the value of rnc for BC is

{bclfor some a, abc is in I}.

The value of AB NBC is

ranNrnc {abclfor some a’ and c’, abc’ and a’bc are in I}.

Finally, the value of E is

(*) {ablfor some a’, c’ and c, abc’ and a’bc are in I}

which is just

{ablfor some c, abc is in I}

as we may take a a’ and c c’ in (1). Thus, E is equivalent to the expression consisting
of the single relation scheme AB.

On the other hand, consider strong rather than weak equivalence. Then ran and
rnc can be independently chosen relations. The value of E is

{ablfor some c, ab is in rAn and bc is in rnc}

which is not necessarily equal to rAn. For example, if rAn {ab} and rnc , then the
value of E is , not {ab}. Note that these values for ran and rnc cannot come from one
instance.

2.8. The effect of data dependencies. Constraints, such as functional depen-
dencies, also affect the requirements for equivalence of expressions. For example,
functional dependencies may be applied to instances, and in the presence of a set of
functional dependencies we say that E1 =-E2 if ,t(E)= ,t(E2) for all instances I that
satisfy the functional dependencies. Similarly, functional dependencies may apply to
relations, and we defineE to be strongly equivalent to E2 in the presence of functional
dependencies, if ,,(E) ,,(E2) for all assignments a of relations ri to arguments R
such that the ri’s satisfy the dependencies.

3. Tableaux. In this section we show how to represent the mappings defined by
relational expressions by specialized matrices called "tableaux". Tableaux are similar
to the tabular queries of Query-by-Example [27] and the conjunctive queries of
Chandra and Merlin [8]. We shall see that for every query in our query language there is
a tableau with the same value, but unfortunately, the correspondence is not exact.
There are tableaux that do not correspond to any expression over the operators we
discuss (or, to our knowledge, over any other set of operators that have appeared in the
literature).

3.1. Definition of a tableau. A tableau is a matrix in which the columns correspond
to the attributes of the universe in a fixed order. The first row of the matrix is called the
summary of the tableau. The remaining rows are to be exclusively called rows.

The general idea is that a tableau is a shorthand for an explicit set description, such
as (*) above, used to define the value of an expression. The summary represents what

RELATIONAL EXPRESSIONS 223

appears to the left of the vertical bar, e.g., ab in (.) The rows represent the tuples
required to be in L such as abc’ and a’bc in (,)

To simplify later discussion we shall .dopt the following conventions regarding
tableaux. The symbols appearing in a tableau are chosen from:
(1) Distinguished variables, for which we use a’s, possibly with subscripts. These

correspond to the symbols to the left of the bar, as a and b in (*).
(2) Nondistinguished variables, for which we generally use b’s. These are the other

symbols appearing in set formers, such as a’ and c’ in (*).
(3) Constants, for which we use c’s or nonnegative integers.
(4) Blank.

The summary of a tableau may contain only distinguished variables, constants, and
blanks. The rows of a tableau may contain variables (distinguished and nondistin-
guished) and constants. We also require that the same variable not appear in two
different columns of a tableau, and that a distinguished variable not appear in a column
unless it also appears in the summary of that column.

Let T be a tableau and let $ be the set of all symbols appearing in T (i.e., variables
and constants). A valuation la for T associates with each symbol of S a constant, such
that if c is a constant in S, then t9 (c)= c. We extend t9 to the summary and rows of T as
follows. Let w0 be the summary of T, and wl, w2," ", wn the rows. Then p(wi) is the
tuple obtained by substituting p(v) for every variable v that appears in wi.

A tableau defines a mapping from instances to relations on a certain subset of
attributes, called the target relation scheme, in the following way. If T is a tableau and I
an instance, then T(I) is the relation on the attributes whose columns are nonblank in
the summary, such that

T(I)= {p(w0)[for some valuation p we have p(wi) in I for 1 -<_i -< n}.

Example 4. Let T be the tableau

A B C

al a2

al bl b3
b2 a2
b2 b b4

We conventionally show the summary first, with a line below it. We can interpret this
tableau as defining the following relation on AB

T(I)= {ala21(:lbl)(:lb2)(ib3)(lb4)such that alblb3 is in I and b2a21 is in ! and
b2bb4 is in I}

where I is any instance. For example, suppose I is the instance {111,222, 121}.
Consider the valuation p which assigns 1 to all the variables. Under this valuation,

the three rows of T each become 111, which is a member of L Therefore, p(ata2) 11 is
in T(I).

If p assigns 2 to b and a2, and 1 to the other variables, all rows become 121, so
p(aia2) 12 is in T(I).

If p assigns 2 to a 1, bl and b3, and 1 to the other variables, then p(a1blb3) 222 is in
I, p(b2a21)= 111 is in/, and p(bEblb4) 121 is in I, so p(ala2)=21 is in T(I).

Finally, if p assigns 1 to bE and b, and 2 to the other variables, then we see that 22 is
in T(I). Thus, T(I)={ll, 12, 21, 22}.

224 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

Conventionally, we also regard as a tableau. This tableau represents the
function that maps every instance to the empty relation.

Tableaux are closely related to the conjunctive queries of [8]. The significant
differences between tableaux and conjunctive queries are that

(1) tableaux permit constants in the summary,
(2) columns of a tableau are associated with attributes, and
(3) tableaux do not permit symbols appearing in two different columns.

Condition (1) is needed to handle the select operator; condition (2) is required that we
may talk about dependencies and their effect on equivalence of expressions. Condition
(3) is assumed because it enables us to show that even restricted subsets of conjunctive
queries have hard optimization problems, and, more importantly, it enables us to isolate
a large subset of tableaux for which optimization is relatively easy.

3.2. Equivalence of tableaux. Two tableaux Tx and T are equivalent, written
T -= T, if for all I, T(I)= T(I). We say that T is contained in Tz, written T

_
T, if

for all I, T(I)_ T([). Note that a necessary, but not sufficierft, condition for both
T - T and T __. T is that the relations defined by T and T have the same target
relation scheme.

As we shall see, the questions of equivalence and containment of tableaux are in
the general case hard combinatorial problems. We can, however, state a basic and not
unexpected result, namely that consistent renaming of variables does not change the
value of a tableau, thus providing many obvious equivalences.

LEMMA 1. Let T be a tableau and 4’ a one-to-one correspondence that maps
distinguished variables to distinguished variables, nondistinguished variables to nondis-
tinguished variables, and constants to constants. I] we construct a tableau T’]rom T by
simultaneously substituting () for every occurrence of symbol , in T, then T T’.

Proof. This result follows immediately from the definitions. [:]

3.3. Representation of expressions by tableaux. In this section we show how to
construct a tableaux to represent any expression over the operators select, project, and
join. The construction proceeds inductively by first building tableaux for the individual
operands of an expression, and then combining these tableaux to form tableaux for
larger and larger subexpressions, until a tableau for the entire expression is found. The
rules for building a tableaux T for an expression E are:
(1) If E is a single relation scheme R, then the tableau T for E has one row and a

summary such that:
(i) If A is an attribute in R, then in the column for A, tableau T has the same

distinguished variable in the summary and row.
(ii) If A is not in R, then its column has a blank in the summary and a

nondistinguished variable in the row.
(2a) Suppose E of the form O’A=c(E1), and we have constructed T1, the tableau for El.

(i) If the summary for T has blank in the column for A, then T .
(ii) If there is a constant c’@ c in the summary column for A, then T . If

c c’, then T T1.
(iii) If Tx has a distinguished variable a in the summary column for A, the tableau

T for E is constructed by replacing a by c whenever it appears in T.
(2b) Suppose E is of the form "rrx(E), and T1 is the tableau for El. The tableau T for E

is constructed by replacing nonblank symbols by blanks in the summary of T1 for
those columns whose attributes are not in X. Distinguished variables in those
columns become nondistinguished.

RELATIONAL EXPRESSIONS 225

(2c) Suppose E is of the form EllXlE2 and T1 and T2 are the tableaux for E1 and E2,
respectively. Let $1 and $2 be the symbols of T1 and T2, respectively. By Lemma 1,
we may take $1 and $2 to have disjoint sets of nondistinguished variables, but
identical distinguished variables in corresponding columns.
(i) If T1 and T2 have some column in which their summaries have distinct

constants, then T- .
(ii) If no corresponding positions in the summaries have distinct constants, the

rows of the tableau T for E consist of the union of all the rows of T1 and T2.
The summary of T has in a given column

(a) The constant c if one or both of T1 and T2 have c in that column’s
summary. In this case we also replace any distinguished variable in
that column by c.

(b) The distinguished variable a if (a) does not apply, but one or both of
T1 and T2 have a in that column’s summary.

(c) Blank, otherwise.
THEOREM 1. The rules above construct for any restricted relational expression E a

tableau T such that]or all instances I, vx(E)- T(I).
Proof. The proof is an induction on the number of operators in E.
Basis. Rule (1). If there are no operators in E, then E is a single relation scheme R,

and rule (1) clearly constructs the appropriate tableau T.
Induction. Rule (2a). E O’A=c(El). Let TI be the tableau for E.

(i) If the summary for T1 has blank in the column for A, then the expression E has
no meaning and is the correct tableau for E.

(ii) If there is a constant c’ c in the summary column for A, then for any I, v(Ex)
has only tuples with c’ in the component for A, and vx(E) is empty. Again, 3 is the
correct tableau for E. If c c’, then T1 is the correct tableau for E.

(iii) If T has a distinguished variable a in the summary column for A, and we
construct T for E by replacing a by c whenever it appears in T1, then we claim that for
all I, T(I) crA=c(Tl(I)). In proof, suppose p is a map from the symbols of T1 to a set of
constants C. Let w0, w1,..’, wn be the summary and rows of T, and let
Wo,’ w I, , w’, be the same for T. That is, w is wi with a replaced by c if a appears in
wi. Then,

T(I)= {p(W’o)lp(wl)is in I for 1 -<_ -<_ n}

(p(Wo)lp(a)= c and p(wi) is in I for 1 -< -< n}

O’A=c({[(Wo)[[9(Wi) is in I for I -< -<_ n})

O’A=c(TI(I)).
The third line above follows from the fact that w0 is known to have a in its column for A.

Rule (2b). E "a’x(E). A proof of the correctness of this case is straightforward
and is omitted.

Rule (2c). E Ex E2.
(i) If Tx and T2 have some column in which their summaries have distinct

constants, then V(E) maps all instances to , so 3 is the correct tableau for E.
(ii) If no corresponding positions in the summaries have distinct constants, we

claim that T(I)- Tx(I) T2(I) for all I. Let w0 be the summary of T. Let xj, 0-<_ <- n,
and y, 0_-< _-< hE, be the summaries and rows of T and T2, respectively. Then

TI(I) {p(Xo)lp(xi)is in I for 1 <_-i <_- n,},

T2(I) {p2(Yo)lp2(Yi)is in I for I <_- <_- n2},

226 A.V. AHO, Y. SAGIV AND J. D. ULLMAN

TI(I) T2(I)= (0(wo)lfor some pl and p2, p agrees with pl and/or p2, respectively, on
the attributes with nonblank symbols in Xo and yo, respectively, pl(Xi) is in I for
1 -<_ _-< n 1, and p2(yi) is in I for 1 _-< =< n2}.

As $1 and $2 have disjoint sets of nondistinguished variables, we may extend p to
agree with pl and p2 on all symbols present in T. Therefore

TI(I)N Tz(I) {p(Wo)lp(x) is in I for 1 __-< =< n and

p(y) is in I for I <- <-_ n2}.

Example 5. Let A, B and C be the attributes, in that order, and suppose we have
the expression "trAc(O’B-_o(ABBC)). By Rule (1), the tableaux for AB and BC are

A B C A B C

al a2

al a2 bl
and

a2 a3

b2 a2 a3

By Rule (2c), the tableau for AB NBC is

A B C

al a2 a3

al a2 bl
b2 a2 a3

By Rule (2a), the tableau for o’B=o(ABNBC) is

A B C

al 0 a3

al 0 bl
b2 0 a3

Finally, by Rule (2b), the tableau for ’n’AC(tr=o(AB lxlBC)) is

A B C

al a3

al 0 bl
b2 0 a3

It is interesting to note that Chandra and Merlin [8] prove an analogue of Theorem
1 and also its converse, using select, project and join operations that are suitably
generalized to take advantage of the fact that columns are not pinned down to particular
attributes, and also an operator called restriction, that in effect identifies two dis-
tinguished variables of the same relation. However, in our model the converse to
Theorem 1 is false. That is, there are tableaux that come from no expression, as the
following example shows.

RELATIONAL EXPRESSIONS 227

Example 6. The tableau

al a2

a b2
bl az
b ba

cannot be derived from any restricted relational expression. If there is such an
expression, suppose that the last two rows come from the first two relations joined. The
expression resulting from this join must later be joined with a relation from which the
first row, a lbz, is derived. Since b2 appears in rows 1 and 3, b2 must have been
distinguished at this later time, else the symbols in these positions could not be
identified with one another. Since a2 is currently distinguished, however, it must have
been so when the last join was performed, and symbols b2 and a2 would not be distinct.
A similar contradiction is obtained no matter which two rows we assume are grouped
first.

In fact, even had we introduced a restriction operator, we could not produce the
above tableau. In proof, note that if a tableau has a symbol appearing in two columns,
the operations on tableaux corresponding to select, project and join preserve that
property. Since the above tableau has no symbol in both columns, we know that
restriction could be of no help in forming it.

We know of no natural set of operators that characterizes tableaux exactly.
The construction rules above can also be used to define the operations select,

project and join on tableaux. The result of applying any one of these operations to
tableaux (not necessarily tableaux derived from expressions) is defined to be the tableau
described in the rule for that operation.

4. Testing equivalence of tableaux. In this section we shall give a method for
testing the equivalence of tableaux, thus providing an algorithm for testing the
equivalence of expressions.

4.1. Homomorphisms. Chandra and Merlin [8] give a necessary and sufficient
condition for the equivalence of conjunctive queries in terms of "homomorphisms,"
which are symbol-symbol mappings with certain properties. We shall prove the
analogous result here for tableaux. We shall then prove a dual formulation of the
equivalence test of [8] in terms of row-row mappings called "containment mappings."

Let T1 and T2 be two tableaux with sets of symbols $1 and $2. A homomorphism is a
mapping 4,’$1 -> $2 such that"

(i) If c is a constant, then 4,(c)= c.
(ii) If a is distinguished, then 6(a)either is distinguished or is the constant

appearing in the corresponding column of the summary of T2.
(iii) If w is any row of T1, then 4,(w) is a row of T2.

Then, intuitively, any time that we can map the rows of T2 into elements of an instance I,
the homomorphism b gives us a map from rows of T1 into I as well. Thus, Tz(I) TI(I)
for all I, so 72 71.

The converse holds as well. If T2_ T1, then we can make the rows of T2 be an
instance ! of the universe, by treating all symbols of $2 as distinct constants. The fact
that T2 T1 implies that T2(I) TI(I). The fact that the summary of T2, with blanks
deleted, is in T2(I), and hence in TI(I), implies that the homomorphism if:S1-> $2
exists. We may formalize the above as follows.

228 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

THEOREM 2. Let Tx and T2 be two tableaux with sets ofsymbols Sl and S2. T2 T1 if
and only if they have the same target relation scheme, and there is a homomorphism
0:81-9"82.

Proof [8] (If). Let I be an instance, and let p S C be a valuation, where C is a set
of constants, such that for each row w of T2, p(w) is an element of I. Then p 4’ S C is
a valuation that sends each row of TI to an element of I, by condition (iii). By conditions
(i) and (ii), if Sx and s2 are the summaries of TI and T2, respectively, with blanks deleted,
then p(s2) p(O(Sx)). Thus, any tuple in T2(I) is in T-I(I), so T2_ TI.

(Only if). Let p be a one-to-one correspondence between the symbols of T2 and
some set of constants, and let I be the instance consisting of all the elements p(w), for w
a row of T2. Then p(s2) is in T2(I), and since T2

_
T, it is also in TI(I). Thus, there is a

homomorphism :$1 S2 satisfying (i)-(iii) by the definition of the application of a
tableau to an instance and the fact that p is one-to-one, l1

4.2. Containment mappings. A containment mapping is a mapping from the rows
of one tableau to another that preserves distinguished variables and constants and does
not map any symbol to two different symbols. Formally, let T and T2 be tableaux, and
let 0 be a mapping from the rows of T to the rows of T2. We say 0 is a containment
mapping if"

(a) For each row of T, if row has a distinguished variable in some column A,
then row O(i) of T2 has a distinguished variable or constant in column A.

(b) If row of Tx has a constant c in column A, then row O(i) has c in column A.
(c) If rows and] of T have the same nondistinguished variable in column A, then

rows O(i) and O(j) have the same symbol in that column. That symbol could be constant,
distinguished, or nondistinguished. Also note that O(i)= O(j) is possible.

We may prove the following analogue to Theorem 2.
THEOREM 3. T2

T1 ifand only if they define the same target relation and there is a

containment mapping 0 from T1 to T2.
Proof (If). Let ff:Sl- $2 be a symbol-symbol mapping such that if symbol d

appears in column A of row r of T1, and symbol d’ appears in column A of row O(r)of
T2, then (d) d’. The map is consistent by condition (c). Conditions (i)-(iii) for ff are
immediate. That is, (a) implies (ii), (b) implies (i), and (iii) is implied by the definition of
ff from 0. Thus, ff is a homormorphism, and by Theorem 2, T2

__
T.

(Only if). By Theorem 2, there is a homomorphism ff:Sx- $2 satisfying (i)-(iii).
The existence of a map from the rows of T1 to the rows of T2 satisfying (c) follows from
(iii); (i) and (ii)imply (a) and (b).

As a containment mapping on rows induces a homomorphism satisfying (i)-(iii), we
shall sometimes fail to distinguish a containment mapping from its corresponding
homomorphism.

COROLLARY 1. rl T2 if and only if Tx and T2 have identical summaries up to
renaming of distinguished variables, and containment mappings exist in both directions.
In this case the possibility that row O(i) in condition (a) has a constant can be ignored,
since a constant cannot map back to a distinguished variable.

Example 7. The expression zrAn(AB NBC)of Example 3 has tableau

A B C

T1-- w
w2

al a2

a a2 bx
b2 a2 b3

RELATIONAL EXPRESSIONS 229

while the expression AB over set of attributes A, B and C has tableau

A B C

T2 al a2

W3 al a2

In one direction, the map that sends both wl and W2 to w3 is a containment mapping.
The induced homomorphism is:

in T1

al

b
b2
b3

in T2

al

In the opposite direction, we may map w3 to wl, showing the containment in the
opposite direction as well. Thus AB and 7rAB(ABBC) are equivalent.

For another example, let E1 =ABIACBC and E2 ABCtrc-o(BC). The
tableaux for E1 and E2 are, respectively,

A B C A B C

T1 Wl
w2
w3

al a2 a3

a a2 b
al b2 a3
b3 a2 a3

al a2 0

a a2 0

bl a2 0

Then T2
_

T1, since we may produce a containment mapping by sending wl, W2 and W3
to w4. We may alternatively map w3 to w5 if we like. However, in the opposite direction
there is no containment mapping, since the constant 0 cannot map to a variable. Thus
T1 T2. To prove this we may make an instance I from the rows of T1 by assigning, say,
1, 2," 6 to a, a2, a3, bl, bE and b3. Then T(I) contains 123, but T2(I) does not. I-I

An additional corollary to Theorem 3 gives a simple row elimination rule for
tableaux.

COROLLARY 2. Let Tbe a tableau, w some row of T, and suppose there is some other
row x of T such that in whatever column w and x disagree, w has a nondistinguished
variable that appears nowhere else in T. Then the tableau T’, obtained by deleting row w
from T, is equivalent to T.

Proof. We may map each row of T’ to itself in T, and we may map each row of T
other than w to itself, while mapping w to x. I-I

Example 8. In the first part of Example 7, row WE may be eliminated by w 1, which
immediately transforms T1 into T2 and proves their equivalence.

We state without proof two additional results for tableaux. There are analogous
results for conjunctive queries [8].

THEOREM 4. If T1 and T2 are equivalent tableaux, and neither is equivalent to a
tableau with fewer rows, then there is a one-to-one correspondence ot
T2 that is a containment map in both directions.

THEOREM 5. Given any tableau Twe can create a minimum row tableau equivalent
to T by deleting some rows o]: T.

230 A.V. AHO, Y. SAGIV AND J. D. ULLMAN

Theorems 4 and 5 imply that for every tableau T there is a minimum row tableau
equivalent to T that is unique up to renaming of symbols and reordering of rows;
moreover, this minimum row tableau can be found by removing some of the rows of T.
In 5 we shall see that it is, nevertheless, a computationally difficult task to determine
which rows of a tableau are redundant.

4.3. The effect of functional dependencies. When functional dependencies are
present, we can use them to transform tableaux to equivalent forms. This can be done in
the following way. Suppose X is a set of attributes, A is an attribute, and X-> A.
Suppose also that two rows and /" of T have identical symbols in all columns
corresponding to attributes of X. Let T’ be constructed from T as follows.
(a) If rows and j have two distinct constants in the column corresponding to A, then T’

is .
(b) Otherwise, make the symbols found in row and row of column A identical. If one

of them is a constant then the resulting symbol is the same constant; if both of them
are variables and one is distinguished, so is the resulting symbol.
LZMMA 2. If T’ is obtained from T as described above, then T(I)= T’(I) for every

instance I that satisfies the functional dependency X --> A.
Proof. Let dl and d2 be the symbols identified, and let d3 be the symbol that

replaces them in T’. Let S and S’ be the sets of symbols of T and T’ respectively.
Suppose that I is any instance that satisfies X--> A, and p" S--> C is a valuation under
which each row of T becomes a member of L Since I satisfies X--> A, we must have
p(dl) p(d2). Define an assignment p’:S’--> C as follows

p’(d)=p(d) if d#d3, and p’(d3) =p(dx).

The application of p and p’ to T and T’ respectively produces identical results, and
therefore T(I)_ T’(I).

The converse, that T’(I)_ T(I), is proved in a similar way. 71
Example 9. Consider the expression zrAc(AB NBC)N(AB NAD) whose syntax

tree is shown in Fig. 2.

’AC

/\
N AB AD

/\
AB BC

FIG. 2. Syntax tree for expression.

The tableau for this expression is

A B C D

al a2 a3 a4

al

al
al

bl b2
a3
b6
b9

b3
b5
b7
a4

RELATIONAL EXPRESSIONS 231

Suppose the functional dependencies B A and A C hold. Then B A implies
that a b4, and then A C implies that all of b2, a3, b6 and b9 are the same. Therefore
the above tableau is equivalent to:

A B C D

al a2 a3 a4

al bl a3 b3
al bl a3 b5
a a2 a3 b7
ax b8 a3 a4

By Corollary 2 to Theorem 3, the first row may be eliminated in favor of the second row
(or vice-versa), and then the remaining of these may be eliminated in favor of the third
row, leaving

A B C D

al a2 a3 a4

al a2 a3 b7
a b8 a3 a4

which implies that the given expression is equivalent to ABCNACD in the presence of
the dependencies B A C. I1

Suppose that T is a tableau and F is a given set of functional dependencies. Let
and] be two rows of T, and let X be the set of all the attributes whose corresponding
columns have identical symbols in row and row]. For every column in X*, we can
equate the symbols that appear in this column in row and row/" wherever they appear
in T. This process can be applied recursively until no more symbols can be equated. The
result is a tableau T’ that is equivalent to T for every instance in which F holds, by
Lemma 2. It is easy to show that T’ is unique for T up to renaming of variables, since the
above transformation on tableaux is a "Finite Church-Rosser System" [3]. Informally,
if two symbols can be equated, they will always be equatable, no matter what other
symbols are equated.

If no symbols of T may be equated because of a set of functional dependencies F,
we say Tsatisfies F. The result T’ of equating symbols of any tableau T according to the
above rules, until no more can be equated is called the limit of T with respect to F. By
using the algorithm of [5], [6] to compute X* for sets of attributes X, we can construct
the limit of T in time proportional to the square of the input size (the space needed to
write down F and T). The algorithm is essentially that given in 1]. In the next theorem
we show that in the presence of functional dependencies there is a weaker necessary and
sufficient condition for inclusion or equivalence among tableaux.

THEOREM 6. Let T1 and T2 be tableaux with limits T’ and T with respect to a set of
functional dependencies F, Then TI(I)

_
T2(I) for all instances IsatisfyingFifand only if

T’I p_ T’.
Proof. By Lemma 2, TI(I) T (I) for all I satisfying F, and similarly for T2 and T.

Thus the "if" portion is immediate. The converse is similar to the "only if" portion of
Theorem 2. Here, we make T into an instance I by assigning distinct constants to all its
symbols. As T satisfies F, I satisfies F. If TI(I)_ T2(I), then T (I)_ T (I). The
existence of a homomorphism p from the symbols of T to those of T follows as in that
theorem. Thus by Theorem 2, T

_
T.

232 A.V. AHO, Y. SAGIV AND J. D. ULLMAN

COROLLARY. T1(I)= T2(I) for all instances I satisfying F if and only if T’ =- T’2.
Example 10. Let us continue Example 9, where the dependencies were B A and

A C. Consider the expression ABBCAD, whose tableau is

A B C D

al a2 a3 a4

al a2 bl b2
b3 a2 a3 b4
a b5 b6 a4

The limit of this tableau is

A B C D

al a2 a3 a4

a a2 a3 b2
al a2 a3 b4
al b5 a3 a4

which is equivalent to the limiting tableau of Example 9, since the first row may be
eliminated by Corollary 2 to Theorem 3. Thus the expression of Fig. 3 is equivalent to
ABBCAD if the dependencies BA and AC are given. Note that these
expressions .are not equivalent in general.

5. NP-Completeness results concerning tableau equivalence. The obvious way to
test the equivalence of two tableaux is to consider all possible containment mappings in
each direction. Since the number of mappings from n rows to n2 rows is n1, this
procedure takes exponential time. One might therefore be interested in finding a
procedure that takes less time. Using recent developments in complexity theory,
however, we can prove that a substantially better algorithm is not likely to exist.

We assume the reader is familiar with the notion of an NP-complete problem. This
class of problems was first considered in [12], [18]. There is strong evidence that these
problems are intractable in general, that is, there is no algorithm for any of these
problems which, on every input, will take less than exponential time. References [2],
[16] present the methodology and theory behind NP-completeness results, as well as
enumerating many of the known NP-complete problems.

In this section we show that the equivalence and containment problems for
tableaux are NP-complete even in the following special cases:

(1) The tableaux come from expressions that have no select operators, but there is
a set of functional dependencies that must be satisified.

(2) The tableaux come from expressions (including select operators), but no
dependencies need be satisfied.

(3) There are no constants in the tableaux, nor are there dependencies, but the
tableaux need not come from expressions.

Under the same conditions, the problem of determining whether T1
_

T2 for two
tableaux T1 and T2 is also NP-complete. Moreover, even if TI is a tableau with the same
summary as T2, and the rows of T1 are a subset of those of T2, it is NP-complete to
determine whether T =- T2. This implies that minimizing the rows of a tableau is also
very likely an exponential process in the worst case. Our NP-completeness results

RELATIONAL EXPRESSIONS 233

strengthen those in [8] since our restricted relational expressions are a subset of the class
of conjunctive queries.

5.1. The satisfiability problem. All the results use almost the same reduction from
the 3-satisfiability problem, shown NP-complete in [12]; see also [2], [16]. Let
F F1F2" Fq be a Boolean expression in conjunctive normal form, where the F’s are
clauses of three literals each, and Xl, x2, , xn are all the variables appearing in this
expression. We construct two tableaux T1 and T2, each with n +q columns, in the
following way. T1 has one row for each clause F. Let wi be the row that corresponds to
Fi. Let x1, x and x be the variables that appear in Fi, either complemented or
uncomplemented. Row w has the distinguished variable ai in the ith column and the
nondistinguished variables xl, xi2 and xi3 in columns q + il, q + i2 and q + i3, respec-
tively. The rest of the columns of w contain nondistinguished variables that appear
nowhere else. The summary of T has ai in the ith column, 1 _-< -<_ q, and blank in the
other columns.

T2 has seven rows for each row of Tt. Let wi be a row of Tt. Each of the seven rows
of T2 that correspond to w represents some truth assignment to the variables of F
under which F is true. Such a row has the distinguished variable a in the ith column and
one of the seven lists of constants c, ci2 and c in columns q + il, q + i2 and q + i3,
respectively, such that each c is zero or one, and the assignment of the set of values cij to

xij (1 <-] _-< 3) results in F being true. The rest of the columns contain distinct nondistin-
guished variables. The summary of T2 is the same as that of T1.

Example 11. Consider the Boolean expression

(Xl + "2 + X3)(,’3 + X4 + Xs).

Then F1 (x +.12 + X3) and F2 (3 + x4 + xs); q is 2 and n is 5. T1 is:

F1 F2 Xl x2 x3 x4 x5

al a2

al bl x x2 xa b2 ba
b4 a2 bs b6 x3 x,, xs

The seven rows of T2 that correspond to the first row of T are

(al, b7, 1, 1, 1, bs, b9)

(al, blo, 1, 1, 0, b11, b12)

(al, 313, 1, 0, 1, b14, 315)

(al, 316, 1, O, O, 317, 318)
(a l, b9, 0, 1, 1, b2o, b21)

(al, 322, O, O, 1,323, b24)

(al, b25, 0, 0, 0, b26 b27).

A literal is a variable or negated variable.

234 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

The rows of T2 that correspond to the second row of T1 are

(b28, a2, b29, b30, 1, 1, 1)

(b31, a2, b32, b33, 1, 1, 0)

(b34, a2, b35, b36, 1, 0, 1)

(b37, a2, b38, b39, 0, 1, 1)

(b40, a2, b41, b42, 0, 1, 0)

(b43, a2, b44, b45, 0, 0, 1)

(b46, a2, b47, b48, 0, 0, 0).

Note that the first seven rows do not include the combination 0, 1, 0, because if we
assign 0 to Xl and x3 and 1 to x2, then F1 (xl + f2 + x) gets the truth value 0. Similarly,
the last seven rows do not contain the combination 1, 0, 0. 13

5.2. A class of tableaux that come from expressions. It happens that T1 and T2 are
both obtainable from expressions by the construction preceding Theorem 1. These
observations are special cases of a more general result, which we state as the next
lemma. A repeated symbol in a particular column of a tableau is either

(1) a distinguished variable,
(2) a constant appearing in that column of the summary,
(3) a nondistinguished variable appearing in two or more rows.

Notice that a repeated symbol might appear in only one row if it is a distinguished
variable or a constant appearing in the summary.

LEMMA 3. IfTis a tableau with at most one repeated symbol in any column, and such
that any symbol appearing in the summary appears in at least one row in the same column,
then there is a relational expression E, such that Theorem 1 applied to E yields T.

Proof. For each row of T, let Ri be the relation scheme consisting of the attributes
in whose columns row has a repeating symbol or other constant. Construct expression
Ei by applying O’A--c to Ri for all attributes A whose column in row has a constant c
that does not appear in the same column of the summary. The tableau forE is a row like
row i, but with distinguished variables in place of all repeated symbols, and with a
summary containing the distinguished variable in exactly those columns in which row
has a repeated symbol.

Next, join all the Ei’s. The result is an expression with a tableau like T, but with
distinguished variables for all repeated symbols. Lastly, apply O’a=c for all A whose
column has in the summary a constant c, and project onto those attributes such that the
summary of T has a nonblank. The result is an expression with tableau T. I3

COROLLARY. T1 and T2 above come from expressions.
Proof. TI has only the a’s and (possibly) the x’s as repeated symbols; T2 has only

the a’s as repeated symbols.
Example 12. Consider T of Example 11 and suppose the columns correspond to

attributes A,A2,... ,AT. The repeated symbols are al, a2, and x3. The relation
schemes for the two rows are R AA5 and R2 A2A5. The expression correspond-
ing to T1 is "a’A1A2(AA5 A2As). 1"-I

5.3. NP-Completeness results for expressions.
LEMMA 4. Let T and T2 be constructedfrom a Boolean expression Fas above. Then

T1
_
T2 if and only ifF is satisfiable.

RELATIONAL EXPRESSIONS 235

Proof (If). Given an assignment that makes F true, we may construct a homomor-
phism 4’ from the symbols of T1 to those of T2 as follows.

O(ai)=ai,

4,(x) 0 or 1 depending on the value assigned to x to make F true.

We may then map each row w of T to that one of the seven corresponding rows that is
(w) when we extend to the rest of the nondistinguished variables. Since each
nondistinguished variable of T1 except for the x’s appears only once, we can always
extend ff in this manner. Thus T

_
T2 by Theorem 2.

(Only If). Suppose there is a containment mapping of T1 to T2. Because of the a’s,
each row of T must be mapped to one of the seven corresponding rows of T2. Each x is
mapped to either 0 or 1 consistently. The values chosen for the x’s satisfy F, because the
combinations of values making clauses false are not available as rows of T2. Thus F is
satisfiable.

THEOREM 7. Let U1 and U be two tableaux that are derived from restricted
relational expressions. The following problems are NP-complete:

(1) Does U1 U2?
(2) s u-- u?
(3) Let U2 be a tableau that is obtained by deleting some of the rows of U. Is

U=- U2?
Proof. All these problems are in NP, because all we have to do is to guess a

containment mapping and check whether it satisfies all the required conditions. Part (1)
is immediate from Lemma 4.

For part (2), let Ux T1NI T2 and Uz T2, where T and T2 are as above. Recall
that the join is defined for tableaux by Theorem 1. Also note that Ux is obtainable from
an expression if Tt and T2 are. Since T1 and T2 define mappings whose values are
relations with the same target relation scheme, the join is really intersection. Thus for
any L UI(I)= TI(I)f-) T2(I), and U U2 if and only if T1 T2. Thus, equivalence is
NP-complete by Lemma 4.

For part (3), simply observe that the rows of Uz constructed in part (2) are a subset
of the rows of

Parts (1) and (2) of Theorem 7 say that the problem of testing equivalence or
containment of expressions is almost certainly an intractable one, that is, no general
algorithms of less than exponential complexity exist. Part (3) says that the problem of
eliminating redundant rows of the tableau derived from one of these expressions is also
likely to be intractable.

5.4. NP-Completeness results for tableaux. We should note the critical role played
by constants in the proof of Lemma 4 and Theorem 7. However, if we are willing to
relax our constraint that the tableaux come from expressions, then constants are not
needed.

THEOREM 8. The problems of Theorem 7 are NP-complete for general tableaux that
have no constants.

Proof. In T2 defined previously, in each column replace 0 by a nondistinguished
variable arid 1 by another nondistinguished variable. The proof is then identical to
Theorem 7. Note that T2 does not in general come from any relational expression.

5.5. NP-Completeness results with functional dependencies. In the presence of
functional dependencies, we can prove similar results about tableaux that have only

236 A.V. AHO, Y. SAGIV AND J. D. ULLMAN

variables and correspond to expressions with operations project and join only. The key
idea is to use tableaux with q + 2n columns as follows. The first tableau is simply
obtained from T1 by adding another n columns that contain only distinct nondistin-
guished variables.

To generate the second tableau 72, we modify the last n columns of T2 as follows.
First we replace in every column each occurrence of the constant 1 by the same
nondistinguished variable, and each occurrence of the constant 0 is replaced by a
distinct (for that occurrence) nondistinguished variable. The resulting columns are the
(q + 1)st,. , (q + n)th columns of 2. Columns q + n + 1 through q + 2n of ’2 are
obtained by a similar modification on columns q + 1 through q + n of T2; each
occurrence of the constant 0 in a particular column is replaced by the same nondistin-
guished variable, and each occurrence of the constant 1 is replaced by a distinct
nondistinguished variable.

Both x and 2 correspond to expressions by Lemma 3. Let Ai be the attribute of
the ith column. Suppose that we consider only instances in which the functional
dependencies Ai+n Ai (q + 1 <= <_-q + n) hold. Using these dependencies we can
equate all the distinct variables, in the ith column (q + 1 =< _<- q + n), that stand for the
truth value 0. Notice that each column between q + 1 and q + n already has a single
symbol representing truth value 1. Therefore, 1(1) 72(I), for all instances I satisfy-
ing the dependencies, if and only if the Boolean expression F is satisfiable.

As a result of this reduction, we may conclude the following.
THEOREM 9. Given a set offunctional dependencies and two tableaux U1 and U2

that come from relational expressions with no select operations (and hence Ux and U2
have no constants), it is NP-complete whether, for all instances I satisfying the functional
dependencies,

() u()=_ u(I)
(2) UI(I) Uz(I)
(3) Ux(I)= Uz(I) given that the rows of Uz are a subset of the rows of U1.
Proof. Let T and T be the limits of 1 and . above with respect to the functional

dependencies given above. Then T x, and in each of columns q + 1 through q + n of
T, there is one nondistinguished variable where Tz, defined previously, has 0, and
another where Tz has 1. Other than this, the first q + n columns of T are the same as
Tz. As T has distinct nondistinguished variables in all positions of its last n columns, it
follows as in Lemma 4 that there is a containment mapping from T to T if and only if
the Boolean expression F is satisfiable. By Theorem 6, T

_
T if and only if for all I

satisfying the dependencies, x(I)- ’z(I). Thus F is satisfiable if and only if for all
instances I satisfying the dependencies, x(I)_ 2(I). Parts (2) and (3) follow as in
Theorem 7.

6. A polynomial-time equivalence algorithm for a subclass of tableaux. In this
section we define "simple tableaux," a large subclass of tableaux for which we can find a
polynomial-time algorithm to decide equivalence.

6.1. Simple tableaux. A tableau is simple if in any column with a repeated
nondistinguished variable there is no other symbol that appears in more than one row. It
is not easy to produce an expression with a nonsimple tableau. The expression
rAc(ABBC)N(ABBD) is in a sense a minimal expression that gives rise to a
nonsimple tableau. The tableau is shown in Fig. 3. The rows in the column for B have
repeated nondistinguished and distinguished variables.

RELATIONAL EXPRESSIONS 237

A B C D

1 a2 a3 a4

a b b2 b3
b,, b a bs
ai a2 b6 b7
b8 a2 ba a,,

FIG. 3. A nonsimple tableau.

Note that some simple tableaux do not come from expressions.
Intuitively, the algorithm for equivalence of simple tableaux works as follows.

Suppose first that no column has any repeated nondistinguished variables. When we are
dealing with equivalence, rather than containment, we can rule out containment
mappings in which a distinguished variable maps to a constant. Therefore, to check for
the existence of containment mappings in the situation where no nondistinguished
variable repeats, we have only to examine each row r to see whether there is another
row r’ in the other tableau such that r’ has a distinguished variable or identical constant
wherever r has a distinguished variable or constant.

However, simple tableaux admit repeated nondistinguished variables in a column,
provided there is not also another repeated symbol of any sort appearing in two rowsof
that column. Let T1 and T2 be equivalent simple tableaux and A a column of T1 with
repeated nondistinguished variable bl. As T1 and T2 are equivalent, there is a
containment mapping 01 from T1 to T2, and another containment mapping 02 from Tz
to T1. It is easy to check that the composition of containment mappings is a containment
mapping, so we may consider the containment mapping 02" 01 from T1 to itself, as
suggested in Fig. 4.

01

T T-2

02

FIG. 4. Composition of containment mappings.

Now let us look at the set of rows S of T1 that have bl in column A. There are two
cases:

(a) 02" 01 maps rows in S to two or more rows of
(b) 02" 01 maps all rows in S to a single row r.

In case (b) we can eliminate all rows in S (except r if it is in S) from T1, and the result will
be a tableau equivalent to T1. In case (a) we know that 02" 01(w) is in S for all w in $,
because by the hypothesis that T1 is simple, no pair of rows other than those in S have
the same symbol in the column for A. Moreover, 01 maps S to at least two rows, and
these rows must have the same nondistinguished variable in column A. For if they had a
distinguished variable or constant, 02 could not map them to rows in S. Thus in case (a)
there is a repeated nondistinguished variable b2 in column A of T2.

Our algorithm works as follows. We search for a column A in which one tableau
has a repeated nondistinguished variable in some set of rows S. If there exists a

238 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

containment mapping 02 01 from T1 to itself that maps all of S to one row r, then we
eliminate S, and perhaps some other rows, to be determined later, in favor of r. If no
such mapping exists, then only case (a) can apply, if T1 T2. Then 01 and 02 must map
rows with bl to rows with b2, and vice-versa. In this case we may "promote" bl and b2 by
treating them as constants. Ultimately, we eliminate all repeated nondistinguished
variables, either by row elimination or by promotion. The resulting tableaux meet our
earlier requirements for an efficient equivalence test, since they have no repeated
nondistinguished variables. We now proceed to formalize the above argument.

6.2. low covering. We say that row x of a tableau covers row w if the following
hold.

(a) w and x have the same number of columns.
(b) If w has a distinguished variable in a given column, so does x. If w has a

constant in a given column, then x has the same constant in this column.
We say x covers a set of rows S if x covers every row in S.

Example 13. Let

at 0

al b2 bl b3
b4 b2 0 b3
a b2 b6 b7

d4 a5

a, b8 b9 a6

blo b8 as a6

Both Tt and T2 are simple tableaux. The third row of T1 is covered by the first row of
or the first row of T2. No row of T1 covers the second row of T2.

LEMMA 5. Let T and T2 be two simple tableaux without any repeated nondistin-
guished variables. Then T1 =- T2 ifand only if T1 and T2 have identical summaries (up to
renaming of distinguished variables), every row of T is covered by some row of T2, and
every row of T2 is covered by some row of T1.

Proof (If). We can map each row of T to a row of T2 that covers it. As there are no
repeated nondistinguished variables, this ,aapping is a containment mapping. Thus
T1 __. T2. In the same way, T2_ T1, so T1-- T..

(Only if). A containment mapping 0 from T to T2 surely maps distinguished
variables to distinguished variables and constants to identical constants. Thus for every
row r of T1, r is covered by O(r). The argument for the rows of T2 is the same.

6.3. Row closures. Suppose that T is a simple tableau. Let S be the set of all the
rows of T that contain a repeated nondistinguished variable in one particular column.
Let w be any row of T. The closure of S with respect to w, denoted CL,(S), is the
minimal set of rows that contains $ and satisfies the following condition:

if Xl is in CLw(S) and x2 is any row of T such that xl and X2 have the s,::ae repeated
nondistinguished variable in some column, and w has a different symbol in this
column, then x2 is in CLw(S).

LEMMA 6. Let Tbe a simple tableau and S the set ofrows ofTthat contain a repeated
nondistinguished variable in column A. Let w be a row of T, and let 0 be defined by

w]’or all x in CLw (S),
O (x)

x otherwise.

Then 0 is a containment mapping of T to T if and only if w covers CLw(S).

RELATIONAL EXPRESSIONS 239

Proof (Only if). This portion is immediate from the definition of a containment
mapping and of the covering relation.

(/f). Suppose not. By the definition of the covering relation, we know that 0 maps
distinguished variables to distinguished variables, and constants to identical constants.
Thus there exist rows y and z of T such that y and z have the same symbol d in some
column B, and differing symbols in rows 0(y) and O(z) of column B. Let us consider
three cases.

Case 1. Neither y nor z is in CLw(S). Clearly 0(y) and O(z) have the same symbol,
d, in column B, so no violation occurs.

Case 2. y is in CLw(S) and z is not (or vice-versa). It is not possible that d is a
nondistinguished variable, for it is repeated, and then by the definition of closure, z
would be in CLw(S). (Note that w 0(y) must differ in column B from z 0(z), so w
does not have d in column B.) If d is a distinguished variable or constant, then as w
covers CLw(S) and y is in CLw(S), it follows that w has d in column B. But then
0(y)=w and O(z)=z each have the same symbol d in column B, contrary to
assumption.

Case 3. y and z are in CLw(S). Then O(y)=O(z)= w, so no violation of the
containment mapping condition can be found. [-I

Let us define a w-chain to be a sequence of rows Zl, z2, , Zk, k >- 1, such that for
1 _-< < k, there is some column in which zi and Zi+l have the same nondistinguished
variable, and in which w does not have this variable. Then, by definition of closure, z is
in CLw(S) if and only if there exists a w-chain Zl, z2," , Zk, such that Zk is in S.

LEMMA 7. Suppose A and B are two columns of a simple tableau T with repeated
nondistinguished variables in sets of rows St and $2, respectively. Suppose x covers
CLx(Sl) and 01 is the containment mapping that sends CLx(Sl) to x and other rows to
themselves. Let T’ be T with the rows of CLx(S1)-{x} eliminated. Let $3
SE-(CLx(S1)-{x}). It follows that if S3 contains two or more rows, and in T’, w covers
CLw(S3), then in T, w covers CLw(S2).

Proof. Case 1. Suppose x is not in CLw(S3) in T’. We prove by induction on the
length of a w-chain in T from y to some z in $2, that in T’, y is in CLw(S3).

Basis. Length 1. Here y is in $2, since it has the same nondistinguished variable
as z in column B. Suppose y is not in $3. Then y is in CL(S1). Since $3 has at least two
elements, we may assume that z is in $3-{x} and, therefore, z is not in CLx(S1). Then x
must have the same nondistinguished variable as y and z in column B, else z would be in
CL(S1). Therefore x is in $2, and as x is certainly not in CLx(S1) -{x}, it follows that x is
in $3, a contradiction.

Induction. Let there be a chain of length k > 1, say y z 1, z2, , Zk Z from y to
Z. By the inductive hypothesis, Z2 is in CLw(S3) in T’. Now there is a column such that y
and Z2 have the same nondistinguished variable, and w has a different symbol there. If x
has the repeated nondistinguished variable in that column, then x is in CLw(S3). As we
assume x not to be in CLw(S3), if y is in CLx(S1), then Z2 is in CL(S1), and therefore not
in CL(S3). It follows that y is present in T’ and therefore in CL(S3) in T’. Thus
w coverg CLw(S2) in T, and the lemma follows.

Case 2. x is in CLw(S3) in T’. Let 02 be the containment mapping on T’ that sends
members of CLw(S3) to W and other rows of T’ to themselves. Then 0201 is a
containment mapping on T. We claim that 0201 maps all of CLw(S2) to W. Let y be in
CL,(S2). If y is in CL(S1), then 01 maps y to x, and 02 maps x to w.

If y is not in CL(S1) but is in CLw(S2), then there is in T a w-chain y
Zl, z2, , zn, where zn is in $2. An induction similar to the one above shows that y is in
CLw(S3) in T’. We prove the inductive step. If Z2 is in CLw(S3), then so is y. Therefore

240 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

assume 2’2 is in CL,(S1)-{x}. Consider the column in which y and z2 have some
nondistinguished variable, and w differs. If x does not have the repeated nondistin-
guished variable in this column, then y is in CL,,(S1). But in the opposite case, as x is in
CLw(S3), it follows that y is also, proving the induction.

As 0201 is a containment mapping that sends all of CL,,,(S2) to w, it must be that w
covers CLw(S2) in T. The present lemma then follows from Lemma 6.

Consider again a simple tableau T. Let S be the set of all the rows with a repeated
nondistinguished variable in a particular column. If we can find a row w that covers
every row in CL,,,(S), then we can reduce T to an equivalent tableau T’ by deleting all
the rows of CL,,,,(S) (except w, if w is in S) from T. This reduction rule can be applied
repeatedly, to any column of T’ that has a repeated variable, until we get a tableau that
cannot be reduced further.

Example 14. Let

al a2

al a2 bl b2 b3
a b4 b7 b5 b3
b6 a2 b7 b2 b8
b9 a2 blo blx b3

T is a simple tableau. Let S {1, 3}2 be the set of all the rows with variable b2.
CLI(S)={1, 2, 3}. That is, we begin with CLI(S)= S {1, 3}. Then, as row 2 has in
column 3 the same repeated nondistinguished variable as row 3, but row 1 does not have
this symbol, we add 2 to CLI(S). Row 4 has only distinguished variables and nonre-
peated nondistinguished variables, except in column 5. But rows 1 and 4 have the same
symbol there, so we cannot add 4 to CLI({1, 2, 3}).

The first row covers every row in this closure and, therefore, T can be reduced to

al a2

a a2 b b2 ba
b9 a2 bo bl b3

Now, consider all the rows with the repeated variable b3mthese are all the remaining
rows, and the first row covers them. Thus the above tableau is reduced to

al a2

a a2 b b2 b3

6.4. Promotion of repeated nondistinguished variables. We shall now prove that if
for no w can CL(S) be eliminated by Lemma 6, then the repeated nondistinguished
variable that gave rise to S can be promoted to a constant.

1 means the first row, etc.

RELATIONAL EXPRESSIONS 241

LEMMA 8. Let T1 and T2 be simple tableaux, and letA be a column with a repeated
nondistinguished variable bl appearing in set ofrows S of T. Suppose also that there is no
row w such that w covers CLw(S). Then:

(a) ff Tx T2, then there is a repeated nondistinguished variable bE in the A column
of T.

(b) If bE exists, and T’I and T are the tableaux that result from T and T2 by
replacing bx and bE by the same constant, a constant that appears nowhere else,
then T’ and T’2 are simple, and TI =- T2 if and only if T’ =- T’2.

Proof (a). As TI --- T2, let 01 and 02 be containment mappings from T1 to T2 and
back, respectively. Let S’ be the set of rows of T2 such that S’= {01(w)lw is in S}, and let
S" {02" O(w)lw is in S}. Then S" has two or more members, and so does S’. The rows
of S’ have some one symbol d in column A. If d is a distinguished variable or constant,
then as 02 is a containment mapping, the rows of S" all have a distinguished variable or
constant in column A. As there are at least two rows in S", we violate our assumption
that T is simple. Therefore d is a repeated nondistinguished variable of T2.

(b) We know containment mappings between Tt and T2 exist, if T =- T2. If these
mappings did not map bt to bE and vice-versa then there would be a containment
mapping from T to itself that mapped S to one row, since no repeated symbols but b
and bE exist in their columns. We would thus violate our assumption that no w covers
CL,(S). It follows that the containment mappings between T and T2 also serve for T
and T. Conversely, containment mappings between T and T surely serve for Tl and
T2. The fact that T and T are simple is obvious.

6.5. The algorithm. We say a simple tableau is in reducedform if it has no repeated
nondistinguished variables. Lemmas 6 and 8 can be used to put simple tableaux in
reduced form, and Lemma 5 can be used to test the equivalence of two such tableaux.
The algorithm is summarized in Fig. 5. The procedure REDUCE(T, T2) puts T1 in
reduced form and also returns false if T1 T2 is detected. REDUCE returns true if it
does not detect that T T2; note that TI may still not be equivalent to T2 in this case.

THEOREM 10. The algorithm of Fig. 5 correctly decides the equivalence of simple
tableaux in O(sat2) time if the tableaux have a maximum of s rows and columns.

Proof. Lines (1)-5) apply Lemma 6. The only important detail is that after looking
at each column A and row w once, we need not reconsider A and w if they fail the test of
line (4)once. In proof, note that by Lemma 7 applied once for each application of
Lemma 6, no new opportunities for reduction are created as reductions are made.

Lines (6)-(10) implement Lemma 8, so the resulting Tt is in reduced form. The test
of line (14) then decides the issue by Lemma 5, if line (7) has not already detected that
T T2.

For the running time of Fig. 5, we note that the loop of lines (1)-(5) is executed st
times. Computation of CL(S) at line (4) takes time O(sEt), since O(st) is sufficient to
check if any rows can be added to the closure, and at most s rows can be added. Thus the
loop of (1)-(5) takes O(s3t2) time. Clearly O(st) time suffices for the loop of (6)-(10), so
REDUCE takes O(s3t2) time.

In the main procedure, lines (12) and (13) take O(s3t2) time by the foregoing
argument. Line (14) takes O(sEt) time, so the entire algorithm takes o(sat2) time.

COROLLARY. Ifn is the size of the input (i.e., n is the space needed to write down T1
and T2), then the algorithm of Fig. 5 takes O(n 3) time.

Proof. Note that st could be replaced by n in the above analysis, and s _-< n is
obvious.

242 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

(1)
(,2)

(3)
(4)

(6)

(7)

(8)
(9)

(lO)

(11)

(12)

(13)

(14)
(15)

(16)

procedure REDUCE(T, T2);
begin

for each column A of T and row w of Tt do
if A has a repeated nondistinguished variable b then

begin
let $ be the set of rows in which b appears;
if w covers CL(S)then

remove the rows in CLw(S)-{w} from T
end

for each column A of T in which a repeated
nondistinguished variable b remains do
begin

if the column for A in T2 has no repeated nondistinguished
variable then

return false;/,T T:*/
let b: be the repeated nondistinguished variable in column A of T2;
make bl and b2 be the same new constant;

end;
return true

end REDUCE;
begin/, main procedure ,/

if- REDUCE(T, T2) then return false;
/, as a side effect, T is reduced */
if -REDUCE(T2, T) then return false:

/, as a side effect, T2 is reduced ,/
/, note that lines (6)-(10)of REDUCE are not needed here ,/

if every row of T1 is covered by a row of T2, and vice versa then
return true

else
return false

end

FIG. 5. Polynomial algorithm to test equivalence of simple tableaux.

Note that the coverage of each row of T by a row T is a sufficient, but not a
necessary, condition for T

T (even when both T and T are in reduced form).

Also observe that the results of Section 5 imply that containment is NP-complete for
simple tableaux.

7. Extension to strong equivalence. The equivalence and containment results of
the previous sections also apply to strong equivalence. We shall state these results here
without proof. In each case the proof is analogous to that of the corresponding result
about weak equivalence. We can use a modified form of tableau to represent values of
expressions as mappings from their operands, rather than from an instance of the
universe. The modifications that must be made are"

(1) rows are tagged with the relation from which they come,
(2) rows have blanks in columns corresponding to attributes that are not part of the

relation with which the row is tagged.
Suppose T is such a tableau, with set of symbols S, summary Wo and rows

wx, w2,’’’, w,,. Suppose R,R2,.’’" ,Rk are the available relation schemes, and

RELATIONAL EXPRESSIONS 243

rl, r2, rk are corresponding relations. Let wi be tagged by Rh, for 1 _-< _-< n. Then

T(rl, r2," ’’, rk) (p(Wo)lfor some p :S D

we have p(wi) in rh for 1 -< -< n}.

7.1. The strong equivalence test. Tagged tableaux can be constructed from
expressions exactly as in Theorem 1. The only modification is that the tableau for a
relation scheme R has blank, rather than a nondistinguished symbol, in columns that do
not correspond to attributes of R. We shall state the following analog of Corollary 1 to
Theorem 2.

THEOREM 11. Two tableaux are strongly equivalent ifand only ifcontainment maps
that preserve tags exist in both directions.

Example 15. Consider the expression E ZrAB(ABBC) from Example 3. The
tagged tableau for AB is

A B C

al a2

al a2 (AB)

and for BC it is

A B C

a2 a,3

a2 a3 (BC)

The tagged tableau for ABBC is

A B C

al a2 a3

al a2
a2 a3

(AB)
(BC)

and for E it is

A B C

al a2

al a2
a2

(AB)
(BC)

Note that a tag-preserving containment mapping from the tableau for AB to the above
tableau exists, implying that AB

_
rrAB(ABBC) in the strong sense. However, no

tag-preserving containment mapping exists in the other direction, since the tableau for
AB has no row tagged (BC). Thus E is not strongly equivalent to AB, although we saw
in Example 5 that these expressions are weakly equivalent.

7.2. Functional dependencies. We may apply functional dependencies to tagged
tableaux exactly as in Theorem 6. The two rows involved need not have the same tag,

244 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

provided we understand that functional dependencies apply to two or more relations
jointly. For example, suppose that ABC andABD are relation schemes, and A B is a
functional dependency. Then it is not permissible to have alblcl in ABC and alb2dl in
ABD. If we do not make this prohibition, then functional dependencies may only be
applied to rows with the same tag.

7.3. Polynomial-time reductions between weak and strong equivalence. We can
prove general results which show that the questions of weak and strong equivalence are
almost the same problem.

LEMMA 9. Let El and E2 be expressions. Then in time polynomial in the size of
and E we can construct expressions E’ and E such that E’ and E’a are strongly
equivalent if and only ifE andE are weakly equivalent.

Proof. Let R, Rz, , Rk be all the arguments ofE and E2, and let R LI i__Ri.
Construct E and E by replacing each operand Ri by rR,(R). Then T behaves as a
univeral relation, and a proof that E is strongly equivalent to E if and only if E1 and
E2 are weakly equivalent is immediate from definitions.

LEMMA 10. LetE and Ea be expressions. Then in time polynomial in the size ofE
and Ea we may construct expressions E’ and E’a that are weakly equivalent ifand only if
F_, and Ea are strongly equivalent.

Proof. Let G be a new attribute and let R 1, Ra, , Rk be the operands ofE and
E2. Let R Rt.J{G} for all i. Construct E and E from E1 and Ea by replacing
operand R by rR,(o’a-(R)). Then the projection of the universal instance onto R,
followed by selection of G and projection to remove the G column yields a relation
that is independent of any other relation derived from that instance by selection of
another value of G. !-I

7.4. Complexity results for strong equivalence.
THEOREM 12. Strong equivalence is NP-complete in each of the following cases.

(i) Tableaux are not required to come from expressions but may not have constants,
nor may there be functional dependencies.

(ii) Tableaux are permitted to have constants, but must come from expressions and
there may be no functional dependencies.

(iii) Functional dependencies are permitted, but tableaux must come from expres-
sions and may not have constants.

Proof. The construction of Lemma 9 preserves the absence of constants and the
property that a tableau comes from an expression. The absence of functional depen-
dencies is surely preserved. Note that the construction of Lemma 9 may be applied to
tableaux as well as expressions, by simply filling out blanks in rows by new nondistin-
guished variables, so part (i) has meaning. The theorem then follows immediately from
Theorems 7, 8, and 9.

THEOREM 13. Strong equivalence is decidable in polynomial timefor expressions that
have simple tableaux.

Proof. The construction of Lemma 10 preserves simplicity of tableaux, as the
column for G has only constants.

Let T be any tableau tagged with relation schemes. For each repeated symbol s, let
TAG(s) be the set of tags of rows that contain s. A global repeated nondistinguished
variable is a nondistinguished variable b such that TAG(b) contains two or more tags. A
tableau is quasi-simple if the following hold.

(a) If b is a global repeated nondistinguished variable in column A, then for every
repeated symbol s, s - b, in column A, TAG(b) TAG(s).

(b) For each tag the set of all the rows with this tag is a simple tableau.

RELATIONAL EXPRESSIONS 245

Note that a simple tableau is also quasi-simple. Condition (a) implies that a global
repeated nondistinguished variable cannot be eliminated by row covering, and there-
fore it can be promoted to a constant immediately. Using condition (b), we can now
minimize each set of rows with the same tag separately, using the algorithm for simple
tableaux.

This approach can also be used whenever a tableau has a pattern of constants
and/or distinguished variables that decompose each tableau to several disjoint sets of
rows, such that no rows in one set can be mapped to a row in any other set.

8. Conclusions and open problems. Using tableaux, we have developed a "crank"
that can be turned to tell whether two expressions over the set of relational operators
select project, and (natural) join, are equivalent. The "crank" is capable of accounting
for the effect of functional dependencies and works for either weak or strong
equivalence. Although the "crank" requires exponential time in the general case, we
have isolated an important special case for which a polynomial time equivalence
algorithm was developed.

We have not considered the natural next step, which is to develop tools for the
efficient optimization of expressions, given an arbitrary cost criterion. Our NP-
completeness results suggest that any method involving canonicalization of expressions
is likely to require considerable computational effort for general expressions, so the
optimization problem appears to be very hard. However, the following problems
appear appropriate for examination.

(1) How far can we extend the class of expressions for which equivalence is
efficiently decidable?

(2) Can the equivalence test be made to work in even exponential time when there
are multivalued dependencies [7], [14], [15], [26] that must be satisfied? A doubly
exponential algorithm follows from the techniques of 1 for multivalued dependencies.

(3) Find a complete axiom system to transform an expression into any equivalent
one. Note that the number of steps needed to go between equivalent expressions might
be polynomial in their size without violating the NP-completeness results or proving
P NP, as finding the right sequence of steps might be hard.

REFERENCES

A. V. AHO, C. BEERI AND J. D. ULLMAN, The theory o[]oins in relational databases, Proc. 18th IEEE
Symposium on Foundations of Computer Science, 1977, pp. 107-113.

[2] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] A. V. AHO, R. SETHI AND J. D. ULLMAN, Code optimization andfinite Church-Rosser systems, Design
and Optimization of Compilers, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, 1972, pp.
89-105.

[4] W. W. ARMSTRONG, Dependency structures o] data base relationships, Proc. IFIP 74, North Holland,
1974, pp. 580-583.

[5] P. A. BERNSTEIN, Synthesizing third normalform relations from functional dependencies, ACM Trans.
on Database Sys., (1976), pp. 277-298.

[6] P. A. BERNSTEIN AND C. BEERI, An algorithmic approach to normalization o]: relational database
schemes, TR CSRG-73, Computer Science Research Group, University of Toronto, Sept. 1976.

[7] C. BEERI, R. FAGIN AND J. H. HOWARD, A complete axiomatization for functional and multivalued
dependencies, Proc. ACM SIGMOD International Conference on the Management of Data,
August, 1977, pp. 47-61.

[8] A. K. CHANDRA AND P. M. MERLIN, Optimal implementation ofconjunctive queries in relational data
bases, Proc. Ninth Annual ACM Symposium on Theory of Computing, May, 1976, pp. 77-90.

246 A. V. AHO, Y. SAGIV AND J. D. ULLMAN

[9] E. F. CODD, A relational model for large shared data banks, Comm. ACM 13, (1970), pp. 377-387.
[10] , Further normalization of the data base relational model, Data Base Systems, R. Rustin, ed.,

Prentice-Hall, Englewood Cliffs, NJ, 1972, pp. 33-64.
[11]--------, Relational completeness o1 data base sublanguages, Data Base Systems, R. Rustin, ed.,

Prentice-Hall, Englewood Cliffs, NJ, 1972, pp. 65-98.
[12] S, A. COOK, The complexity of theorem proving procedures, Proc. 3rd Annual ACM Symposium on

Theory of Computing, May, 1971, pp. 151-158.
[13] C. J. DATE, An Introduction to Database Systems, second ed., Addison-Wesley, Reading, MA, 1977.
[14] C. DELOBEL, Contributions thoretiques d la conception d’un systme d’informations,’ Ph.D. thesis,

Univ. of Grenoble, Oct., 1973.
[15] R. FAGIN, Multivalued dependencies and a new normal form for relational data-bases, ACM Trans.

Database Sys., 2, (1977), pp. 262-278.
[16] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, San Francisco, 1979.
17] P. A. V. HALL, Optimization of a single relational expression in a relational data-base system, IBM J.

Res. Develop., 20 (1976), pp. 244-257.
18] R.M. KARP, Reducibility among combinatorialproblems, Complexity of Computer Computations, R. E.

Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[19] J. MINKER, Performing inferences over relational databases, Proc. ACM SIGMOD International

Conference on Management of Data (May 1975, San Jose, California), pp. 79-91.
[20] F. P. PALERMO, A database search problem, information Systems COINS IV, J. T. Tou, ed., Plenum

Press, New York, 1974.
[21] R. M. PECHERER, Efficient evaluation o] expressions in a relational algebra, Proc. ACM Pacific Conf.,

April, 1975, pp. 44-49.
[22] J. RISSANEN, Independent components o] relations, ACM Trans. Database Sys., 2(1977), pp. 317-325.
[23] J. M. SMITH AND P. Y.-T, CHANG, Optimizing the performance of a relational algebra database

interface, Comm. ACM, 18(1975), pp. 568-579.
[24] M, STONEBRAKER AND L. A. ROWE, Observations on data manipulation languages and their

embedding in general purpose programming languages, 2 TR UCB/ERL M77-53, University of
California, Berkeley, July 1977.

[25] E. WONG AND K. YOUSSEFI, Decompositionwa strategy]:or query processing, ACM Trans. Database
Sys. 1, (1976), pp. 223-241,

[26] C. ZANIOLO, Analysis and design of relational schemata for database systems, Tech. Rept. UCLA-
ENG-7769, Department of Computer Science, UCLA, July, 1976.

[27] M. M. ZLOOF, Query-by-Example: the invocation and definition o] tables and]orms, Proc. ACM
International Conf. on Very Large Data Bases, Sept., 1975, pp. 1-24.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802-0010 $01.00/0

DECISION PROBLEMS FOR MULTIVALUED DEPENDENCIES
IN RELATIONAL DATABASES*

KENICHI HAGIHARAf, MINORU ITOf, KENICHI TANIGUCHI AND TADAO KASAMI

Abstract. Two decision problems related to multivalued dependencies in a relational database are
considered. In this paper, an algorithm is presented for deciding whether or not a multivalued dependency can
be derived from sets F of functional dependencies and M of multivalued dependencies on a set U of
attributes, whose running time is proportional to min (k21UI, IIF LI MII2) where k and [UI are the numbers of
dependencies in F LIM and attributes in U, respectively, and IIF t.J MII is the size of description of F and M. A
related algorithm is also considered which decides whether or not there exists a nontrivial multivalued
dependency that is valid in a projection of the original relation.

Key words, relational database, functional dependency, multivalued dependency, inference rule,
membership problem, dependency basis, projection, nontrivial multivalued dependency

1. Introduction. The structure of a relational database is defined by various
relationships that hold between its components. The functional dependency (for short,
FD) and the multivalued dependency (for short, MVD) are examples of such relation-
ships [4], [5], [6], [7], [9].

It is known that given a set of dependencies, additional dependencies can be
derived by using inference rules and that there are complete sets of inference rules 1],
[2], [8]. In this paper, we consider the following problems: (1) (membership problem)
Given a set of dependencies and an additional dependency, can this dependency be
derived from the given set by using the complete inference rules? (2) Given a set of
dependencies on a set U of attributes, and a subset U’ of U, does there exist a nontrivial
MVD in the projection on U’ of the original relation? These are fundamental problems
in the relational database model and are useful to obtain a set of normalized relations
[9]. A linear time membership algorithm for FD’s was presented in [4].

In 3, we present an efficient membership algorithm for the case where the given
dependencies are both functional and multivalued. Given sets F of FD’s and M of
MVD’s, it takes at most O([IF MII) time, where [IF MII is the size of description of F
and M (for more precise upper time bound, see 3). This algorithm was shown in the
authors’ previous paper 10].

Beeri [3] also presented a polynomial (O(IIF LI M[14)) time membership algorithm
for functional and multivalued dependencies. It turned out that the basic idea of our
algorithm is essentially the same as the Beeri one and our algorithm is a refinement of
the Beeri one.

In 2, we define the concepts that are used in this paper. In 3, an algorithm for
computing the dependency basis is presented. The dependency basis [2], [3] is used for
membership problem. In 4, we discuss problem (2) and present a decision procedure.

2. Basic concepts.
2.1. Relation, operations and dependencies. Attributes are symbols taken from a

finite set U {A 1, Ae, , Ar}. With each attribute A is associated a domain, denoted
by DOM(A), of possible values for that attribute. We use upper case letters near the end
of the alphabet for sets of attributes. We may not distinguish between the attribute A
and the singleton set (A}.

* Received by the editors January 9, 1978, and in revised form August 16, 1978.
f Department of Information and Computer Sciences, Faculty of Engineering Science, Osaka Uni-

versity, Toyonaka, Osaka, Japan.

247

248 K. HAGIHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

For a set X _c U, an X-value is a mapping that assigns to each element A X a
value from DOM(A). A relation R on U, denoted by R (U), is a subset of the cross
product DOM(A1)xDOM(A2)x...xDOM(Arv). The elements of a relation are
called tuples.

If u is a tuple in a relation R (U) and A is an attribute in U, then u[A] is the
A-component of u. Similarly, if U’ ={Ail, Ai2, , Aj} is a subset of U, then u[U’] is
the tuple (u[Ah], u[A2],. , u [Aj]). Given a relation R(U) and a subset U’ of U, the
projection of R on U’, denoted by R[U’], is defined by:

R[U’]={u[U’llu R (U)}.

Note that R[U’] is also a relation on U’.
A functional dependency [5] (for short, FD) is a statement f: X Y where X and

Y are subsets of U. The FD f is validn a relation R (U) if for every two tuples u and v in
R (U), u [X] v[X] implies u[Y] v[Y]. We usually omit the name f of the FD and
write X Y. As usual, we assume, without loss of generality, that the right-hand side of
each FD is a singleton set.

Let R be a relation on U, let X and Y be subsets of U (not necessarily disjoint) and
let x be an X-value. We define

Y(x) {u[Y]Iu e R A u[X]= xI.

A multivalued dependency [9] (for short, MVD) on U is a statement
m: X-- Y(U) where X and Y are subsets of U. LetZ U-(XU Y). The MVD m is
valid in a relation R(U) if for every X U Z-value, xz, that appears in R, we have
YR(xz)= YR(X). We usually omit the name m of the MVD and write X-- Y(U).

2.2. Interence rules for dependencies. Suppose that for sets F of FD’s and M of
MVD’s on U, all dependencies in F UM are valid in a relation R(U). Then, it is
possible to infer additional dependencies that are also valid in R (U). There are three
groups of inference rules. The first one contains inference rules for FD’s, which were
studied in [1], [2] and [8], and are called FD rules. FD rules allow us to infer additional
FD’s from given FD’s. In the rules, X, Y, Z and W are arbitrary subsets of U.

FD rules
FD1 (Reflexivity). If Y c_.X then X --} Y.
FD2 (Augmentation). If Z

_
W and X Y then X U W Y U Z.

FD3 (Transitivity). If X --} Y and Y Z then X Z.
The second one contains inference rules for MVD’s, which were studied in [2] and

[9] and are called MVD rules. MVD rules allow us to infer additional MVD’s from given
MVD’s.

MVD rules.
MVD0 (Complementation). If X -- Y(U) then X-- U- Y(U).
MVD1 (Reflexivity). If YX then X-- Y(U).
MVD2 (Augmentation). If Z

_
W and X-- Y(U) then XU W-- YUZ(U).

MVD3 (Transitivity). If X-- Y(U) and Y--Z(U) then X-Z- Y(U).
MVD4 (Pseudo-Transitivity). If X--Y(U) and YUW--Z(U) then XU

W--Z-(YU W)(U).
MVD5 (Union). Itx Y(U) and X--Z(U) then X--- YU Z(U).
MVD6 (Decomposition). If X.-.Y(U) and X--Z(U) then X---Yf"IZ(U),

X Y-Z(U) and XZ Y(U).
The rules MVD4-MVD6 are implied by the rules MVD0-MVD3. However,

those are useful for the manipulation of MVD’s, and theretore are listed here.

MULTIVALUED DEPENDENCIES 249

The last group contains "mixed" inference rules, which were studied in [2] and [9]
and are called FD-MVD rules. The rule FD-MVD1 follows from the definitions of FD
and MVD. The rules FD-MVD2 and FD-MVD3 show that certain combinations of
FD’s and MVD’s imply additional FD’s that cannot be derived by using the rules in the
preceding two groups.

FD-MVD rules.
FD-MVD1. If X -> Y then X -- Y(U).
FD-MVD2. If X-Z(U) and Y-> Z’ where Z’

_
Z and Y and Z are disjoint,

then X -> Z’.
FD-MVD3. If X -->> Y(U) and X Y --> Z, then X --> Z Y.
Given the rules in the preceding two groups, one of the rules FD-MVD2 and

FD-MVD3 can be derived from the other.
It is said that a dependency (FD or MVD) d can be derived from a set D of

dependencies if it can be inferred from D by a sequence of applications of the inference
rules. Given a set D of dependencies and a set I of inference rules, the closure olD under
I is defined to be the set of all dependencies that can be derived from D by using the
rules in I (including the dependencies in D).

A set I of inference rules is complete for the corresponding family of dependencies
(the family of FD’s, the family of MVD’s or the family of all dependencies) if, for every
set D of dependencies from the family and for every dependency d from the family that
is not in the closure of D under I, there exists a relation in which all dependencies of D
(and hence all dependencies of the closure of D under I) are valid but in which d is not
valid.

PROPOSITION 1. (1) The set of rules {FD1, FD2, FD3} is complete]’or the family of
FD’s [1], [2], [8].

(2) The set of rules {MVD0, MVD1, MVD2, MVD3} is complete .for the family of
MVD’s [2].

(3) The set of rules {FD1, FD2, FD3, MVD0, MVD1, MVD2, MVD3, FD-
MVD1, FD-MVD2} is complete]’or the family of all dependencies [2].

2.3. Dependency basis. Let F and M be sets of FD’s and MVD’s on U, respec-
tively. The closure of F M under the set of inference rules {FD 1, FD2, FD3, MVD0,
MVD1, MVD2, MVD3, FD-MVD1, FD-MVD2} is denoted by (F LI M)+. Note that
this set of rules is complete for the family of all dependencies.

For F, let/ {X --{A}(U)IX --> {A} F} and let G =/ M. In the following, we
use the letter "G" to denote F k)M unless stated otherwise. The closure of G under the
set of rules {MVD0, MVD1, MVD2, MVD3} is denoted by G+. Note that this set of
rules is complete for the family of MVD’s.

The following proposition has been shown in [3] and [10].
PROPOSITION 2. An MVD m is in (F M)+ if and only if m is in G+.
Let Q be a family of some subsets of U that is closed under Boolean operations. (In

this paper, for a subset X of U, the complement of X means U-X and is sometimes
denoted by X.) Q contains a unique subfamily, denoted by 0, with the following
properties"

(a) The sets in 0 are nonempty.
(b) The sets in 0 are pairwise disjoint.
(c) Each set in Q is a union of some of sets in 0.

That is, 0 consists of all nonempty minimal sets in Q. The subfamily 0 is called the basis
of Q.

For a subset X of U, let

D(X)={YIX Y(U)a (FUM)+}.

250 K. HAI3IHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

By Proposition 2, D(X) is equal to { YIX - Y(U) G+}. D(X) is closed under Boolean
operations. Since for each A in X the singleton set {A} is in/(X) by MVD1, we
consider only the subfamily I(X)-{{A}IA X} of /(X). Let this subfamily be
denoted by DEP(X). DEP(X) is called the dependency basis ofX [2], [3], [9]. Note that
DEP(X) is a partition of Xc.

3. Computation o| dependency basis.
3.1. Algorithm and an example. In this section, an algorithm is presented for

computing DEP(X). Suppose that we are given a set G of MVD’s on U and a subset X
of U. Let G {Sl -- TI(U),. , Sk -- Tk(U)}. An algorithm for computing DEP(X) is
given in Fig. 1 (Algorithm 1). After Algorithm 1 terminates, the collection of all blocks
{P1, , P} is equal to DEP (X). Note that {P1," , Pt} is a partition of Xc. Since the
number of blocks is at most Ixl, Algorithm 1 always terminates.

ALGORITHM 1

begin
1 P1 XC;
2 /-1;
3 for] - 1 until do
4 while there exists an MVD Sr- T,(U) in G such that Sr fq Pi and T fq

Pi G Pi do
ben

5 //+1;
6 create a new block Pt;
7 PiTrPi;
8 P*Pi-P;

end
end

FIG. 1. Algorithm for computing DEP(X).

PROPOSITION 3. Algorithm 1 correctly computes DEP(X).
The proof will be given in Appendix A.
Now we present an example. Assume that we are given

U {A l, A2, A3, A4, As, A6, A7, As, A9},

F {{As, A9}--> {A I}},

M= {{AI, As, A6, As}--{A1, A2, A6}(U),

{A3, A6, A9}--{A5, Aa}(U),

{A 1, A9}--{A2, A3, A,, A9}(U),

{A1, A8, A9}" {A2}(U)} and X {As, A9}.

Then,

XC={A1, A2, A3, A4, As, A6, AT} and

{{As, Ag}--{A1}(U)}, so that

{rule 1" {As, A9}-{A

251MULTIVALUED DEPENDENCIES

rule 2" {A1, As, A6, As}-{A I, A:, A6}(U),

rule 3" {A3, A6, A9}"{A5, A8}(U),
rule 4" {A1, A9}--->>{A2, A3, A4, A9}(U),

rule 5" {A , A8, A9}--{A:}(U)}.
X will be split successively as follows by using Algorithm 1.

First by lines 1-3 in Fig. 1, P, and are set as follows"

P {A1, A2, A3, A4, As, A6, A7},

I=1, j=l.

Here denotes the number of blocks and j denotes the block name under consideration.
Suppose that the condition in line 4 is examined for MVD’s in G in the order of rule 1,
rule 2,.... Since] 1 now, the block P is selected. For P1, the MVD rule 1 in G
satisfies the condition in line 4, since {As, A9} P ({A8, A9} is the left-hand side of
rule 1) and ; {A} CIP gP ({A 1} is the right-hand side of rule 1). Thus, by lines 5-8,
l, P: and P are set as follows:

/=2,

P2 {A 1},

P1 {A2, A3, A4, As, A6, AT}.

For P, the MVD rule 4 is the first rule satisfying the condition in line 4. (The MVD rule
5 also satisfies the condition.) Thus, by lines 5-8, l, P3 and P are set as follows"

/=3,

P3 {A2, A3, A4},

P {A5, A6, A7}.

For P, no MVD in G satisfies the condition in line 4. Thus, by line 3, the value of j is
incremented by one, that is, the value of] becomes 2. For P: (= {A 1}), no MVD in G
satisfies the condition in line 4, and then the value of j becomes 3. For P3
(= {A:, A 3, A}), the MVD rule 2 is the first rule satisfying the condition in line 4. Thus,
l, P4 and P3 are set as follows"

/=4,

P4 {A

P3 {A 3, A4}.

For P3, no MVD in G satisfies the condition in line 4. Then, the value of j becomes 4.
For P4, no MVD in G satisfies the condition in line 4. After that, the value of] becomes
5 and exceeds the number of blocks l. Then, Algorithm 1 terminates. Finally we obtain

DEP(X) {P1, P2, P3, P4}

{{A 5, A6, A7}, {A 1}, {A3, A,}, {A 2}}.

3.2. Detailed algorithm and its time complexity. We consider in detail the imple-
mentation of Algorithm 1 in order to show its running time to be

O max klUI,
r=l

252 K. HAGIHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

where k is the number of MVD’s in G. (Time complexity is measured according to the
uniform cost criterion.) The key of the timing argument is to show how line 4 in Fig. 1
can be executed in O(k) time and how lines 5-8 in Fig. 1 can be executed in

O ,=YI I(S, 1.3 Ti) CI T, (q S fq XCl+ time.

Let U {A 1," , An}. For a given subset X of U, we can find X (as a list with
increasing order) in O(1 U] +]X]) time. For simplicity, letX {C1," , Cn}. From now
on, n denotes the number of attributes in X. For two subsets S and T of U and a subset
P of X, predicate "S fqP 3 and 3 T f’)P P" is true if and only if predicate
"(S f"l X) f-) P 3 and (T f’) S f) Xc) f’) P P" is true. And, whenever the predi-
cate "S f)P and T f’)P P" is true, the set TP is equal to (T f’) $ fqX) f"
P. Thus, for each MVD Sr T,.(U) in G, we can use S, (q X and T (q S f’) X instead of
Sr and Tr, respectively, in the implementation. In the following, for simplicity, S, f’)X
and T, f-) S fqX are sometimes denoted by S’ and T’, respectively. Each attribute
in X (1 =< rn _<-n) is treated by its suffix m (call it attribute-number). Each MVD
Si-- Ti(U) in G (1 -<_ -<_ k) is also treated by its suffix (call it rule-number).

(1) We use 2n linked lists, S__LIST(1),. , S__LIST(n), T__LIST(1),. ,
T__LIST(n). For each attribute-number rn (1 =< m -< n), S__LIST(m) consists of rule-
numbers such that C,, belongs to S and T__LIST(m) consists of rule-xaumbers such
that C,, belongs to Ti.

In order to execute efficiently line 4 and lines 5-8 in Fig. 1, we use the following
lists, array and matrices.

(2) We use doubly linked lists, P__LIST(1),... ,P__LIST(1), to represent a
current partition {P1," , P}. P__LIST() (1 <- <- l) consists of attribute-numbers m
such that Pj contains C,,.

(3) For each rule-number (l_-<i-<k), we use doubly linked lists,
TP__LIST(i, 1),. , TP__LIST(i, l), to represent T f’)P1,. ", T f’)P for a current
partition {P1," , P}. TP LIST(i,]) (1 _-< -< k, 1 =< j =< l) consists of attribute-numbers
rn such that T f’)Pj contains C,.

We assume that, given an attribute-number m, we can access in a constant time the
"cell" corresponding to m in P__LIST(/’) and TP LIST(i,) (1 -<_ -_< k, i =<j -< l),
respectively, if m belongs to those lists. Thus, given an attribute-number m, deletion of
m from such a doubly linked list can be executed in a constant time. A list having such a
mechanism can be implemented by using a matrix whose column corresponds to an
attribute-number. Let every list have its tail with a special rule-number "0" or a special
attribute-number "0".

(4) To represent the numbers of elements in P (1-</" <--l), S fqP and T f)Pi
(1-< i-<_k, 1 <_-/" <-l), we use an array P__SIZE of length n and two k x n matrices,
SP__SIZE and TP SIZE, respectively. Assume that a current partition is {P1," , P}.
Then, for each and / (l=<i-<k,l_-</-<l), P__SIZE[/’], SP SIZE[i,j] and
TP__SIZE[i,/’] give the numbers of elements in Pi, $ fq Pj and T f-) Pi, respectively. For
each and /" (1 -<_ <_- k, + 1 -< j -< n), let P__SIZE[j] 0, SP__SIZE[i,] 0 and
TP__SIZE[i,] 0.

For the above-mentioned data structure, we must do the intialization. To construct
2n lists, S_._LIST(1),..., S___LIST(n), T___LIST(1),..., T___LIST(n), in (1)
described above, we first construct two k lUI bit matrices, $ and T, where the ith row
of $ (or T) has "1" in each column corresponding to the attribute in $ (or T). This can
be done in O(klUI) time.

MULTIVALUED DEPENDENCIES 253

Next, for each attribute C, in X (1 =< m-< n), we construct S__LIST(m) (or
T__LIST(m)) by traversing the column of S(or T) corresponding to C,. Thus, all of such
2n lists in (1) can be constructed in O(max {klUI, kn}) time. PI(Xc) is the only block
in the initial, partition, so we can initialize all the lists, array and matrices in (2), (3) and
(4) described above by traversing 2n lists, S__LIST(1),. , S__LIST(n),
T__LIST(1),..., T LIST(n)only once. Thus, initialization for all the lists, array and
matrices in (2), (3)and (4)can be done in O(kn)time. Therefore, the initialization steps
can be done in O(max {klUI, kn}), that is, O(klUI) time.

begin
1 /1;
2 for/" ,- 1 until do

begin
3 SEARCH (/’, R, DIVIDABLE);
4 while DIVIDABLE "yes" do

begin
5 /-/+1;
6 P__DIVIDE (, l, R);
7 TP___DIVIDE (, l);
8 UPDATE (, l, R);
9 SEARCH (/’, R, DIVIDABLE);

end
end

end
FIG. 2. Program]’or computing DEP(X).

Next, we shall show a program for computing DEP(X). The procedure cor-
responding to Fig. 1 is shown in Fig. 2. SEARCH(, R, DIVIDABLE) at lines 3 and 9
decides whether there is an MVD Sr’- T,(U) in G satisfying the conditions shown in
line 4 in Fig. 1, and if there exists such an MVD Sr-- Tr(U) in G, then it returns "yes"
and r by DIVIDABLE and R, respectively. By P__DIVIDE(, l, R) at line 6 in Fig. 2,
we split the old Pi into the new Pi and Pt. This corresponds to lines 6-8 in Fig. 1. By
TP__DIVIDE(j, l) at line 7 in Fig. 2, for each (1 <- <_- k), we split the old T f’) Pi into
the new T CI Pi and T CI P, since the old Pj was split into the new Pj and P. By
UPDATE(, l, R) at line 8 in Fig. 2, we update the sizes of sets changed or created by
P_DIVIDE(, l, R) and TP DIVIDE(j, I), that is, sets Pi, P, S P, S fq P, T fq P
and T fqP (l _<- _-< k).

The details of the procedure SEARCH are given in Fig. 3. The condition
"Sr f) Pi and T, tq Pj Pi" is replaced by the condition "IS’ fq Pil 0 and

0<IT’ fqPiI<IPI", and examined at line 4 by using SP__SIZE, TP__SIZE and
P SIZE. Since lines 3-7 are executed at most k times and a constant time is needed at
each line, SEARCH terminates in O(k) time.

The details of the procedure P__DIVIDE are given in Fig. 4. By this procedure, Pi
is split into two blocks T’ f’l Pj and Pi-(T’r (’1Pi), and then the blocks T’ tq Pi and

Pi (T’, Pi) are named newP and Pi, respectively. The doubly linked list representing
Pj-(T’ fqPi) can be obtained by deleting each element in T’ f’)Pi from the doubly
linked list representing the old Pi. This step, as illustrated in Fig. 5, can be executed by
traversing the list representing T’, f’)Pi only once. Deletion of a particular attribute-
number m from a doubly-linked list can be executed in a constant time. Therefore,
P__DIVIDE can be executed in O(IT’, Pil) time.

254 K. HAGIHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

procedure SEARCH (/, R, DIVIDABLE);
begin

1 DIVIDABLE- "no";
2 i-1;
3 while DIVIDABLE "no" and <_-k do
4 if SP__SIZE [i,]] 0 and 0 < TP SIZE [i,/] < P__SIZE [/’]

then begin
5 DIVIDABLE "yes";
6 Ri;

end
7 else + 1;
8 return R and DIVIDABLE;

end

FIG. 3. Procedure SEARCH.

procedure P__DIVIDE(/, l, R);
begin

1 create a new list P__LIST(I) (newly created list is empty);
2 rn first attribute-number of TP__LIST(R,
3 while m # 0 (m 0 means that all elements in TP__LIST(R,/) were processed)

do begin,
4 delete rn from P__LIST(j);
5 add rn to P__LIST(1);
6 rn -succeeding attribute-number of TP LIST(R,]);

7 add 0 to the tail of P LIST(l);
return

end

FIG. 4. Procedure P DIVIDE.

The details of the procedure TP DIVIDE are given in Fig. 6. Since the old Pi was
split into the new Pi and Pt, the old T Pi (1 <= <- k) must be split into the new T f’l Pi
and T (’l Pt. The doubly linked list representing the new T f’)Pi can be obtained by
deleting elements which are inserted into the new Pt (= the old T’, (’1Pj) from the doubly
linked list representing the old T f’l Pi. The other doubly linked list representing the
new T f) Pt can be constructed by linking all elements which were deleted from the old
T (’l Pi. These steps can be executed as follows. For each attribute C,, in the new Pt, we
delete the attribute-number rn from TP LIST(i,])and add m to TP LIST(i, l)for
each rule-number in T__LIST(m), as illustrated in Fig. 7. The execution of the

k
procedure TP DIVIDE can be done in O(i= I(T’, Pi) f’) (T f3 Pi)l + k) time, that is,

-’lTi r) T, Pil+ k) time, where Pi denotes the old block before being split.
The details of the procedure UPDATE are given in Fig. 8. For each attribute C,. in

the new P (= the old T’, fqPi), we can update SP__SIZE[i,/’] and SP SIZE[i, l] for
each rule-number i in S__LIST(m) (or TP__SIZE[&] and TP__SIZE[& l] for each
rule-number i, in T LIST(m)) by traversing S LIST(m) (or T LIST(m)). Thus,
UPDATE can be executed in O(,k.__ I(T’, P)(s,,P)I+E,,= I(T’r fqPi)fq
(T, (qPi)l) time, that is, O(,k._ I(S U T)f’) T’ f’)Pil) time (note that S f’) T),
where Pi denotes the old block before being split.

MULTIVALUED DEPENDENCIES 255

256 K. HAGIHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

10
11

procedure TP DIVIDE(],/);
begin

1 for each such that 1 -<_ k, create a new list TP__LIST(i,/);
2 m <--first attribute-number of P__LIST(1);
3 while rn # 0 do

begin
4 <--first rule-number of T__LIST(m);
5 while # 0 do

begin
6 delete m from TP LIST(i,/’);
7 add m to TP LIST(i,/);
8 <-- succeeding rule-number of T__LIST(m);

end
9 m <--succeeding attribute-number of P__LIST(1);

end
for each such that 1 _-< _<- k, add 0 to the tail of TP LIST(i,/);
return

end

FIG. 6. Procedure TP DIVIDE.

Now, we show that the whole program in Fig. 2 terminates in
O(max {klXl E= Ei=11(Ti Si)f"] T, f"l S, XCl}) time. From the above-mentioned
discussion, when R =r, lines 5-9 in Fig. 2 can be executed in O(IT’,

k kO(Y:,=xlT, f’lT’,f-lPi[+k)+O(i=xl(Sl,.JTi)T’rf"lPil)+O(k) time, that is,
O(=](S’i T T’, PiI) + O(k) time, where Pi denotes the old block before being
split. Lines 5-9 in Fig. 2 are executed at most Ix l times, thus the total time by the
second factor O(k) is O(klXl). In the following, we estimate the total time by the first
factor O k

,= i(S, U T,)n T, n Pl).
Once some block Pi is split into two blocks T’ Pi and Pi- (T’ Pi) by using an

MVD S, T,(U) in G, then any block P which is a subset of Pi cannot be split by using
the same MVD S, T,(U) in G, since, for such a block P, either P T’, Pi or
P Pi (T Pi) holds and then such a block P cannot satisfy the condition
P P. Thus, for a fixed r (1 r k), any two blocks which are plit by using the MVD
S, T,(U)mustbedisjoint. Therefore, thesumofthevaluesi=l (Si) T’, Pi
for all blocks Pi which are split by using the MVD S, T,(U) is bounded by ki=l [(S
T’) T’l. Hence, the total time spent at lines 5-9 in Fig. 2 is the sum of O(klX[)

k "’,O(E=I[(STi)Tk]), that is, O(k[X]+and O(E=](S U T) T1])," k

k k1=](S Ti T’,I). Note that each execution of line 3 in Fig. 2 takes O(k) time
and line 3 is executed at most IX[times. Then, the program terminates in O(k[XI +

k=E,= I(S,T)T,S,X[) time ((S T)T=(ST)T,SX).
Considering the time needed in the initialization steps, we have the following theorem.

THEOREM 1. For a set of MVD’s G={S T(U),... ,Sk Tk(U)} and a
subset X of U, the dependency basis of X, DEP(X), can be computed in
O(max {klUI,= I(S, T,) TS7 XI}) time.

It is known that MVDX Y(U) in G if and only if Y is a union of some of sets in
DEP(X).ItisobviousthatitcanbedecidedinO(max{klU[k k

S XI}) time whether or not Y is a union of some of sets in DEP(X). Therefore, the
following corollary follows from Theorem 1.

MULTIVALUED DEPENDENCIES 257

)

258 K. HAGIHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

10
11

12
13
14

16

procedure UPDATE(], l, R);
begin

1 P__SIZE[t] TP SIZE[R,]];
2 P__SIZE[jlP__SIZE[j]-P__SIZE[I];
3 m -first attribute-number of P__LIST(1);
4 while m 0 do

begin
5 i first rule-number of S__LIST(m)"
6 while i 0 do

begin
7 SP SIZE[i,]] - SP SIZE[i, Jl- 1;
8 SP SIZE[i, l] - SP__SIZE[i, l] + 1;
9 i - succeeding rule-number of S__LIST(m);

end
it - first rule-number of T__LIST(m);
while it # 0 do

begin
TP SIZE[it,]] - TP SIZE[it,]]- 1;
TP SIZE[it, l] - TP__SIZE[it, l] + 1;
it - succeeding rule-number of T__LIST(m);

end
15 m -succeeding attribute-number of P__LIST(I);

end
return

end
FG. 8. Procedure UPDATE.

COROLLARY 1. For a set ofFD’sF {Sl -’> T1, Sl "-> Tl}, where each T. (1 <_- j -<_
l) is a singleton set, and a set of_MVD’sM {St+ -- Tt+t(U), --, Sk -- Tk(U)}, it can

k k
be decided in O(max {k[U[, ,r=t i=1](Si Ti) Tr f’) Sr X[time whether or not a
given MVDX ->> Y(U) is derived (by a complete set of inference rules) from F and M.

Furthermore, from Theorem 1 and the results of [3], we have the following
corollary.

COROLLARY 2. For F and M as described in Corollary 1, it can be decided in
kO(max {k]U[, Y.k=x Ei=I I(Si U Ti) Tr f’) S f’qXl}) time whether or not a given FD

X Y is derived (by a complete set .of inference rules) from F and M.
k kNote that O(max {klUI, Y.,= Yi=a I(S Ti) T, 3 Sr qX I})is bounded above by

O(min {k21UI, [[F [.J M[I2}) where IIF MI! is the size of description of F and M.

4. Decision problem concerning nontrivial MVD.
4.1. Problem and key lemma. For a set G, defined in 2.3, of MVD’s on a set U of

attributes and for a subset U’ of U, define

PROJ(G+, U’)= {X -- Y fq U’(U’)IX -- Y(U) G+/X _
U’}.

If all MVD’s in G (and hence all MVD’s in G/) are valid in a relation R (U), then all
MVD’s in PROJ(G+, U’) are valid in the projection R[U’], [9].

An MVD X-- Y(U’) is called a nontrivialMVD if Y is a nonempty proper subset
of U’-X, [91.

In this section, we consider the following decision problem, which is useful for
decomposing a relation schema into a Fourth Normal Form family, [9].

"Given a set G of MVD’s on U and a subset U’ of U, decide whether or not there
exists a nontrivial MVD in PROJ(G/, U’)."

MULTIVALUED DEPENDENCIES 259

ALGORITHM 2

step (i) 1
step () 2

3
4

step) 11
12
13

10

14
15
16
17
18
19

step @ 20

begin
compute zr’ from G and U’;
for each B zr’ such that]BI >- 2
do begin P1 U (U’- B);

while there exists an MVD S-- T(U) in G such that

do begin P2 T P1
P1 <-" P1-P2;
if B -Px or B -P2

then if B P2
then P1 -P2

else return "yes";
end

end
for each distinct two sets B

do begin P1 <’- U-(U’-B-Bz);
while there exists an MVD S -- T(U) in G such that

do begin Pz <-- T
PI P1-P2;
if (B1LI B2) P1 or (Ba LI B2) P2

then if (B LI B2) P2
then P <-P2

else return "yes";
end

end
return no’"

end
FIG. 9. Algorithm for deciding whether or not there exists a nontrivial MVD in PROJ(G+, U’).

For G, let zr denote the basis of the Boolean closure of the family {SIS-- T(U)
G}, where complementation is relative to U. For zr and a subset U’ of U, define

zr’ {B U’IB e r AB (’1 U’

Note that zr (or zr’) is a partition of U (or of U’, respectively).
The following is a key lemma for obtaining an efficient decision procedure for the

problem above. The proof is given in Appendix B.
LEMM. If there exists a nontrivial MVD in PROJ(G+, U’), then there exists a

nontrivial MVD X-- Y(U’) in PROJ(G+, U’) satisfying either
(1) X U’-B and Y B, where B e zr’, or
(2) X= U’-B1-B and Y=B, where B1, BeTr’ andBl CB_.

4.2. Decision algorithm and an example. The lemma in 4.1 yields the algorithm
shown in Fig. 9 for deciding, given a set of MVD’s on U and a subset U’ of U, whether
or not there exists a nontrivial MVD in PROJ(G+, U’). Step () in Algorithm 2
computes zr’ from given G and U’. Step (2) determines whether or not there exists a
nontrivial MVD in PROJ(G+, U’) satisfying condition (1) in the lemma. If condition (1)
is satisfied, then "yes" is returned. Otherwise, step () is executed which determines
whether or not there exists a nontrivial MVD in PROJ(G+, U’) satisfying condition (2).
If condition (2) is satisfied, then "yes" is returned. Otherwise, "no" is returned.

260 K. HAGIHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

Now we present an example (this example is taken from [9]). Assume that we are
given

U {CLASS, SECTION, STUDENT, MAJOR, EXAM, YEAR,
INSTRUCTOR, RANK, SALARY, TEXT, DAY, ROOM},

F ({CLASS, SECTION} {INSTRUCTOR},
(CLASS, SECTION, DAY}- {ROOM},
{STUDENT} --> {MAJOR},
{STUDENT} {YEAR},
{INSTRUCTOR} {RANK},
{INSTRUCTOR} --, {SALARY}},

M {{CLASS, SECTION}-{STUDENT, MAJOR, EXAM, YEAR}(U),
{CLASS, SECTION}--{INSTRUCTOR, RANK, SALARY}(U),
{CLASS, SECTION}--{TEXT}(U),
{CLASS, SECTION}--{DAY, ROOM}(U),
{CLASS}--{TEXT}(U),{CLASS, SECTION, STUDENT}--{EXAM}(U)}, and

U’ {CLASS, SECTION, RANK, SALARY}.

In this case, we have that G F LI M, where

{{CLASS, SECTION}-{INSTRUCTOR}(U),
{CLASS, SECTION, DAY}-{ROOM}(U),
{STUDENT}{MAJOR}(U),
{STUDENT}-{YEAR}(U),
{INSTRUCTOR} {RANK}(U),
{INSTRUCTOR}--{SALARY}(U)}, and

,n" ={{CLASS}, {SECTION}, {STUDENT}, {INSTRUCTOR}, {DAY},
{MAJOR, EXAM, YEAR, RANK, SALARY, TEXT, ROOM}}.

It follows from U’ and ,r that

w’= {{CLASS}, {SECTION}, {RANK, SALARY}}.

{RANK, SALARY} is the only block B in 7r’ such that IBI >- 2. For this block B, lines
3-10 of Algorithm 2 are executed. In line 3, P1 is set as follows:

{STUDENT, MAJOR, EXAM, YEAR, INSTRUCTOR, RANK, SALARY,
TEXT, DAY, ROOM}.

MVD {CLASS, SECTION}--(INSTRUCTOR}(U) satisfies conditions (CLASS,
SECTION} f’) P1 and {INSTRUCTOR} fq Pt P1. Then P2 and P1 are set at
lines 5 and 6, respectively, as follows:

P2 {INSTRUCTOR}

P1 {STUDENT, MAJOR, EXAM, YEAR, RANK, SALARY, TEXT,
DAY, ROOM}.

Since B G Px, the while-statement in line 4 is executed again for this new P. This time,
by using MVD {INSTRUCTOR}-,,{RANK}(U), P is split as follows:

P2 {RANK}

{STUDENT, MAJOR, EXAM, YEAR, SALARY, TEXT,
DAY, ROOM}.

MULTIVALUED DEPENDENCIES 261

Since B P1 and B dD2, "yes" is returned in line 10, that is, there exists a nontrivial
MVD in PROJ(G+, U’).

The lemma in 4.1 shows that in this example at least nontrivial MVD’s
{CLASS, SECTION}--{SALARY}(U’) and {CLASS, SECTION}--{RANK}(U’)arein PROJ(G+, U’).

4.3. Time complexity of Algorithm 2. We will estimate the time complexity of
Algorithm 2. As stated in 3.2, the time complexity of computing DEP(U’) for a subset
U’ of U is bounded above by O(min {k2]U[, IIFt_JMII}) where k and]U[are the
numbers of dependencies in F LIM and attributes in U, respectively, and IIF t_J Mll is the
size of description of F and M.

Step (requires O(klUI) time [3]. Let be the number of sets in r’.
For a block B in r’, the do-statement in line 3, which is a modification of the

algorithm shown in Fig. 1, determines whether or not there exist at least two sets in
DEP(U’ B) that intersect B, that is, whether there is no set in DEP(U’ B) of which B
is a subset. Almost the same discussion in 3.2 assures that the do-statement in line 3
can be executed within O(min {k2] U], lie t_J MII}) time. Since the loop of lines 2-10 is
repeated at most times, step () requires at most O(i. min {k2lUl5 IIF t_J MI[2}) time.

Similarly, step () requires at most O(i2. min {k21UI, IlFt_J MII }) time since the
loop of lines 11-19 is repeated at most i(i- 1)/2 times.

Step () is done in a constant time. Thus, we have the following theorem.
THEOREM 2. For sets F ofFD’s andMofMVD’s on U and]:or a subset U’ of U,

Algorithm 2 determines within O(i2. min {k 21UI, IIF Mll2}) time whether or not there
exists a nontrivialMVD in PROJ(G/, U’) where is the numberofblocksB in the basis of
the Boolean closure of all left-hand sides of dependencies in FUM such that
B f’)U’# 4’, k and]UI are the numbers of dependencies in F M and attributes in U,
respectively, and lie MII is the size of the description ofF and M.

Note that <-[U’[-<-IUI.

Appendix A. Prooi ot Proposition 3. It was proved in [10] that Algorithm 1
correctly computes DEP(X) by using derivation trees. In the following, another proof
will be shown.

It is proved in [3] that, if a partitioning algorithm satisfies the following conditions,
then it correctly computes DEP(X).

(a) For each block P in the final partition, X--P(U) is in G/.
(b) For the final partition {P,. ., P} and each MVD S-- T(U) in G, T f) Y is

either empty or a union of some of P’s, where Y is the union of X and the sets
from {P1,""", P} that intersect S X.

We show that condition (a) is satisfied by using induction on the number of
executions through lines 5-8 in Fig. 1. X is the only block in the initial partition of
Algorithm 1 and X--X(U) is in G+ by MVD0 and MVD1. Assume that, for each
block P in a current partition, X--P(U) is in G/. Then, the newly obtained blocks by
one pass of Algorithm 1 are T (’lPi and Pi-(T fqPi), where MVD S,-- T,(U)is in G,
S f’) Pi and T (q P Pi. By the assumption, X --Pi(U) is in G/. By MVD0,
X--P(U) is in G+. By applying MVD2 to MVD S--T(U), P--T(U)is in G/,
since SfqPi implies S P. Then, by MVD3, X-- T fqP(U) is in G+(T,
(e) T,f’)Pi). By MVD6, X--Pi-(T, fqP)(U) is in G/. Thus condition (a) is
satisfied. Next, we show that Algorithm 1 satisfies condition (b). Line 4 in Fig. 1 shows
that, if at least one of three conditions S f’)Pi : , T f’)Pi and T (q Pi P holds
for block P and every MVD S-- T,(U) in G, then block Pi is no longer split, that is,
block Pi is in the final partition. Furthermore by the construction of the final partition by
Algorithm 1, the final partition consists of only such blocks. Thus, for each MVD

262 K. HAGIHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

$ -- T(U) in G and each block P in the final partition, either $ OP # , T P or
T fq P P holds, that is, if S (q P , then either T (q P Q5 or T fq P P holds.
Therefore, condition (b) is satisfied.

Appendix B. Proof of the lemma. The following Proposition 4 and Proposition 5
are used to prove the lemma.

PROPOSITION 4. If W
_
X U’ and W - V(U’) PROJ(G*, U’), thenX -- VX(U’) is in PROJ(G+, U’).

Proof. By the definition of PROJ(G+, U’), if W- V(U’) PROJ(G/, U’), then
there is a subset Z of U such that Z U’ V and W--Z(U) G+. Since W

_
X, by

using MVD2, MVD1 and MVD3, we have that

(B.1) X -, Z-X(U) G+.
Since X G U’ and (Z X) f3 U’ V X, it follows from (B. 1) that

X-- V-X(U’) PROJ(G+, U’). 7q

PROPOSITION 5. For a subset X of U’, let W be the union of all sets in {BIB
r’/B X}. If there exists a nontrivialMVD in PROJ(G+, U’) whose left-hand side is
X, then them also exists a nontrivialMVD in PROJ(G+, U’) whose left-hand side is W.

Proof. By the definition of W, we have

(B.2) WGX_ U’.

Suppose that there exists no nontrivial MVD in PROJ(G+, U’) whose left-hand
side is W. Then it follows from the definition of PROJ(G+, U’) that for any subset Z of
U such that WfqZ Q5 and Q5Z f’) U’ U’- W, there exists no MVD W--Z(U)in
G+. Therefore, U’- W is a subset of a set V belonging to DEP(W). That is, it holds that

03.3) u’-w=__ v,
(B.4) W V QS,

and

(B.5) Wv(u) G+.
By (B.2), (B.3)and (B.4), we have that

(B.6) V-X= V-(X- W),

(B.7) (V-X)fq U’= V (q U’-X (q U’= (U’- W)-X U’-X.

Next we shall show that V-X is a set in DEP(X). By (B.2), (B.5) and Proposition
4 (let U’= U), we have that

(B.8) X.- V-X(U) G+.
Note that PROJ(G/, U)=G/. Let $---T(U) be an arbitrary MVD in G. Since
V DEP(W), either (B.9) or (B.10) holds:

(B.9) S fh V # .
(B.10) TVIV= or V_T.

In the case where condition (B.9) holds, suppose P 7r, P
_
S and P (q V # .

There are two cases to consider. If P intersects V-U’ then P intersects V-X.
Otherwise, P must intersect V 0 U’. Let P’ be P (q U’. If P’

_
X then, by the definition

of W, P’_ W--a contradiction. Hence P’ intersects U’.-X, so P intersects V-X.

MULTIVALUED DEPENDENCIES 263

Therefore, we have that

(B.) S(V-X) .
In the case where condition (B.10) holds, since V-X

_
V we obviously have that

(B.12) T(V-X)= or V-X_ T.

It follows from (B.8), (B.11) and (B.12) that

(B.13) V-XDEP(X).

By (B.7) and (B.13), there will exist no nontrivial MVD in PROJ(G/, U’) whose
left-hand side is X. This contradicts the assumption of the proposition.

By Proposition 5, we can assume without loss of generality that

(a. 14) W-- V(U’) PROJ(G/, U’),

where W is an empty set or a union of some of sets in r’ and . V U’- W.
(i) Consider the case where there exists a set B in r’ such that

(B.15) B f3 V B.

It follows from the assumption for MVD W-- V(U’) that B_ U’-W. Since
W U’, we have that W c__ U’-B. By (B. 14), V- (U’-B) V f)B and Proposition 4,
we have that

U’-B -- V CI B(U’) e PROJ(G+, U’).

By (B.15) this MVD is nontrivial. Therefore, condition (1) in the lemma is satisfied.
(ii) Consider the remaining case, where there exist at least two distinct sets B1 and

B2 in zr’ such that B U’- W- V andB
_

V. Therefore, since W U’ and V U’,
we have that

(B.16) W U’-B1-B2,

(B.17) V-(U’-BI-B2) Vf3(BIBz)=B2.

By Proposition 4, (B. 14), (B. 16) and (B. 17), we have that

U’-BI-BE-BE(U’) PROJ(G+, U’).

Since U’-((U’-B-BE)I,J B2) B1 # , this MVD is nontrivial. Thus, condition (2)
in the lemma is satisfied. [3

REFERENCES

[1] W. W. ARMSTRONG, Dependency structures of database relationships, Information Processing 74,
J. L. Rosenfeld, ed., North-Holland, Amsterdam, 1974, pp. 580-583.

[2] CATRIEL BEERI, RONALD FAGIN ANDJOHN H. HOWARD,A complete axiomatization forfunctional
and multivalued dependencies in database relations, Proc. ACM SIGMOD Conf., D. C. P. Smith,
ed., Toronto, Canada, 1977, pp. 47-61.

[3] CATRIEL BEERI, On the membership problem]’or multivalued dependencies in relational databases,
ACM Trans. Database Syst., to appear.

[4a] CATRIEL BEERI AND PHILIP A. BERNSTEIN, Computational problems regarding the design of normal
form relational schemas, ACM Trans. Database Syst., to appear.

[4b] PHILIP A. BERNSTEIN AND CATRIEL BEERI, An algorithmic approach to normalization of relational
database schemas, Tech. Rep. CSRG-73, Computer System Research Group, Univ. of Toronto,
Toronto, 1976.

[5] E. F. CODD, A relational model for large shared data bases, Comm. ACM, 13 (1970), pp. 377-387.

264 K. HAGIHARA, M. ITO, K. TANIGUCHI AND T. KASAMI

[6] Further normalization of the data base relational model, Courant Computer Science
Symposium 6, Data base Systems, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, 1971, pp.
65-98.

[7] -------, Recent investigations in relational data base systems, Information Processing 74, J. L. Rosenfeld,
ed., North-Holland, Amsterdam, 1974, pp. 1017-1021.

[8] RONALD FAGIN, Functional dependencies of a relational database and propositional logic, IBM J. Res.
Develop., 21(1977), pp. 534-544.

[9], Multivalued dependencies and a new normal form for relational databases, ACM Trans.
Database Syst., 2 (1977), pp. 262-278.

[10] KENICHI HAGIHARA, MINORU ITO, KENICHI TANIGUCHI AND TADAO KASAMI, Decision
problems for mulfivalued dependencies and fourth normal form in relational data base model, Tech.
Rep. of Languages and Automata Symposium, Nagoya (July 1977). (In Japanese.)

SIA/vl J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802-0011 $01.00/0

BOTTLENECKS AND EDGE CONNECTIVITY
IN UNSYMMETRICAL NETWORKS*

C. P. SCHNORR’

Abstract. Let F,,.v be the maximal flow from u to v in a network N (V, E, c). We construct the matrix
(min {Fu.v, Fv.u}lu, v V) by solving IV] log 2[V[individual max-flow problems for ’. There is a tree network

’ (V, , g’) that stores minimal cuts corresponding to rain {Fu, Fv.u} for all u, v. can be constructed by
solving]VI log 2] V] individual max flow problems for the given network which can be done within O(I VI4)
steps using the Dinic-Karzanov algorithm. We design an algorithm that computes the edge connectivity k of a
directed graph within O(k.]El" vl) steps.

Key words, maximum flow, minimum cut, Gomory-Hu algorithm, multiterminal network flow, maxi-
mum flow matrix, edge connectivity

1. Introduction. A network (V, E, c) consists of 1) a set V of vertices, 2) a set
E c V x V of edges and 3) a function c" E-- R/ which associates to each e E a
positive real number c(e)called the capacity of e.

For s, t V, s a flow from s to in (V, E, c) is a function f: E R+ such that
(fl) Ve E" O-f(e)<-c(e)
(f2) /u e V-{s, t}’E<.,.)f(u, v)=Et.,.)rf(v, u)

i.e. the outcoming flow equals the incoming flow at u.
The value (f) of f is defined by

(f):= E f(s,v)- E f(v,s).
(s,v)E (v,s)E

A flow f from s to is called maximal if (f) >- (g) for all flows g from s to t. Let F,t be
the value of a maximal flow from s to t. We define F,. := oo.

An (s, t)-cut is a pair (S, S) such that S V/k s S A S v- S A S. One
defines the capacity c(S, S) of a cut (S, S) as

c(S, g):= E c(u, v).
(u,v)SxgNE

An (s, t)-cut (S, S) is called minimal if c(S, S)<-c(A,A) for all (s, t)-cuts (A,A).
Maximal flows are characterized by the fundamental theorem of Ford and

Fulkerson"
THEOREM 1.1. Let f be a maximal flow from s to and let (S, S) be a minimal

(s, t)-cut; then d(f)= c(S, S).
The problem of designing efficient algorithms which to a given network construct a

maximal flow from s to has been successfully attacked over many years. Now, the
best-known algorithm is Karzanov’s improvement [5] of Dinic’s algorithm [1] which
runs in O(I VIa) RAM-steps when additions of real numbers are counted as single steps.

Whereas the Dinic-Karzanov algorithm solves an individual max flow problem for
a given network we are interested in the construction of the max-flow matrix (Fu,olu, v
V) of a given network. Clearly the max-flow matrix can be constructed by solving
Vl(I VI- x) individual max-flow problems for the given network. We shall obtain a
significant reduction of this number. In 2 we construct the matrix which is defined as

N := (min (F,,,,,, Fo,ilu, v V)

* Received by the editors November 1, 1977.
f Fachbereich Mathematik, Universitit Frankfurt, 6000 Frankfurt a.M., West Germany.

265

266 c.P. SCHNORR

by solving VI log 21vI individual max-flow problems for the given network. By
Theorem 1.1 min {Fu, Fv.u} equals the minimum capacity of a cut that separates u and
v. These minimal cuts are called bottlenecks; thus is the matrix of bottlenecks. This
problem has already been solved for symmetrical networks, i.e. if c (u, v) c (v, u) for all
u, v V. For symmetrical networks we have Fu, Fo, and the algorithm of Gomory
and Hu [4] constructs the max-flow matrix by solving IVl-1 individual max-flow
problems for the given network.

The algorithm of Gomory and Hu associates to any symmetrical network a tree
network that stores minimal cuts for all pairs of nodes. In 3 we extend this construction
to unsymmetrical networks. We associate to a given network N= (V, E, c) a tree
network (V, E, ?) such that (1), (2) hold for all u, v V. (1) min {F,, Fo,} equals
the minimal capacity of the edges on the unique undirected path that connects u and v
in V. (A sequence of edges is called an undirected path if it is possible to change the
orientation of the edges such that the sequence forms a path).

(2) if among the minimal capacity edges on the path connecting u and v in some
edge e is directed from u to v, then F,, min {F,v, Fo,u} and the weak components of
V-{e} yield a minimal (u, v)-cut in .

This implies that also informs on which of F,o, Fo, is the minimum of both. The
algorithm that associates the tree network 7 to requires the solution of IV[log 21 vl
individual max-flow problems for the given network which can be done within O(I V[4)
steps using the Dinic-Karzanov algorithm.

In 4 we consider the edge connectivity k of a directed graph G (V, E) which is
defined to be the minimal number of edges that must be eliminated from E in order to
disconnect G, i.e. after this elimination there is no directed path from u to v for some
node pair (u, v). It is known from Menger’s theorem that the minimal number F. of
edge-disjoint paths from u to v equals the minimal number of edges that must be
eliminated from E in order to destroy all paths from u to v. Clearly F,o is the value o
the maximal flow from u to v in the network (V, E, c) with unit edge capacities c (e) 1
for all e E. Therefore k min {F,olu, v V} can be determined by solving Vl(I Vl- 1)
individual max-flow problems and this number can be reduced to VI log 21VI by the
above results. Moreover, Lemma 2.1 gives an extremely easy reduction of the problem
to the solution of VI individual max-flow problems. This reduction leads to an
algorithm which determined k within O(klVIIEI)steps on a storage manipulation
machine, see Sch6nhage [10], or equivalently on a RAM machine with +1 addi-
tion/subtraction, see Schnorr [9] for the equivalence proof. Our O(klVllEI)-
algorithm competes with an edge connectivity algorithm of Even and Tarjan [2] which
runs in O(min (Ivl VIIEI) steps. Our time bound beats this time bound
provided k _-<Iv[2/3 and clearly k-<[V[2/3 should hold in most of the examples with
practical interest.

2. Computing by solving VIlog21VI individual max-flow problems.
Throughout the paper let dV (V, E, c) be a fixed network.

> min {Fu,,,,+ 11i 1 r- 1}.LEMMA 2 1 Let Ul, u2, , ur V, then F,I,,,
Proof. Let (S,) be a minimal (ul, ur)-cut. Since Ul S, u there exists ui $

such that Ui/lS. Hence (S, S) is a (u, u/l)-cut. Therefore 1.1 implies F,,,u,+-<
c(S,S)=F,,,. [3

Let us call u (Uo, Ul, , u,) a U-cycle if U {Ul, u2," , u} and Uo u,. Let
U c V, then (S, S) is called a U-cut if S V/S V-S/S fq U /S f’) U . A
U-cut (S, S) is called minimal if

c (S,) min {c (D,/)lall U-cuts (D,/)}.

UNSYMMETRICAL NETWORKS 267

LEMMA 2.2. Let (Uo, Ul,. Ur) be a U-cycle, U c V. Then
(1) tu, v U’Fu.o>-min{Fu,.u,+l[i=O, 1,. ,r-1}
(2) =1. all minimal (uj, Uj+x)-CUtS are minimal U-cuts.
Proof. (1). Let u Uk, V Ui and let (S, S) be a minimal (Uk, Ui)-CUt.

k <j => F,.u, >_-min {F,.,,+lli k, k + 1,.--,]- 1}

(2). It follows from (1) that for some/"

F,,.u,/, min {F.olu, v U}.

Let (D, L3) be any minimal (ui, ui/1)-cut and let (S, g) be any minimal U-cut. Then (S, g)
is a (u, v)-cut for some u, v e U. Then 1.1 implies

< F.c(D, D) F,,,,+

which proves that (D, D) is a minimal U-cut.
We now describe a m_ultiterminal m_aximal _flow algorithm MMF which for a given

network W= (V, E, c) computes the matrix N := (min {F,,o, Fv.,}lu, v V). MMF uses a
subprogram IMF for solving individual m_aximal _flow problems for W" IMF (u, v, B, B)
computes a minimal (u, v)-cut (B,/) for W. This can be done within O([VI3) RAM-
steps by applying the Dinic-Karzanov algorithm. In this section we count the total
number of IMF-calls during the execution of MMF since the execution of the IMF-calls
dominates all other steps.

The inputs of the recursive procedure MMF (n, ti, A) are a natural number n -> 2, a
U-cycle ti (Uo, u x, , u,,) for some U V and a sequence A
((Ai,i)li=l,2,...,n) such that (Ai, fii) is a minimal (Ui-l, Ui)-cut for W.
MMF (n, ti, ft,) computes min {F,.v, Fo,,} for all u, v U {Ux," ’, u,,}. At first MMF
determines a minimal U-cut (Aj, Ai) according to Lemma 2.2. This yields Fu,
min {F,,v, Fv,u} c(Ai, Ai) for all u e Ai f"l U and v A (’} U. Then the problem of
computing the remaining values of min {F,,o, Fo,,} is split into two subproblems which
are solved by two recursive calls for MMF with input parameters of smaller size.

The recursive procedure MMF (n, , A) 2.3.

begin U := {ull _-< _-< n }
Determine] with c(Ai, Ai)= min {c(Ai,)li 1, 2,. , n}
comment according to 2.2 (Ai, Ai) is a minimal U-cut
V := Ai f"I U V2 := i f"l U, n := Vll, n2 := V2l
for all u V, v V2 do F.v := min {F.o, F,,.u} := c(Ai, Ai)
for v 1, 2 do
begin if n 1 then for u V do [Fu, := oo return]

composea V-cyclet7= Uo, Ul,"’,u

comment Lemma 2.6 below describes how to form
such that the number of IMF-calls in the following
block becomes minimum.
for all edges (u "i, U i+1) in ti" do

if a minimal (ui, Ui+l)-cut has been stored
then call this cut (AT, A ’)
elselMF(u u A A’)i, i+1,

268 c.P. SCHNORR

fi. ((A’, 7)1i 1, 2,. , n)
MMF (n, ti , A

end
end

THEOREM 2.4. MMF (n, ti, ft.) correctly computes (min {Fu.v, Fo,u}[u, v U).
Proof. We proceed by induction on n. According to Lemma 2.2 (Aj, Aj) is a

minimal U-cut. It follows Vu e A U" Vv e A, CI U"

F=.o<-_c(A,,A,) since(Ai, Ai)is a (u, v)-cut,

min{F,.o, Fo.} >- c (Ai, Ai) since (Ai, Ai) is a minimal U-cut. Hence F,o
min {Fu.o, Fo.} c(A, A,) and min {F.o, Fo,} is correctly computed for u e Ai f’l U,
v e fi-i t"l U. Since n= < n it follows that the remaining values min {F.o, Fo.u} are correctly
computed by the induction hypothesis provided n _-> 2. Moreover, if n 1 then MMF
correctly determines F,. o for {u} V.

An immediate consequence of algorithm 2.3 is the following
COROLLARY 2.5. For any network (V,E,c) and any Uc V the matrix

(min {F,,,, Fv.}lu, v e U) has at most [U[- 1 distinct finite values.
Proof. We prove by induction on n that MMF (n, t2, A) yields at most n 1 finite

values. MMF (n, t, A) yields the values c(Ai, Ai) and by induction hypothesis _<-n 1
finite values which are obtained by MMF (n,, a, fi.). Since nl " n2 F/ this yields at
most n- 1 distinct finite values in total. Observe that for n 1 MMF (n, iT, A) only
yields the infinite value . l!

The first stage of MMF (n, iT, A) consists of all those operations which are not part
of the recursive calls MMF (n,, t2 , A) for v 1, 2. Let (Ai, Ai) be the minimal U-cut
which is determined within the first stage of MMF (n, t7, A). An Arsegment (At
segment, resp.) $ in the cycle t7 is a maximal segment S (u, u+a, , uk) such that all
vertices of S are in Aj (Ai resp.). Obviously the number of Arsegments of a equals the
number of Asegment.

LEMMA 2.6. Suppose has exactly m Ai-segments. Then 1, can be chosen such
that 2m IMF-calls are to be executed within the first stage ofMMF (n, , A).

Proof. Consider a cycle t7 with vertices in
denoted as C) in Figs. 1 and 2.

0

FIG.

Then MMF (n, ti, fi.) can construct an Ajfq U-cycle (if’l U-cycle, resp.) by
substituting each Arsegment S (Arsegment, resp.) in ti by a new edge that connects the
neighboring Arsegments (Arsegments, resp.) of S. For instance, the new edges in
the Ai I"1 U-cycle are as shown in Fig. 2.

UNSYMMETRICAL NETWORKS 269

In the following we suppose that MMF is executed according to Lemma 2.6, i.e. 2m
IMF-calls are executed within the first stage of MMF (n, a,) provided ti consists ot
m Ai-segments and m Ai-segments.

Let g,(n) be the maximal number ot IMF-calls that are executed within the entire
procedure MMF (n, t2, A) for any t2 and any A. Algorithm 2.3 and Lemma 2.6 imply the
following recursion tormula and initial values ot

(2.7) k(n)-<max ({,(n-k)+@(k)+2kl2<=k <-n/2}U{(n-1)+ 1}) for n >2

n
(2.8)

(n)

1 2 3 4 5 6 7 8

0 0 1 4 5 8 11 16

LEMMA 2.9 (Hanke Bremer). @(n)=< n log n.
Proof. The assertion holds for n 1, 2. We proceed by induction on n. Suppose

,(/’)-<_/" log for] < n. In order to prove 4,(n)-< n log n we have to show:
(1) /,(n- 1)+ 1 ---n log n (which trivially holds),
(2) (n-k)+(k)+2k<=n logn for 2<-k<=n/2.

By the induction hypothesis"

4,(n-k)+g,(k)+2k <=(n-k)log(n-k)+k logk +2k

(n k)log(n-kT) +klg(k/n)+2k+nlgn

=n(.n.klog(n)+ k/n log (k/n) + 2k + n log n
n

)+2k/n +nlogn
n

where H(x, 1-x)=-x log x-(1-x)log (l-x) is the Shannon entropy. As is well
known H(x, 1 x) is convex. Therefore H(0, 1) 0, H(1/2, 1/2) 1 implies

H(x, 1-x)=>2x forx<=1/2.
This yields -H((n-k)/n,k/n)+2k/n<--O which proves /(n-k)+@(k)+2k<-_
n log n.

This yields
THEOREM 2.10. The computation of via program 2.3 requires the solution of at

most V[log 21VI individual max flow problems for the given network (V, E, c).
Proof. The computation of a vector ,, of minimal cuts along a V-cycle t2 requires

vI IMF-calls. By Lemma 2.9 there are at most vI vI IMF-calls during the
execution of MMF (1V], ti, ft.).

270 c.P. SCHNORR

3. The tree-network that represents all bottlenecks. Our further improvements to
algorithm 2.3 are based on the following Lemma.

LEMMA 3.1. Let U V and let (A, A) be a minimal U-cut. Then
(1) VtT, 7 ft., t7 " =1 minimal (a,)-cut (S,): A f-I U S/A fq U ;
(2) Vu, v A, u # v" minimal (u, v)-cut (S,)" ft, f’) U = S/ f’) U S-.
Proof. For any cut (B, B) we set

BA := B A, B := B fqA,

BA := B f’) A, B, := B fq A.

For D, H = V we define Con := Y.(u.o)znc(u, v).
(1) Suppose (B,B)is a minimal (t, tT)-cut. If AfqUB or Af’)UB then set

(S, S):= (B, B) and we are finished. Otherwise set (S, S):= (B L3 BA, B BA)
(B t.J BA, B,). (S, S) is a (t, t3)-cut and A CI U S. Moreover, it can be seen from the
above figure that

c (B, B c (B (.J BA, B BA) CB,,a,, + CB,a,, CaAaZ,

c(A BA, A L.J BA)-- c(A, A).

(A B-A, fi CI/A) is a U-cut since A f’) U f) B rs and A f3 U CI/ : . Since (A, ft,) is
a minimal U-cut the term in the last line above is ->_0. This proves that (S, S):= (B LJ
BA, B--BA) is a minimal (a, t)-cut.

(2) Suppose that (B,B)is a minimal (u, v)-cut. If Af’)UB or Af’) UB then
define (S, g):= (B,/). Otherwise set (S,):= (B B,,/ B). (S,) is a (u, v)-cut and
A f’) U S. Moreover, it can be seen from Fig. 3 that

c (B B) c (B B, B t.J Bx)= CB,ca. + Cuxa,,

(A L3 B,, A B,) is a U-cut since A CI U CI B rs and A CI U f3 B rs in this case.
Since (A, A) is a minimal U-cut the term in the last line above is ->0. This proves that
(S,):= (B -B,, i L.) BA) is a minimal (u, v)-cut. El

UNSYMMETRICAL NETWORKS 271

It follows from Lemma 3.1 that, given a minimal U-cut (A,A) in order to
determine Fa,e with t, 7 cA f"l U, one can first contract A fq U, and in order to
determine Fu, with u, v A f’l U one can first contract A f"l U. Here contracting a subset
B c V means the following operations:

|or all a V-B do
[c(a, B):= ,blc(a, b),
V:= V-BLJ{B}.

c (B, a):= Ebn c (b, a)]

Such a new node B that is formed by contraction is called a supernode.
Inserting these contractions into the algorithm 2.3 means that at the beginning of

the interior block the subset V2 is contracted if u 1 and V1 is contracted if u 2. At the
end of this block the contraction is reversed by a decompose statement. Here
decompose (B) substitutes the supernode B by its previous subset of nodes. With these
changes the interior block in algorithm 2.3 looks as follows:

for 1, 2 do
begin contract V2-v

old statements of the block
decompose V2-v

end

Lemma 3.1 immediately yields the following
THEOREM3.2. The modified procedure MMF(n,,,) correctly computes

(min {Fu.v, Fo,,}[u, v U).
Let (Bi,/i) 1,..., IvI-1 be system of minimal U-cuts that is determined

within the different stages of the modified algorithm MMF (I V[, t2, fi) with a V-cycle t
and an appropriate as inputs. Let (B,B) be computed before (B/,B/I). For
instance (B1,/1) is the minimal V-cut (Aj, i) which is determined within the first stage
of MMF (Ivl, a, Then (B2,/2) either is a minimal Arcut or is a minimal fi-rcut
which is determined within one of the recursive calls MMF (n, t2 , fi) u 1, 2. In
general (B,/i) is a minimal U-cut with U Bi or U =/i for some < i.

We are now able to represent the cuts (B,/i) 1,. , k by a tree network Wk.
This representation extends the construction of Gomory and Hu [4] to unsymmetrical
networks.

DEFINITION 3.3. The network a/k represents the cuts (B,/) 1,. , k if
(1) the nodes of W’k constitute a partition of V into k + 1 blocks and
(2) for each cut (Bi, :i) there is an edge e in W’k that represents (B,/i), i.e. W’k-{e}

splits into two weak components that partition V into B and/, e is directed from Bi to
B and has capacity c(B, B); (the classes of nodes that are connected by undirected
paths are called weak components).

We describe the construction of the tree network W’k that represents the cuts
(B, B) 1,. , k. The minimal V-cut (B1, B1) is represented by the network

c(Bl,1)
B1 B1.

Suppose that (B2,/2) is a minimal Bl-CUt which has been determined after
contracting B1. We distinguish two cases:

(a) BIB2" then

(B2,/ c(BI,
BE’- BE I") B1 BI

272 c.P. SCHNORR

represents the cuts (B1, B1), (B2, n2);
(b) / /2: then

c(a2,/z) c(ax,/1)
B2 B2FIB

represents the cuts (B, B), (B2, B2).
The induction step that constructs Wk+l from Wk operates as follows:

Observe that (Bk+l, Bk+l) is a minimal U-cut for some supernode U of ACk and has
been constructed after contracting each Bi with <_- k and U c Bi and after contracting
each Bi with <_- k and U c Bi. This series of contractions can equivalently be obtained
by eliminating U from Wk and by contracting each weak component of ACk -{U}. Wk+l
is obtained, from ,N’ by splitting U into

c(Bk+l,Bk+
U Bk+l U [’) Bk+l.

The weak components of Wk-{U} are attached either to U f’)Bk+ provided that
the component is contained in Bk+x, or to U [qB+ provided that the component is
contained in /k+l. This ensures that the new edge represents the cut (Bk/,/k/l).
Obviously the construction implies that the old edges in Wk/l still represent their
corresponding cuts.

This proves that Wk represents the cuts (B1, B1)through (B, Bk). Moreover, it can
easily be seen that ACk is the unique tree-like network that represents (B1, B1) through
(B, B).

In particular :=lvl- has node set {{v}l v V} and stores as follows:
THEOrtEM 3.4. min {Fu,o, Fo.u} equals the minimal capacity of the edges on the path

that connects {u} and {v} in . 1]’ among the minimal capacity edges on the undirected
path connecting u and v in some edge e is directed from {u} to {v} then F.o
min {Fu.o, Fo.,} and the weak components o’-{e} yield a minimal (u, v)-cUt.

Proofi Let IV[= n. n- represents all cuts (B,/) through (Bn-1,/=) that
appear during the computation of by the modified procedure MMF (n, t2, A). Each
edge e on the path that connects {u}, {v} in ,_ represents some (u, v)-cut if e is
directed from u to v and represents some (v, u)-cut otherwise. Hence c(e) >-

min {Fu.o, Fo.} for all edges e on the undirected path that connects {u} and {v} in n_l.
On the other hand some cut (B,B) occurs during the modified procedure
MMF (iVl, a,.)with c(B,)=min{F.,F.u} and (Bi,/) is either a (u, v)-cut or a
(v, u)-cut. We know that this cut is represented by some edge e in _. Moreover, this
edge e must lie on the undirected path that connects {u} and {v} in c,,_ since by
eliminating e from r,,_, c,,_ splits such that {u} and {v} fall in different weak
components. This altogether proves that min {F,.o,F.} equals the minimal capacity of
the edges on the path that connects {u} and {v} in _1.

Now suppose that some minimal capacity edge e on the undirected path that
connects {u} and {v} in _1 is directed from {u} to {v}. Then e represents a (u, v)-cut
(B,/) with capacity c(e). Hence F. <-c(e)= rain {F,.o, F.} which implies Fu.o
min {F., F,}. [3

Next we bound the total number of steps that are sufficient to compute 3 for
networks with n nodes on a Random Access Machine with full addition of real numbers.
We suppose that the Dinic-Karzanov algorithm is used for a single IMF-call which runs
in O(m)steps for networks with m nodes. Let VI n then O(n’) steps are sufficient in
order to compute a sequence A of minimal cuts along a V-cycle t. It remains to bound

UNSYMMETRICAL NETWORKS 273

the execution time of the modified procedure MMF (n, t, A). Let 8(n, m) be the
maximal number of RAM-steps that are used by the modified version of MMF(n, ti, A)
for any a and A with respect to networks with rn vertices.

Remember that MMF (n, a, A) determines a minimal V-cut (Aj, Aj) with V
{Uo, ", u,}. Let a have k <= n/2 Ai-segments and k Ai-segments. Then k IMF-calls
are executed on a network where Ai has been contracted and k IMF-calls are executed
on a network where Ai has been contracted. Finally MMF (nv, a v, Av), v 1, 2, is
executed on networks of size m p + 1 and p + 1 with k <-_ p <-_ m/2. We have n + n2 n
with n 1, n2 -> k. Therefore we obtain an upper bound 8 for 8 by the following recursion
scheme with some suitable a, b N"

g(n, m) am2 + max {g(n n, m -p + 1) + g(n, p + 1) + bk[(m -p + 1)3 + (p + 1)311
1 <-k <=n/2, k <=nl<-p<=m/2}.

Here arn :z bounds all side computations and b is the linear factor in the O(m3) bound for
the Dinic-Karzanov algorithm. For a sufficiently large c N the bound g(n, rn) <= cnm 3

can be proved inductively on n using the above recursion. In particular we have
t(n, n)= O(n4). This proves

THEOREM 3.5. The modified algorithm 2.3 constructs N from within
O(min El log vI, vI4)) steps where T is the best time bound for solving individual
max flow problems for /’. Thus can be computed within the same time.

4. Determining the edge connectivity k within O(k[VI IEI) steps. Let G (V, E)
be the given directed graph. Then k is the minimal number of edges that must be
eliminated from E in order to disconnect G. Let dV (V, E, c) be the network with unit
edge capacities c(e)= 1 for all e E. For this network Fu.v is the maximal number of
edge disjoint paths from u to v. It follows from the max-flow-min-cut Theorem 1.1 that

k min {Fu, u, v V}.
Let a (Uo, ul,’’’, u,) with n IvI be any V-cycle; then Lemma 2.2 implies

k min {F,,,,,/li 0,..., n- 1}.

Using this equality we determine k by computing flows/ci from ui to u+l such that within
stage] the value (]’) of f is increased from - 1 to/" for all i. This can be done by
constructing an augmenting path with respect to fi. We assume that the reader is familiar
with the concept of augmenting paths.

THE CONNECTIVITY ALGORITHM 4.1.

fire0 for =0, 1,. , n-1
stage := 0
Marke: for 0, 1,. , n 1 do

if there is an augmenting path with respect to f
then increase by 1 along this path
else goto End
stage := stage + 1 goto Marke
End: k := stage

At stage] the algorithm tests whether (f) can be increased to + 1 for all i. By the
previous remarks k is correctly computedand it temains to bound the running time of a
suitable implementation of the algorithm on a reference machine. Let V=

274 c.P. SCHNORR

{1, 2,..., n} and suppose that the adjacency lists Ei={][(i,/’)E} i= 1,..., n are
given as inputs. Then the construction of an augmenting path with respect to [i can be
done within o(IEI)steps by standard methods. Hence each stage of the algorithm can
be done within time O(1V[IEI) and therefore the connectivity k is computed within
O(kl vl IEI) steps.

Finally we compare the time bound O(k[V[IEI)with the time bound of the edge
connectivity algorithm of Even and Tarjan [2, p. 514] which runs in O(min (IV]2/3,
IEI/’-)I El IEI) steps, Obviously k =< IEI/I El since each vertex must have outdegree
in order to ensure edge connectivity k. Therefore k[V[I1--< IEI=, On the other hand

vI= => IE! implies IEI/=I El IEI--> IEI=. Hence k. vI IEI--< min (1 V[2/3 IEIX/)l El IEI pro-
vided k_-<lVI2/3. Thus our time bound beats the time bound of Even and Tarjan
provided k-<lVI2/3 and this condition should hold for most practical interesting
examples.

Probably our algorithm can still be improved by increasing f via Dinic’s algorithm
[1] instead of using the technique of augmenting paths. Increasing the flow f by one
phase of Dinic’s algorithm requires O(IEI)steps, but this might yield a considerable
increase of (). Unfortunately we are unable to express this improvement by a better
time bound in terms of k, Wl and IEI.

Acknowledgment. I thank H. Bremer for reading the manuscript and S. Even, Z.
Galil and the referee for useful comments.

REFERENCES

E. A. DINIC, Algorithm for solution of a problem of maximum flow in a network with power estimation,
Soviet Math. Dokl., 11 (1970), pp. 1277-1280.

[2] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, this Journal 4 (1975), pp.
507-518.

[3] L. R. FORD AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton, N.J.,
1962.

[4] R.E. GOMORY AND T. C. Hu, Multi-terminal network flows, J. Soc. Indust. Appl. Math., 19 (1961), pp.
551-570.

[5] A. V. KARZANOV, Determining the maximal flow in a network by the method ofpreflows, Soviet Math.
Dokl., 15 (1974), pp. 434-437.

[6] D. J. KLEITMAN, Methods for investigating connectivity of large graphs, IEEE Trans. Circuit Theory,
CT-16 (1969), pp. 232-233.

[7] K. MENGER, Zur allgemeinen Kurventheorie, Fund. Math., 10 (1927), pp. 96-115.
[8] C. P. SCHNORR, Multiterminal network flow and edge connectivity in unsymmetrical networks, Pro-

ceeding of the 5th Colloquium on automata. Languages and Programming (Udine, 1978), Lecture
Notes in Computer Science 62, 1978, pp. 425-439.

[9] , Rekursive Funktionen und ihre Komplexitiit, Teubner, Stuttgart, 1974.
[10] A. SCHONHAGE, Universelle Turingspeicherung, Automatentheorie und formale Sprachen, D6rr,

Hotz, eds., Bibliographisches Institut, Mannheim, 1970.

SIAM J. COMPUT.
Vol. 8, No. 2, May 1979

(C)1979 Society for Industrial and Applied Mathematics
0097-5397/79/0802--0012 $01.00/0

NEARLY ON LINE SCHEDULING OF A
UNIFORM PROCESSOR SYSTEM WITH RELEASE TIMES*

SARTAJ SAHNI" AND YOOKUN CHO"

Abstract. An O(m2n + mn log n) nearly on line algorithm to preemptively schedule n independent tasks
on rn uniform processors is presented. It is assumed that there is a release time associated with each task. No
task may be started before its release time. All tasks must be completed by a common due time (if possible).
Our algorithm generates schedules having O(nm) preemptions in the worst case. The algorithm can also be
used to minimize maximum lateness even for the case when all jobs have the same release time but different
due times.

Key words, independent tasks, uniform processors, preemptive schedule, release time, common due
time, complexity

1. Introduction. A uniform processor system P {P1, P2,’"", P,,,} is a set of m
processors (machines). Associated with each processor, Pi, is a speed s, si > O, 1 <= <- m.
Processor P can perform s units of processing in one unit of time. When s S+l,

1 -< < m, P is said to be a system of identical processors. Let T be a set of n independent
tasks. Let t, r and d respectively be the processing requirement, release time and due
time of task i, 1 -< -<_ n.

A DD-schedule for T is an assignment of tasks to processors such that (i) no
processor is required to process more than one task at any time, (ii) no task is
simultaneously processed on more than one processor, (iii) the processing of no task
begins before its release time and (iv) all tasks are completed by their due times. Note
that not all task sets have DD-schedules on a given processor system.

A nearly on line algorithm to find a DD-schedule (if one exists) is an algorithm
which, for every distinct release time r, determines the schedule from 0 to r without
knowledge of the jobs released on or after ri.

Many researchers have studied the problem of obtaining DD-schedules (when
they exist). Rinnooy Kan [6] shows that the problem of determining the existence of
nonpreemptive DD-schedules is NP-Complete. McNaughton’s algorithm [8] can be
used to obtain preemptive DD-schedules for systems of identical processors when the
task set T has only one distinct release time and one distinct due time. Gonzalez and
Sahni [3] present an O(n +m log m) algorithm that works for uniform processor
systems when T has only one distinct release time and one distinct due time. For the
case when all tasks have the same release time (but may have different due times), Horn
[4] presents an O(n 3) algorithm to obtain preemptive DD-schedules for identical
processors. A faster algorithm (O(n log ran)) for this case may be found in [9]. Under
the same assumptions on T, Sahni and Cho [10] obtain an O(n log n + ran) algorithm
for uniform processors. Since, in all the cases cited so far all tasks are released at the
same time, all the algorithms obtained are, of necessity, on line.

For the case when no restriction is placed on the task set T, Horn [4] presents an
O(n3) algorithm for preemptive schedules on identical processors. Bruno and Gonzalez
1] present a similar algorithm for a system of two uniform processors. Neither of these
two algorithms is on line. In fact, it is known [9] that no nearly on line algorithm exists
when tasks are allowed to have arbitrary release and due times.

* Received by the editors October 10, 1977. This work was supported in part by the National Science
Foundation under Grant MCS 76-21024.

" Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.

275

276 SARTAJ SAHNI AND YOOKUN CI-IO

Another special case that has been studied is when all tasks have the same due time.
While, this case is symmetric to the case when all tasks have the same release time, the
algorithms for the latter case do not result in on line algorithms for the former. Gonzalez
and Johnson [2] have obtained an O(nm) nearly on line algorithm for identical
processors when all tasks have the same due time. Their algorithm generates DD-
schedules (when they exist) having at most O(nm) preemptions. In this paper we extend
their result to the case of uniform processors. Our algorithm has time complexity
O(rnn + rnn log n) and generates schedules with at most O(nm) preemptions. In [10]
we demonstrated the existence of task sets for which every DD-schedule (even those
generated by off line algorithms) had at least O(nrn) preemptions. This algorithm can
also be used to obtain schedules minimizing lateness when all jobs have the same release
time but differing due times. To do this we just change the roles of due times and release
times.

2. The algorithm. We first present a nearly on line algorithm that generates
schedules with O(mn + n2) preemptions. Later, we shall show how to modify this
algorithm so that the number of preemptions is O(nm).

Assume that the n tasks to be scheduled have v distinct release times ri, 1 -< <-v.
Assume ri < ri/l, 1 <- < v and rl 0. Our algorithm works in v phases. In the ith phase
tasks are scheduled from time r to time r+l, 1 _-< < v. In the vth (and last) phase
scheduling is done for the interval [rv, d] where d is the common due time of all tasks.
The tasks available for scheduling in the ith phase are those released at or before time r
and which haven’t yet been completed, i.e., all released tasks with a nonzero remaining
processing time (RPT). For each phase, i, algorithm EQUAL determines the amount
each available task is to be processed. It does this by using an equalizing rule that
attempts to equalize the RPTs of all tasks at the end of the phase. EQUAL utilizes the
following fact which is due to Liu and Liu [7] and Horvath, Lam and Sethi [5]:

Fact 1. Let al ->- a2 -->" >_- at be a set of task times. Let w be the minimum finish
time of any preemptive schedule for these tasks on a system P {P1, P2, , P,,}. Let
sl -> s2 =>" => s,. Then,

(1) w max ai si, max ai si
l/<m

Using (1), EQUAL ensures that the amount of processing it is assigning for each
task in phase is such that all the phase processing can be completed in A ri+l-r
time (we may assume rv/ d). The basic strategy in EQUAL is to preferentially
process the longest tasks so that the tasks remaining at the next release time are as small
as possible. This is comparable to the level strategy used in [5]. The actual schedule for
each phase can be constructed using the algorithm of Gonzalez and Sahni [3].
EQUAL has six parameters. A is the length of the interval for which scheduling is to

be carried out in this phas.e (it is the time between two successive release times). S is an
array such that S(i)=j=lS/, l<=i<-m and S(0)=0. It is assumed that si-Si+l,
1 _-< < m. At the start of EQUAL, t(i) is the RPT for task i, 1 _-< =< p. p is the number of
available jobs with nonzero RPT. For convenience, a fictitious job p + 1 with t(p + 1) 0
is assumed, t’ is an output array. At termination of EQUAL, t’(i) is the amount job is
to be processed in the interval A. Also, t(i) is modified to reflect the RPTs at the end
of the interval. EQUAL determines t’(i) such that t’(i)>-t’(i+l), l<=i<p and

t’ t’max{Y’.’=x (i)/S(m),maxi<,{.= (i)/S(])}}<=A. Hence, the assignmentsdeter-
mined by EQUAL for the A interval can be scheduled. Furthermore, at termination we
shall have t(i) >- t(i + 1), 1 <= < p.

NEARLY ON LINE SCHEDULING 277

EQUAL begins by initializing t’ and t(0) to zero. When p<m, only the
fastest p processors need be used. Hence, in line 3, mused is initialized to be the actual
number of processors to be used. mlo is the least index such that P,,to is still
available for processing. Processors 1 through mlo-1 become unavailable when

,,to-x
t’(i)/S(mlo- 1)= A. nhi is the index of the next job to be considered. Initially,

mlo nhi 1. mhi min {nhi- 1, mused}. AMT is the amount of processing that has
so far been assigned to processors P,,o to P,,hi. At the start of the loop of lines 6-34, it
will be the case that the RPTs of the jobs indexed mlo, , nhi is the same. This RPT is
mow. Initially, tnow t(1) (line 5). EQUAL sequences through tasks with higher index
than nhi determining the next smaller task (line 8). Note that since t(p + 1)= 0 and
t(p) > 0, the loop of lines 7-9 will always terminate from line 8. nhi is updated in line 10
and mhi (line 11) is set so that processors mlo to mhi may be used for the processing of
jobs mlo to nhi- 1. We now attempt to equalize the RPTs of jobs mlo to nhi- 1 with
t(nhi). Recall that the present RPTs of all these jobs is tnow. Hence, equalization calls
for an additional total processing of (tnow- t(nhi)),(nhi- mlo) units. However, only
(S(mhi)-S(mlo- 1)),A-AMT units are still unassigned on P,,,to to Pmhi. INCR is the
maximum amount by which each t’(i), mlo <= < nhi is to be increased. This will result
either in equalization with t(nhi) or complete utilization of the processors.

line

3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18

19

20
21
22
23

ALGORITHM 2.1. The Equalizing Rule.

procedure EQUAL(A, S, t, m, p, t’)
//S(]) ,1 si and S(0) 0 is assumed. Also ti and si are in nonincreasing//
//order and t(p + 1) 0//
real t(0:p + 1), t’(0 :p), S(0: m)
t’0; t(0) 0//t’(O) and t(0) needed in ADJUST; t’0 initializes//

//all of t’//
mused- rain{m, p}
mlo nhi - 1; AMT -0
tnow - t(1)
while mlo <- mused and mow 0 do

for nhi + 1 to p + 1 do//t(p + 1)= 0//
if t(i)< mow then exit; endif

repeat
nhi -mhi -min(nhi- 1, mused)
NEXTAMT <- min{(tnow t(nhi)) (nhi mlo

+AMT, (S(mhi)- S(mlo 1)) A}
INCR- (NEXTAMT-AMT)/(nhi mlo)
TSUM- 0
for - mlo to nhi- 1 do//test if INCR feasible//

t’(i)t’(i)+ISCR
TSUM TSUM+ t’(i); i’ rain {mhi, i}
ii TSUM> (S(i’)-S(mlo- 1)). A then//use up P.,to,’", Pi//

TSUM- A * (S(i)- S(mlo 1))DEER- //i=i’//
i- mlo + l

for j - mlo to do
t’(])-t’(j)-DECR

repeat
call ADJUST

278 SARTAJ SAHNI AND YOOKUN CHO

24

25
26

27
28
29
30
31
32
33
34
35
36
37
38

AMT <-- AMT- A, (S(i)- S(mlo 1))+ (INCR-DECR), (i-mlo+ l)
mlo<-i+l; TSUM0
NEXTAMT <-- rain {(mow t(nhi)) (nhi mlo)

+ AMT, (S(mhi)- S(mlo 1)) A}
INCR (NEXTAMT- AMT)/(nhi mlo)

endif
repeat
tnow - t(nhi)
if t(nhi 1)- t’(nhi 1) # mow then AMT- 0; mlo - mhi + 1

else AMT-NEXTAMTendif
repeat
for <-- 1 to nhi- 1 do//update RPTs//

t(i)<--t(i)-t’(i)
repeat

end EQUAL

line

ALGORITHM 2.2. Subalgorithm for EQUAL.

proeeflure ADJUST
//All variables used in EQUAL are available inside ADJUST//

1 if t(i)-t’(i) <- t(mlo- 1)-t’(mlo- 1) then return endif
2 low - mlo; RPT- t(i)- t’(i)
3 jobs - i-low + 1//Number of jobs with equal RPT//
4 while low > 1 and RPT> t(low 1)- t’ (low 1) do
5 PRPT- t(low 1)- t’(low 1
6 p/obs 1
7 while t(low -pjobs 1)- t’(low -pjobs 1)= PRPT do
8 pjobs p/obs + 1
9 repeat

RPT jobs +PRPT pjobs
10 RPT <--

jobs + p]obs
11 jobs <-- jobs +p]obs
12 low <-- low -p]obs
13 repeat
14 for q <-- low to do
15 t’(q)-t(q)-RPT
16 repeat
17 end ADJUST

In the loop of lines 15-29 we check to see that increasing the t’(i)’s, mlo <= <
nhi by INCR still leaves us with t’(i)’s that can be scheduled in A. This condition is easily
tested for by the use of equation (1) and our assertion that t’(i)>-_t’(i + 1) for all i,
mlo <- < mhi. If the conditional of line 18 is true then, the t’(i)’s cannot be increased by
INCR. We compute DECR such that all t’(/’), mlo <-] <-_ can be increased by INCR-
DECR and this is the maximum possible increase. This completely utilizes processors
P,to to Pi. In line 23 the procedure ADJUST is invoked. This procedure ensures that the
RPTs of the jobs already assigned to processors of index smaller than mlo are not less
than those of the newly completed processors mlo to i. In case this is not true, ADJUST
reduces the assigned processing of lower indexed jobs (thus increasing their RPTs) and

NEARLY ON LINE SCHEDULING 279

increases the t’(])’s of the higher indexed jobs. Now that processors 1 through have
been completely assigned, AMT is updated to reflect the processing assigned only to
processors Pi/l through Pmhi. mlo is updated to + 1 (the next available processor is
Pi/l). INCR is recomputed in line 27 and an attempt is made to increase the t’(]) of the
jobs mlo <-_] < nhi.

When the loop of lines 15-29 is exited, we will be in one of two conditions. Either,
the RPTs of jobs mlo to nhi- 1 have been equalized to t(nhi) or they haven’t. In the
latter case, from the working of lines 12-29, it must be that all the processors with index
less than mhi + 1 have been fully assigned. Lines 31-33 do the necessary bookkeeping.

The subalgorithm ADJUST used by EQUAL is fairly straightforward. It begins
with the knowledge that t(/)- t’(/) >- t(] + 1)-t’(/+ 1), l<-]<mlo and t(/)-t’(])=
t(] + 1)- t’(] + 1), mlo <-] < i. If the condition of line 1 is true then, no adjustments need
be made: Otherwise, in lines 4-13, the algorithm goes through blocks of jobs with an
equal RPT. Each such block is identified by the loop of lines 7-9. The processing
assignments in this block will be changed so that the RPT of this block together with all
jobs seen up to index will be the same. The new RPT is computed in line 10. One may
easily verify that when the t’(q)’s are set as in line 15 they can still be processed in A units
on Prow through Pi

From the description of ADJUST, it should be clear that when EQUAL
terminates, t(i) >- t(i + 1), 1 <-_ < p.

Now we give an example to show how EQUAL works.
Example 2.1. Assume we have 5 jobs with RPTs 20, 19, 18, 17 and 16 respectively

and 5 machines with speeds 20.1, 19.1, 17.7, 16.8 and 16.3 respectively. Further,
assume A 1. Then S(i)= (0, 20.1, 39.2, 56.9, 73.7, 90.0).

The job with RPT 20 has highest priority and will be assigned for processing.
tnow 20 at line 5. The for loop of lines 7-9 will be exited with 2. NEXTAMT 1,
INCR 1 in lines 12 and 13. The condition of line 18 doesn’t hold. mow is set to 19 and
we start a new iteration of the while loop of lines 6-34. We have two jobs with RPT 19
now and these two jobs will be processed until their RPTs become 18. We shall follow
the same procedure until we reduce the RPTs of all 5 jobs to 16. Then, we will have
mlo 1 mow 16 and AMT 10. We start the 5th iteration of the while loop (lines
6-34). nhi becomes 6 at line 10 and t(nhi)=O. NEXTAMT=90 (line 12) and
INCR 16 (line 13). The for loop of lines 15-29 is entered and t’(1)= 20, t’(2)= 19 and
t’(3)--18. Now the condition of line 18 holds and DECR=0.1/3. The amount of
processing is reduced to t’(1)=20-0.1/3, t’(2)= 19-0.1/3 and t’(3)= 18-0.1/3
(lines 20-22). We execute algorithm ADJUST (line 23)for the first time. The condition
of line 1 holds and we return to EQUAL immediately. After executing lines 24-27, we
have AMT 1, mlo 4, NEXTAMT 33 and INCR 16. Then the for loop (lines
15-29) is reiterated with =4. t’(4) becomes 17 at line 16. Again the condition of line
18 holds. DECR becomes 0.2 and t’(4)reduces to 16.8. ADJUST is called again and the
while loop (lines 4-13 in ADJUST) is executed. RPT (line 10 in ADJUST) becomes
0.075 and the amount of processing for each job is adjusted to t’(1) 19.925, t’(2)=
18.925, t’(3)= 17.925 and t’(4)= 16.925. Now we shall have AMT=0 (line 24),
mlo 5, NEXTAMT 16 and INCR 16 (line 27). We get ((5)= 16 at line 16. The
condition of line 18 doesn’t hold and we complete the while loop (lines 6-34). The final
values are t(i)= (0.075, 0.075, 0.075, 0.075, 0) and t’(i)= (19.925, 18.925, 17.925,
16.925, 16). [3

Next we prove some facts about EQUAL. These facts are needed to establish the
validity of the final algorithm.

LEMMA 2.1. Assume we have n lobs with processing time ti, 1 <-i <-n, and m
machines ofspeed s, 1 <- <- m. Assume t >-_ t+ l, 1 <- < n, and s >-_ S+l, 1 <-_ < m. Leta

280 SARTAJ SAHNI AND YOOKUN CHO

be the remaining processing time (RPT) ofjob i, 1 <-_ <- n, after using EQUAL during a
certain interval A. Note that ai >- ai+ 1, 1 <- < n. Let b, 1 <- <- n be the RPTs after using
any other valid ass.ignmen.t rule during the interval A. Let tr(.) be such that b(j) >- b(j+l),
1 <-_] < n. Then .! ai <---- 1 br(i), 1 <-] <-_ n.

Proof. We first show 1 a-<l b(). This is trivially true if Y.=l (ti-a)=
A Y’-i= &. So, assume Y.=l (ti- a)< A, i--1 &. Let role be as defined at termination of

mlov’t-I (ti ai) A */.,i=1 si.EQUAL. From lines 12, 13, 19, 26 and 27, it follows that
Also, since Y.= (t- ai)< A, y.= &, it follows that the RPT of jobs mlo to p is zero.

role--1I.e., a 0, mlo <- <-_ n. Since, by Fact 1 no more than A,= & of any set of role 1
jobs can be processed in A, it follows that for every valid assignment _/-1 (t-b)_-<

.-mlo--1 --mlo--1 r-mlo--1 .v.mlo--1 -n
/x , 2.,i=1 Si 2.,i= (.ti ai). raence, Li=l oi Li= ai L a. so L= o
i=1 bi >-,1 ai.

Now, we shall show that Y’.__ a <-_ Y.= bfor 1 =< j < n. Assume this is not true for

some]. Let/" be the least index such that =1 a, > Y.--a b,. Since y.=__l ai <- i=1 br(i),
it follows that a] > b(). Let be the least integer such that/" < -< n and a at. If no such
exists then, since a] aj+l a, and ai> b,o >bo+l) >

)-’.= b,0). But we have just shown Y.= a <___ Y’.i= b. Hence, such an must exist. We
l--1 l--1 1--1

observe that a ai+l al-i > at and Y-i=x ai > .i=1 b,r0). Thus Y.i= (ti- ai)<
l--1 l--1 l--1 l--1= (ti b,i). One easily observes that Y.i= b <- Y.= b(i. So, Y.= (t b))---
1--1=1 (t bi). If 1 < m then, since EQUAL has failed to equalize jobs 1 and l, it

l--1
follows that Y-i=1 (ti-ai) A. Y.1-1 s. Furthermore, from Fact 1 it follows that in all
valid assignments for A, the sum of the l-1 largest assignments is no greater than
A i-t-l si. Hence, Y-i=t-ll (ti-bi) <A= ,I &. This contradicts our earlier claim that
.-.t- i-;- < ,-.t-

2..= (t- a) L= (ti- b). Hence, must be greater than m. But in this case job l- 1
can always be equalized to job unless this e.qualization requires more processing than

l--1 l--1
avadable. Snce at- > at, it must be that =1 (t-a)= A.F._I si. Since Y.= (t-&)<=
A.=1 s we agmn obtain a contradiction. Thus, there can be no for which =1 ai >

LEMMA 2.2. Let C be a set of n lobs with processing times c, 1 <-i <= n. Let D be
another set of of n jobs with professing times di, 1 <-i <-n. Assume ci and d are in
nonincreasing order and Z*I ci <-_Z d, 1 <-] <- n. Let c be the RPTof]ob i, 1 <- <-_ n, when
set Cis scheduledfor a period A using EQUAL. Letd be the RPTof]ob i, 1 <-_ <- n, when

’>set D is scheduled for a period A using EQUAL. (Note that ci Ci+l and d 1,

1-<_i <n.) Then,

<, d’ for l < =n.Zc =

Proof. Assume the lemma is not true. Let be the least index for which Y/Ci>
Y’. d. Then, c > dj. Let k be the least index such that j < k -< n and c , : c. There are
two cases.

Case 1. There is no such k. In this case ci c} for] < <= n and c’>di.c," > 0
since c,=ci>digO. Also, ZT(c,-ci)<Zx (d-d). This means that EQUAL has
assigned more total processing of the jobs in D than it has for the jobs in C. Let
x min {n, m}. Since c, > 0, EQUAL must assign A =, s amount of processing for
job set C. Also, no more than this amount can be assigned for D. Hence= (c c) g

Zi (di d).

= c[> d[and (c = > c can happen only-c;)< (a,-a,), ck_
-1 -1 -1 -1

ie (c,-c,)= s,. ut, in this ease, (a,-a,).

NEARLY ON LINE SCHEDULING 281

LEMMA 2.3. Let A and B be two sets oflobs. Let ri, 1 <-

_
v, be the distinct release

times of the lobs in A and B. Assume that ri < ri+ and that n lobs have release time r in
both A and B, 1 <= <- *9. Further, assume that the set oflobs with release time ri in A is
identical to that with release time ri in B, 2 <= <- *9. LetC Dand C Ebe thelob sets with
release time rl in A and B respectively. Let IDI IEI and let d, e, 1 <- <-_ l, be the
processing times]’or the lobs. in D and E respectively. Assume di >--di+l and e
1 <-_ < I. Also assume that I di >-_ Jl ei, 1 <-] <-_ I. IrA has a DD-schedule then B also has
one.

Proof. Assume A has a DD-schedule S. The proof is by induction on the number of
release times *9. Let a and/3, 1 _-< <_- n, be the processing times of the jobs in C 1.3 D and
C 1.3 E respectively. Assume that ti >_- a+l and fl _->//1, 1 <_- < n !.

Induction base. v 1. Since y,.il d >= /1 el, 1 </’ < l, it follows that 1 c >= 1/3i,
1 <_-] <_-nl. Hence, from Fact 1 we conclude that the job set C L.J E can be completed
using no more time than C L.J D. So, if A has a DD-schedule then B must have one too.

Induction hypothesis. Assume the lemma is true for all job sets with v distinct
release times for 1 -< v <u.

Induction step. We shall show the lemma is true when v u. A and B have n jobs
each at time rl. Schedule both job sets C L.J D and C t.J E using EQUAL during the
interval [rl r2] Let ti and/3 1 <i <i, n be the RPTs of these jobs at time r2. Since

tz --> -1/3, 1 -_<] <= n 1, it follows from Lemma 2.2 that Xil tz XI B , 1 =<] <_- n 1. Let A’
and B’ be the set of jobs remaining to be processed in A and B at time r2. Let A" be the
corresponding set at time r2 in the DD-schedule S. Further, let tzi’; 1 _-< _-< nl, be the
RPTs in S of the jobs in the set C LID at r2. Then, Xil t’i__XJlOli,< 1 =]<nl,< by Lemma
2.1. Since A" has a DD-schedule, it follows that A’ has one too (induction hypothesis).
Now, since A’ has a DD-schedule and both A’ and B’ have u- 1 release times and
satisfy the conditions of the lemma, it follows that B’ has a DD-schedule too. Hence, B
has a DD-schedule.

Our first nearly on line algorithm ONEDT utilizes EQUAL to schedule each phase
ft, r+l], 1 <-_ <= v(ro+l d). It also uses two other subalgorithms ORDER and UNI-
FORM. ORDER sorts the jobs to be processed in each phase into nonincreasing order
of their processing times. UNIFORM performs the actual scheduling of each job for the
amount of processing time t’(i) computed by EQUAL. Note that the conditional of lines
13 and 19 of EQUAL guarantees that this can be done. The algorithm UNIFORM is
formally given in Gonzalez and Sahni [3].

THEOREM 2.1. ONEDT generates a DD-schedule for every job set Jfor which such
a schedule exists.

Proof. The proof is by induction on the number of distinct release times in J and is
very similar to that of Lemma 2.3.

Analysis of EQUAL. The loop of lines 7-9 contributes at most O(p) to the
algorithms complexity. The total number of iterations of the loop of lines 15-29 is at
most p. The conditional of line 18 can be true at most m times. Each time this happens,
O(m) time may be spent in lines 19-27. Hence, the total contribution of lines 15-29
is O(p + m2). The complexity of EQUAL is also O(p + m2).

Analysis of ONEDT.
Time complexity. Let n, 1 <= <= *9, be the number of jobs released at the distinct

i--1
release times r, 1 =< _-< v. Line 5 takes O(ni log n +Y’.i=I nj) time since we only sort the
jobs released at r and merge these n jobs with the uncompleted jobs released from rl
through r_ 1. Note that these jobs are already in nonincreasing order of their RPTs. Line
6 takes O(Ni + mE) where N .i ni. Line 7 takes O(N,.). Therefore the time complex-
ity of ONEDT is O(n log n + nv + ,9m E) O(n 2 + nm2).

282 SARTAJ SAHNI AND YOOKUN CHO

Numberofpreemptions. We have v distinct release times. UNIFORM generates at
most 2(m- 1)preemptions [3] during the interval [ri, r+x]. Additional preemptions are
introduced since some of the jobs to be processed in [r, ri+l] may have been processed
for some time in a previous interval. There are at most N_ such additional pre-
emptions. Therefore, the total number of preemptions is at most Y. (2(m 1)+ Ni_)
O((m + n)v)= O(mn + n 2).

ALGORITHM 2.3. First algorithm for DD-schedules.

line procedure ONEDT(d)
//d is the common due time for all the jobs//

1 R set of jobs released at time 0
2 t0
3 loop
4 r rain {next release time, d}
5 call ORDER(R)
6 call EQUAL (r-t, S, R, m, p, T)

//S cumulative speed of processors//
l/m: number of processors//
lip number of jobs//
/ / T computed processing time//

7 call UNIFORM (m, p, T)
8 if r d then exit endif
9 Q -set of jobs released at r
10 R -Qt_JR
11 tr
12 repeat
13 i| all the jobs are completed then print ("DD-schedule exists")
14 else print ("No DD-schedule for the job set")
15 endif
16 end ONEDT

The total number of preemptions may be reduced by using the equalization
strategy only until 2m-mlo+l jobs have an equal RPT. The new algorithm,
MEQUAL, to determine the scheduling assignments for each phase is described in-
formally. MEQUAL behaves as EQUAL until nhi becomes greater than 2m- mlo +
1. At this time jobs mlo, mlo + 1,..., nhi-1 have the same RPT. In case all the
processing time has been assigned (line 2) then MEQUAL terminates. In this case
MEQUAL is identical to EQUAL. In line 3 we increase t’(i), mlo <-i <-m using the
equalizing rule and keeping in mind that t’(i), m < < nhi has also been assigned to this
interval. This step behaves as if t(m + 1) 0. If at the end of this step, t(m) t’(m) then

nni--1
must be that i=1 (t)= A ,--x si and (t(i)- t’(i)) > (t(i + 1)- t’(i + 1)), 1 -< _-< m. If

t’(m) t(m) then the RPT of job m is zero. In lines 6-12 we assign as much of jobs nhi
to p as possible. Note that since t’(m)-t(m)>=t(nhi), the assignments made in lines
6-12 cannot violate Fact 1 with w A. If all of jobs nhi to p can be assigned then, the
remaining time of the processors is allocated equally to jobs m + 1 to nhi- 1. Thus,
whenever MEQUAL behaves differently from EQUAL the RPTs of jobs m + 1 to
nhi- 1 is the same at termination. There are at least m- mlo + 1 such jobs.

ALGORITHM 2.4. Final equalizing rule for DD-schedules.

line procedure MEQUAL
use the equalizing rule, EQUAL, until it either terminates or
nhi > 2m- mlo + 1 (line 10). If EQUAL terminates then return.

NEARLY ON LINE SCHEDULING 283

10
11
12
13
14
15
16
17
18

if ,--a’nhi-1 t’(i)= A * S(m) then t(i)<--t(i)-t’(i), 1 <= i<nhi,"
return; endif
nhi - 2m mlo + 2
continue to increase the assignments t’(i), mlo <-_ < m using
the equalizing rule with the assumption t(m + 1)= 0. Now, the
equalizing rule will terminate either with t’(m)- t(m) or

-,nhi-1 ttt’(m)# t(m). If t’(m)# t(m) then z,,=l (i)= A S(m)
it t’(m) t(m) then t(i)- t(i)- t’(i), 1 <-_ nhi

return
endif

X’"i-x (t(i)- t’(i))AMTLFT A * S(m)-z.i=a
for nhi to p do

if AMTLFT> t(i) then t’(i) t(i); AMTLFT-AMTLFT- t(i)
else t’ (i) <-- AMTLFT

t(]) <-- t(])- t’(]), 1 <-] <-
return

endif
repeat
for <-- m + 1 to nhi- 1 do

t’(i)- t’(i)+ AMTLFT/(nhi- m 1)
repeat
t(i) t(i)- t’(i), 1 <-_ <--_ p
return

end MEQUAL

Example 2.2. Assume we have 3 machines with speeds S- {3, 2, 1}, 7 jobs with
processing times {10, 9, 8, 7, 6, 5, 4} and A 7.

If we use EQUAL, the RPTs of these jobs after scheduling are {1, 1, 1, 1, 1, 1, 1}.
When we use MEQUAL, we will first equalize the 6 largest jobs to have an RPT of 5.
Next, MEQUAL will continue to use EQUAL but with only the first 3 jobs. The RPTs
of these 3 jobs will be 0 after this step. We have used up 30 units of processing time out
of 42 units we are given for the interval. The last job with RPT 4 is now assigned (lines
6-10) and is completed. We have 8 units of processing time left. We execute the jobs
with initial RPTs 7, 6 and 5 this time (lines 3-5) for 8/3 more units. The final RPTs of
the jobs by MEQUAL are {0, 0, 0, 7/3, 7/3, 7/3, 0}. Note that the minimum finish time
for both sets is the same and is 7/6.

The following lemma shows that the processing assignments made by MEQUAL
can be completed within the given interval.

LEMMA 2.4. t’(i), 1 <--i <--p, generated by MEQUAL are such that they can be
completed in A units ofprocessing time.

Proof. We have 2 different cases according to when return of control is made by
MEQUAL.

Case 1. The return of the control is made at one of steps 1, 2 or 4. We have
assigned only using EQUAL thus far and EQUAL generates only valid sets of
processing assignments.

Case 2. Return of control is made at either line 10 or line 17. In this case
t’(j)<t’(i), j> m and i<=m. Since, maxi,,, {=x t’(i)/Z[=l si} <=A is guaranteed by
EQUAL and from lines 6-15 it follows that il (i)< A Yx si, Fact 1 guarantees that
the t’(i)’s are a valid assignment set.

Let t, 1 <_-i _-< p, t _-> t+x, 1 =< < p, be any set of p processing times. If the cor-
responding task set is used by EQUAL then let a, 1_-_ <_-p, be the RPTs. Let hi,

284 SARTAJ SAHNI AND YOOKUN CHO

1---i-<_ p, be the RPTs when MEQUAL is used. We have seen, earlier, that ai _-> ai/l,
1 <- < p. Assume that MEQUAL does not terminate in lines 1 or 2. It is easy to see that
a b, 1 <-_ < mlo. Also, there may exist a k, mlo <= k <- m, such that bk > b,,,/l. If such a
k exists then we can show that b,,,o >--b,to+l >-’" >--bk and ai >--bi, mlo <-i <-k. This
follows from the observation that MEQUAL tries to use all remaining space to increase
the assignments of only jobs mlo to m whereas EQUAL uses this same space to increase
the assignments of many more tasks. Let tr(.) be such that b()_>- b,(/ 1), 1 -< < p. From
the preceding discussion and the knowledge that b,,,/ bj, m + 1 <-] <- 2m mlo + 1, we
can conclude that a ->_ b(i), 1 -<_ <-/’, and

LEMMA 2.5. LetA, B, C, D, E, d, e and be as defined in Lemma 2.3. Assume that
d >- e, 1 <-_ <- , and ei+ ei, i + 1 < <- m. Further, assume that Yt d Ztl e and > m.

IfA has a DD-schedule then B also has one.
Proof. First assume that the number of distinct release times in A and B is 1. Sort

A C tAD and B C LI E into nonincreasing order of processing times. Let these
times respectively be a and/3, 1 - _<- n 1. i Oi+1 and/3i ->/3+1, 1 _-< < n 1. Let r be the
largest index such that a _->/3, 1 -< -< r. If r < m then from the assumptions on D and E,
it follows that/3r+ =/3i, r + 1 <] -< m. When r -> m, the lemma is proved by using Fact 1
and the knowledge, a>fl, 1 <i<-r, and ,.1 a_=,l /3i. When r<m, we use the

---i+1additional information E!1/3,/Y’.i1 s <- y.+l /)’.1 s,, r <j < m, and Y.1 /3,/Y’.1 s, <

Now assume the lemma is true for all job sets A and B with u < v re!ease times. We
shall show the lemma is true for all job sets with v release times. Let a and/3 be as
above. Use EQUAL to compute the assignments for C t0 D and C LI E in the interval
A r2-rl. Let a and/3i be the respective RPTs. From the working of EQUAL, it
follows that a =/3 , 1 < < r and if r < rn then/3’ A’+1 =fli, r+l<]<-m. Let andB be
the job sets remaining at r2 following the use of EQUAL in Jr1, r2]. It follows that A’ and
B’ satisfy the conditions of the lemma and have only v 1 release times. Also, A’ has a
DD-schedule. So, B’ and hence B have DD-schedules. l1

Let MONEDT be the algorithm resulting when line 6 of ONEDT is replaced by a
call to MEQUAL.

THEOREM 2.2. MONEDT generates a DD-schedule]’or every]ob set J]’or which
such a schedule exists.

Proof. The proof is similar to that of Lemma 2.5 and uses the results of the
discussion preceding this lemma. I-1

Analysis ot MONEDT. The complexity of MONEDT, is the same as that of
ONEDT, i.e., O(n 2 + ninE). Its complexity can be easily reduced to O(mEn + mn log n)
by using a heap. The changes needed to ONEDT to get the improved MONEDT are:

(i) delete line 5;
(ii) change EQUAL to MEQUAL in line 6;
(iii) maintain a max-heap of jobs with nonzero RPT;
(iv) in line 10 insert the Q into this heap;
The heap insertion of change (iv) requires O(IQ[log n) time per iteration. Hence

its overall contribution to the computing time is O((IQI log n)) O(n log n). We now
need to modify EQUAL so that when it is called from line I of MEQUAL, the job times
are obtained from a heap. This requires the insertion of an instruction between lines 7
and 8 to delete an element from the max-heap and to set t(i). A check for i>
rn mlo + 1 is also made. When this happens a jump to line 10 followed by a return to
MEQUAL is made. Since only O(m) items are deleted from the heap, the total time
spent on this call to EQUAL is O(m2 + m log n). When EQUAL is used from line 3 of

NEARLY ON LINE SCHEDULING 285

MEQUAL it works as before (i.e. using the times t(i), mlo <-i<-m rather than
extracting times from the heap.) Hence, the time for line 3 of MEQUAL is O(m2).
Lines 4 and 5 take O(m) time. If the loop of lines 6-12 is iterated k times on the ith call
to MEQUAL then the time needed is O(kg log n) to extract the next k times from the
heap plus O(nhi log n)= O(m log n) time to insert the nonzero RPTs back into the
heap (line 9) in case a return is made from this loop. If a return is made from line 17
instead then the total time spent in lines 13-15 is O(m). Line 16 requires reinsertion
of the nonzero RPTs into the heap. There can be at most nhi- 1 such RPTs as lines
13-17 are executed only when all jobs indexed nhi to p are fully allocated in lines 6-12.
So the time needed in lines 13-17 is O(m log n). Hence, the ith call to MEQUAL takes
times O(m 2 +(m + k)log n). If there are v release times then the total time spent in
MEQUAL is O(rrt2t +(my +,, k)log n). Note that when the loop of lines 6-12 of
MEQUAL are iterated, at least k 1 jobs have a zero RPT and so are not considered in
future iterations. Hence, k=O(n). Also v<-n. Therefore the time spent in
MEQUAL is O(m2n + mn log n). The total time spent in UNIFORM is less than this.
So, the overall complexity of MONEDT is O(m2n + mn log n).

If v is the number of release times then UNIFORM introduces at most O(rnv)
preemptions. At most 2rn + 1 of the jobs scheduled in any interval may remain
uncompleted by the end of the interval. This results in at most 2rn + 1 additional
preemptions per phase (except the last phase when all jobs must be completed). The
total number of preemptions is therefore O(mv)= O(mn). This bound of O(mn)
agrees with the lower bound established in [10] on the worst case number of pre-
emptions. 13

Acknowledgment. We are grateful to an anonymous referee for suggesting the
use of a heap to reduce the complexity of MONEDT from O(n2+ nm2) to O(m2n +
mn log n). The corresponding analysis was also provided by the referee.

REFERENCES

[1] J. BRUNO AND T. GONZALEZ, Scheduling independent tasks with release dates and due dates on
parallel machines, Technical Report No. 213, Pennsylvania State University, State College, Dec.
1976.

[2] T. GONZALEZAND O. JOHNSON, A new algorithm forpreemptive scheduling oftrees, Technical Report
No. 222, Pennsylvania State University, State College, June 1977.

[3] T. GONZALEZ AND S. SAHNI, Preemptive scheduling of uniform processor systems, J. Assoc. Comput.
Mach., 25 (1978), pp. 92-101.

[4] W. HORN, Some simple scheduling algorithms, Naval Res. Logist. Quart., 21 (1974), pp. 177-185.
[5] E. HORVATH, S. LAM AND R. SETHI, A level algorithm for preemptive scheduling, J. Assoc. Comput.

Mach., 24 (1) (1977), pp. 32-43.
[6] A. RINNOOY KAN, Machine scheduling problems, Ph.D. thesis, Mathematische Centrum, Amsterdam,

1976.
[7] J. LIU AND C. LIu, Bounds on scheduling algorithms for heterogeneous computing systems, IFIP

Proceedings, August 1974, pp. 349-353.
[8] R. MCNAUOHTON, Scheduling with deadlines and loss functions, Management Sci., 12 (1959), pp.

1-12.
[9] S. SAHNI, Preemptive scheduling with due dates, Technical Report #77-4, University of Minnesota,

Minneapolis, April 1977; Operations Res., to appear.
10] S. SAHNI AND Y. CHO, Scheduling independent tasks with due times on a uniform processor system,

Technical Report # 77-7, University of Minnesota, Minneapolis, May 1977.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0001 $01.00/0

AUTOMATIC ASYMPTOTIC AND BIG-O CALCULATIONS VIA
COMPUTER ALGEBRA*

DAVID R. STOUTEMYER"

Abstract. A computer program able to approximate symbolic expressions asymptotically is described.
More precisely, the program determines, as requested, simpler expressions which are either asymptotically
equal, of the same exact order, of at least the same order, of greater order, of lesser order, or of at most the
same order as the given expression. Additional features allow the combination of exact and approximate
subexpressions in the proper manner. The program is intended as a tool for complexity analysis, numerical
analysis, and wherever approximations are used.

Key words, asymptotic, O, o, order, complexity analysis, numerical analysis, approximation theory,
computer algebra, MACSYMA, simplification

1. Introduction. Complexity analysis has long benefited computer algebra by
serving as a tool for the analysis and a guide for the design of symbolic algorithms. This
paper describes a computer-algebra program which returns the favor by providing a
tool for complexity analysis.

Among the mathematical tasks of complexity analysts are:
1. The discovery of closed-form representations for indefinite finite sums.
2. The discovery of closed-form or asymptotic solutions to recurrence relations.
3. The simplification of complicated expressions by the reduction of expressions to

simpler ones which are asymptotically equal, of the same exact order, of at least
the same order, of greater order, of lesser order, or of at most the same order.

4. The simplification of expressions containing one or more approximate subex-
pressions of the above types.

The MACSYMA computer-algebra system, described by the Mathlab group [9],
has two built-in functions which are helpful for task 1, one of which is described by
Gosper [3], [4]. Moenck 10] describes another algorithm for this task. Ivie [7] describes
a MACSYMA program which is helpful for task 2, whereas Cohen and Katcoff [2]
describe an analogous REDUCE computer-algebra program.

A MACSYMA program for tasks 3 and 4 is described here. Section 2 outlines the
mathematical and programming techniques, while 3 contains a brief demonstration of
the program. Section 4 summarizes the performance for some more complicated
examples, with conclusions in 5.

2. Mathematical and progralnlning techniques. The notion of approximation is
ubiquitous and invaluable in mathematics. Among the reasons are"

1. Approximations often enable analysis to proceed when it would otherwise be
impossible or impractical.

2. Approximations often permit a concise summary of the most crucial features of
a result which is incomprehensibly complicated in its exact form.

3. Physical system models are frequently approximate anyway.

2.1. Asymptotic simplification via limits. Many concepts and notations of varying
rigor have been devised to facilitate a concise treatment of approximations. One of the
most useful of such concepts is that of asymptotic equality:

* Received by the editors May 23, 1978. This work was supported by the National Science Foundation
under grants MCS75-22983 and MCS7802234, by the United States Energy Research and Development
Administration under contract number E(11-1)-3070, and by the National Aeronautics and Space Adminis-
tration under Grant NSG 1323.

? Electrical Engineering Department, University of Hawaii, Honolulu, Hawaii 96822.

287

288 DAVID R. STOUTEMYER

DEFINITION. For a given vector of limit points (21, 22,""", k), we say that
g(xl, xz," , xk)= g(x) is asymptotically equal to f(x), denoted g(x)--.f(x), if

limit (g(x)/f(x))= 1,

provided the limit exists.
x and are often contextually implied rather than explicitly stated. For example in

complexity analysis x is frequently a vector of integer-valued variables with i=
(oo, oo,..., oo), whereas for numerical analysis x is frequently a vector of real or
complex variables with i (0, 0,..., 0).

As an approximation, it is often desirable to replace a complicated expression by
the simplest asymptotically equal expression. Moreover, it is often desirable to mix such
approximations with exact quantities in a disciplined fashion. Accordingly, it is
frequently convenient to replace a complicated subexpression g(x) by a functional form
such as ASYMP(f(x)), where f(x) is simpler than g(x), and for a contextually implied
limit point, is asymptotically equal. For example, we could approximate the infinite
Taylor series for e by

(1) 1 + + ASYMP(t2/2)

as approaches 0. Thus, ASYMP(f(x)) denotes some g(x) such that g(x)---f(x).
Alternatively, it is sometimes more suitable to let ASYMP(f(x)) denote the set of all
g(x) such that g(x) f(x). For example, under this interpretation expression (1) denotes
the set of all functions {1 + + any function asymptotically equal to t2/2}. The tech-
niques described below are applicable to either interpretation.

MACSYMAprograms have been developed which attempt to simplify expressions
of the form ASYMP(g(x)) to simpler forms ASYMP(f(x)) where f(x) g(x) but f(x) is in
some structural sense simpler than g(x). The user establishes by commands of the form
PUT(x., 2., LIMIT) before using "ASYMP". Any variables without such established
limits are assumed to represent constants.

Simplicity is in the eye of the beholder, and the notion of simplicity imbedded in the
algorithm for ASYMP is implicit in the following description of that algorithm"

First, the function uses the MACSYMA built-in RATSIMP function together with
appropriate settings of the RATEXPAND and RATDENOMDIVIDE flags to express
the argument as a ratio of two relatively-prime fully-expanded expressions. Then,
separately for the numerator and denominator, the algorithm discards terms which are
strictly dominated by any other terms. A term u strictly dominates a term v if

(2) ILl Ilimit (u/v) =c.

Hardy [6] gives a thorough discussion of the orders of infinity, and Wang [11]
describes how these considerations are incorporated into the built-in MACSYMA
LIMIT function. This function computes limits for a single real variable and must
sometimes ask the user for sign information about any other variables that occur in its
arguments. Consequently, in order to utilize this function for multivariate limits, the
program attempts to partition u/v into factors ro, rl," , rq, such that:

1. r0 is the product of all factors which do not contain any asymptotic variables.
2. Each asymptotic variable occurs in at most one of the factors rl through rq.

Construction of r0 through ro from the factors of uv is an application of the well-known
"equivalencing" or "disjoint-union-find" problem, as discussed by Aho, Hopcroft and
Ullman 1].

AUTOMATIC ASYMPTOTIC AND BIG-O CALCULATIONS 289

Computation of multivariate limits as nested univariate limits is not necessarily
valid, so if any of these factors contains more than one asymptotic variable, all terms are
retained and the user is advised to try again using the series-expansion alternative
described in 2.2. Otherwise, without loss of generality, let x. denote the asymptotic
variable in r., having the limit point 2., and let

l. limit r..
xi "i

Equation (2) can be regarded as true if and only if

lie0 for/’=l,2,...,q;

and

[lk for some 1 =< k <- q.

Conversely, v strictly dominates u if I;1 for] 1, 2,..., q; l. =0 for some
l<k<q.

However, if this technique results in the retention of more than one term, then
asymptotic cancellation may make some of any discarded terms significant. For
example, as n c,

/n4 + 1 n 2 + n 1 7c 4/’/4 -I- 1 n 2.
Consequently, the set of terms retained by the above dominance testing is

partitioned into equivalence classes, where in each class 0 < ILl < c for every pair of
terms in the class. Let the members of such a class be designated u, uz, , up, and let

L limit ui/u 1, for j 1, 2, , p.
x-

Then cancellation occurs if ",jP= Li 0.
When cancellation occurs, all terms are retained and the user is advised to try again

using the alternative series expansion technique described below. Otherwise the sum of
the terms in the class is represented by ul P= L., choosing for U the member which
makes this representation least complex. Complexity is measured as the number of
atoms in the internal representation of an expression, and the complexity measure
function is easily changed if the user prefers another measure. Consequently,
ASYMP(/n4 + 1 n 2 + n 1) remains as is, whereas ASYMP(2/n4 + 1 n 2 + n 1)
simplifies to ASYMP(n2).

As a final step, the ratio of the simplified numerator and denominator is reduced to
lowest terms.

For example, if m and n asymptotically approach c while e asymptotically
approaches 0, then

3 2 2

(3) ASYMp(am n+,n-m2n2+m2n+log3n) (am n+,rrmn)n-- -> ASYMP
5e

meaning that the expression left of the arrow simplifies to the expression on the right.

2.2,. Asymptotic simplification via series expansions. The built-in TAYLOR
function described by Zippel [12] provides an alternative technique. This function
yields multivariate power-series expansions of a specified order for a large range of
expressions. TAYLOR can accommodate poles, logarithmic and fractional-power
singularities, but not essential singularities. Moreover, TAYLOR permits expansions
about infinity provided the value is finite and without an essential singularity there. The

290 DAVID R. STOUTEMYER

restriction to a specified order, as opposed to a specified number of nonzero terms,
means that TAYLOR may in some cases have to be invoked with increasing order until
a nonzero term first appears. To prevent an infinite or prohibitively expensive loop, the
number of attempts is limited to the value of a global variable named MAXTAYLOR.
The limitations on expansions at infinity means that if TAYLOR initiates an error
interrupt due to an infinite value at infinity then TAYLOR should be reattempted on
the reciprocal of the given expression (returning the reciprocal of the series answer).
Because essential singularity will provoke error returns during our attempt to expand
expressions such as e or e about c, we use the built-in MACSYMA ERRCATCH
function to trap and recover "gracefully from these "errors". For these reasons, the
TAYLOR approach is scheduled before the dominance techniques, but the default
setting of MAXTAYLOR is 0. If the default setting yields an insufficiently simplified
result, the user can try again with MAXTAYLOR set to some modest positive integer.
Despite its present limitations and difficulties, the TAYLOR technique is sometimes
capable of generating simpler answers than the other technique described here,
particularly when the expanded numerator or denominator of the given expression
contains multi-term functional subexpressions such as log (m + 1) or x/m 2 + 3m + 1.

Perhaps the TAYLOR program could be generalized to suffice alone.

2.3. Mixtures of exact and approximate expressions. The simplifications done by
the ASYMP function can be called intra-simplifications, because they occur within the
argument of ASYMP. There are also applicable inter-simplifications between asymp-
totic subexpressions and exact subexpressions or other asymptotic subexpressions.
Subexpressions of the form ASYMP(u) can be treated algebraically just as any other
functional form, with some important exceptions:

(4)
ASYMP(u)

ASYMP(1),
ASYMP(u)

rather than simplifying to 1. Even more dramatic is the rule

(5) ASYMP(u) ASYMP(u) - o(u),

rather than simplifying to zero, where we have the following
DEFINITION. For a given and [(x) > 0, o([(x)) denotes some g(x) (or the set of

all g(x))such that

limit (g(x)/f(x)) 0,

provided the limit exists. Besides the ordinary algebraic simplification rules, modified
by rules (4) and (5), there are the additional consolidation rules:

(6) ASYMP(u)+ASYMP(v)ASYMP(u +v), for u -v,

(7) ASYMP(u) - ASYMP(u v) for u, v > 0,

(8) ASYMP(u)v ASYMP(uv),

(9) ASYMP(u)ASYMP(v) ASYMP(uv),

(10) ASYMP(ASYMP(u)) ASYMP(u),

11 ASYMP(u)/ASYMP(v ASYMP(uv).

These rules are reversible, yielding corresponding decomposition rules, but the pro-
gram uses only consolidation.

AUTOMATIC ASYMPTOTIC AND BIG-O CALCULATIONS 291

Regrettably, the MACSYMA pattern-matcher rejects attempts to establish rules
(4) and (5). Therefore, the user is advised not to generate expressions containing a
cancellable pair of two instances of the same asymptotic subexpression. The same
unwanted transformations would probably occur on almost any computer-algebra
system, and it is unclear how to esthetically inhibit them without extensive tampering
with the built-in simplifier.

To achieve simplifications (6) through (11), the program includes a function
named ASYMPSIMP, which scans expressions from the bottom up, applying these
simplifications at every opportunity.

Sometimes the constants within a result returned by ASYMP are complicated, or
they are of no interest. The 0 notation introduced by Knuth [8] usually permits us to
suppress these constants, retaining only the more important information indicating the
exact order of an approximation:

DEFINITION. For a given and positive f(x), 0(f(x)) denotes some g(x) (or the set
of all g(x)) such that there exist positive constants c and C together with a neighborhood
of where cf(x) -< g(x) =< Cf(x) for all x in this neighborhood.

The asymptotic analysis package contains a corresponding function named
THETA, analogous to ASYMP. THETA attempts to simplify expressions of the form
THETA(g(x)) to forms THETA(f(x)) when f(x)= 0(g(x)) but f(x) is in some sense
structurally simpler than g(x).

THETA uses the same algorithm as ASYMP, except THETA also removes the
content with respect to all asymptotic variables in the numerator and denominator of its
argument.

For example, if m and n asymptotically approach

THETA(2m2n + 4mn 2) - THETA(m2n + 2mn2).
There are inter-simplifications for THETA analogous to rules (4) and rules (6)

through (11). However, the analog of rule (5) is

(12) THETA(u) THETA(u) O(u),

where we have the following
DEFINITION. For a given and positive f(x), O(](x)) denotes some g(x) (or the set

of all g(x)) such that there exist a positive constant C and a rieighborhood of with
[g(x)[-< Cf(x) for all x in the neighborhood.

Whenever THETA and ASYMP interact, such as in ASYMP(u)THETA(v) or
THETA(ASYMP(u)), we can demote the ASYMP to the less precise THETA, then
proceed with any applicable further simplifications.

The aforementioned ASYMPSIMP function also performs these demotions
together with the THETA analogs of rules (6) through (11). For similar reasons, rule
(12) and the analog of rule (4) are not implemented. Consequently, there is a similar
caveat to avoid generating expressions containing a cancellable pair of two instances of
the same THETA subexpressions.

We have already defined little-oh and big-oh, and the program package contains
corresponding functions respectively named LO and O. Here is the story of O:

MACSYMA has no built-in facilities which encourage direct use of the definition
of O, so the program used LIMIT in an attempt to simplify the subset of problems for
which appropriate limits can be computed.

First O uses THETA; then for each asymptotic variable together with each term of
the numerator of the returned argument of THETA, O uses LIMIT to compare the
products of all explicit factors containing the variable and no other asymptotic variable,

292 r)Avxr) R. STOUTEMYER

retaining the dominant one of these products. If any factor contains more than one
asymptotic variable, then all terms containing those variables are retained. The same is
done for the denominator, except the most subordinate of these products is retained for
each variable. For example if m and n approach ,

!amZn + mn2 + mn) 2).Okog -n Y+-og -]--/ O m2n

There are inter-simplifications for O analogous to rules (6) through (10). However,
the analog of rules (4), (5) and (11) are respectively

(13)

(4)

(15)

O(u)-O(u)- O(u),

O(u)/ O(u)-’, undefined,

O(u)/O(v) undefined.

Also, whenever THETA or ASYMP interact with O, THETA or ASYMP can be
demoted to O, after which further simplification can proceed.

For ASYMP, THETA, and O we have used the same function name to designate
simplification and to designate the simplified result, because the simplification pro-
cesses are idempotent: ASYMP(ASYMP(u)) ASYMP(u), etc. However, when a user
inputs o(g(x)), he might want either of two things returned:

1. An expression o(f(x)), where f(x) is the simplest expression which strictly
dominates g(x).

2. An expression o(f(x)), where f(x) is the simplest expression which strictly
dominates any function that g(x) strictly dominates.

I have chosen the second interpretation for its idempotency and its ease of implemen-
tation, but it is not clear yet whether or not most users would prefer the first alternative
or an opportunity to impose either one.

With the second alternative, the intra-simplification for o is similar to that for O.
The inter-simplifications for o are analogous to those for O. Also in composition or

products with o, we can absorb ASYMP, 0, or O. For example:

(16) O(o(u))- o(u),

(17) o(O(u))o(u),

(18) o(u)O(v) o(uv).

Otherwise, we can demote o to O in interactions with ASYMP, 0, and O. For
example:

(19) o(u)+ o(v) O(u)+ o(v) O(u + v).

O and o respectively provide an upper bound and a strict upper bound on the order
of an approximation. In addition or instead, we are sometimes interested in a lower
bound or a strict lower bound on the order. Halton [5] and Knuth [8] have indepen-
dently suggested the following notations for this purpose:

DEFINITIONS. For a given and a positive f(x), w(f(x)) denotes some g(x) (or the
set of all g(x)) such that

limit (f(x)/g(x)) O.

AUTOMATIC ASYMPTOTIC AND BIG-O CALCULATIONS 293

DEFINITION. For a given i and positive f(x), D,(f(x)) denotes some g(x) (or the set
of all g(x)) such that there exist a positive constant c and a neighborhood of i with
cf(x) <= Ig(x)l for all x in the neighborhood.

The intra and inter simplifications of o and f are quite similar to their respective o
and O counterparts, as are the interactions of w and f with each other and with
ASYMP or 0.

The reciprocal nature of O with D, and o with w permits the following conversions:.

(20) 1 / (f(1 / u)) -- O(u),(21) 1/(w(1/u))--o(u).

However, it is uncertain which direction, if any, is universally best, so these
conversions are not included in the program.

Consolidation rules (7) and (8) combine exact with approximate operands of
multiplication and exponentiation, which can also be done for addition. For u -v"

(22)

(23)

(24)

(25)

u + ASYMP(v) ASYMP(u + v),

u+O(v)O(u+v),

u+O(v)O(u+v),

u + f(v)- f(u + v).

However, these are of dubious desirability unless u + v simplifies, such as when
u av, with a free of all asymptotic variables, for which we have

(26)

(27)

(28)

and also

(29)

(30)

,v + O(v)- O(v),

av+O(v)o(v),

av + f(v)- f(v),

ov + o(v) ASYMP(av),

v + ,o(v)- o(v).

2.4. Asymptotic series. One way of developing an n-term asymptotic expansion
for an expression u0 is to let u-1 0; then for j 1, 2,-.., n, use ASYMP to suc-
cessively compute simplified terms u. such that u.-2- u._l--- uj. The desired asymptotic
expansion is then

/=1

This expansion is the most natural one in the sense that successive basis functions are
selected automatically according to the nature of u0, rather than artificially imposed by
the user. Accordingly, a function which performs such expansions is included in the
package.

3. Demonstration. MACSYMA is an interactive computer system which prompts
the user for successive commands with a unique label beginning with the letter C. The
user then types an expression terminated by a semicolon, after which MACSYMA
generates and prints a corresponding simplified expression having a correspondingly
numbered label beginning with the letter D. D-label results can be referred to
in subsequent expressions.

294 DAVID R. STOUTEMYER

At the MIT MACSYMA-consortium Decsystem 10(KL model), the asymptotic
simplification package resides on a publicly accessible disk file. To load that file"

(C1) BATCH(ASYMP, "> ", DSK, SHARE);

(D47) BATCH DONE.

To establish that N asymptotically approaches and that X asymptotically
approaches 0:

(C48) PUT(N, INF, LIMIT);

(D48) INF

(C49) PUT(X, 0, LIMIT);

(D49) 0.

Now, consider the expression

(3*SQRT(X)*LOG(N) + 6*(X’N)**2 +X**2*N)/(N !*3**X +X**(N +X) + 5);

(c50)

(D50)
6 N X +N X + 3 LOG(N) SQRT(X)

N! 3x +Xx+ + 5

To asymptotically simplify the expression"

(C51) ASYMP(D50);

ASYMp/6 X X+3 LOG(N) SORT(X)(D5 1)
N! 3x ,]

To find a simpler expression of the exact same order:

(C52) THETA(D50);

(052) THETA(2 N2 X2+LOG(N)SQRT(X))N! 3x

To find still a simpler expression of at least the same order:

(C53) O(D50);

(D53) o(N
2 SQRT(X)’

To find a simple lower bound for the order

(C54) OMEGA(DS0);

(D54) O G ! 3x].

Now, suppose that we wish to combine two of the above approximate expressions as
follows:

(C55) D53**2*D51;

(D55) O2(N2 SQRT(X)t ASYMP(6 N2 X2+3 LOG(N) SQRT(X))2i] N! 3x

AUTOMATIC ASYMPTOTIC AND BIG-O CALCULATIONS 295

To consolidate the approximate subexpressions:

(C56) ASYMPSIMP(D55);

X3/2

Finally, consider the expression

(C57)

(D57)

(N! + 3**N)**2/LOG(N) + (N’LOG(N) + 2"*N)*’3;

(N!+3N)2

LOG(N)
+ (N LOG(N) + 2N)3.

To get a natural 2-term asymptotic expansion of this expression:

(C58) ASYMPSERIES(D57, 2);

N!2

(D58)
LOG(N)

2 3N N!
+ LOG(N)"

4. Test results. The intent was to implement a package which can asymptotically
simplify a broad spectrum of complicated expressions in a reasonable amount of
computer time. Probably the most relevant test of the performance relative to this goal
is to collect examples and reactions from users over the next year or two. Until then,
artificially-contrived tests must suffice as a brief indication of the performance.

For application of the functions THETA, O, LO, LOMEGA to expressions having
many terms, most of the work is usually done by an internal use of the function ASYMP.
Consequently, test results are summarized only for ASYMP. Accordingly, the follow-
ing random expression generator was designed to produce a class of expressions which
is both plausible and suitable as inputs to these asymptotic simplifiers:

expression (p, q, r) :: termi(q, r)
j=l

q

term (q, r) :: 1-I factork (r)
k=l

factor (r) :: variable(r) nonvariable(r)

variable (r) variablex variable21 variabler

nonvariable (r) :: number llog(factor(r))lfactor(r)exponent(r)

number::=2131 19
exponent (r)"" number factor(r)

variable1 N

variable2 M

where random elements of each set of alternatives are chosen with equal probability,
and where variables M, N,... asymptotically approach oo. For example, a typical

296 DAVID R. STOUTEMYER

instance of expression (16, 4 2) is

504 LOG(LOG(5)) N25 LOG(N)+M N2 LOG(N)+M LOGS(M) N LOG(N)

+4 LOG(5) N LOG(N)+147 LOG(N)+LOG(M) N2N+2+6 M2 N36

+42 LOG(M) N5+M N3+M LOG(M)LGLG6)) N2+2 M N:z

+MM 3M" ABS(M)4M’ N +m2 7M N

+9 LOG(6) M N+6 M:z LOG(M)+M4.

Due to collection of similar terms and other routine simplifications, this expression
has an average of 3 rather than 4 factors per term. Using the program’s complexity
measure of the number of atoms in the internal representation, this expression has a
complexity of 125. Using an untranslated, uncompiled version of the program, ASYMP
required 19 seconds to simplify this expression to

ASYMP(LOG(M) N2N+2+6M2N36+M4MM+M 3M4 N),

for which the complexity of the argument is 35.
This example is from a systematic sequence of tests log-log plotted in Fig. 1, from

data summarized in Table 1.
This sequence of tests was conducted using the built-in random number generator

with its default initialization. Most complexity analyses entail only one asymptotic

100

10

0.1

oO

xA

o x

o

10 100
INPUT COMPLEXITY

FIGURE

1000

AUTOMATIC ASYMPTOTIC AND BIG-O CALCULATIONS 297

TABLE

Input Output Input Output Time Plot
Case p q terms terms complexity complexity (sec) symbol

1 1 0.06
2 2 2 4 0.18
3 4 1 2 8 3 0.58
4 8 3 9 3 0.24
5 16 6 24 7 10.0
6 32 12 44 6 4.5
7 64 23 23 95 95 19.5

8 2 3 3 0.07
9 2 2 2 14 9 1.10
10 4 2 4 18 5 0.48
11 8 2 6 31 9 0.57
12 16 2 10 47 5 3.15
13 32 2 19 106 >128

14 2 2 5 5 0.08
15 2 2 2 2 2 7 7 0.22
16 4 2 2 3 2 11 8 0.36
17 8 2 2 4 3 21 19 0.96
18 16 2 2 12 2 51 12 4.8
19 32 2 2 21 21 111 111 14.4

20 3 2 8 8 0.08
21 2 3 2 2 11 7 0.19
22 4 3 2 4 3 22 19 0.66
23 8 3 2 8 2 58 16 22.0
24 16 3 2 16 4 102 35 9.3
25 32 3 2 29 210 >128

26 4 2 5 5 0.08
27 2 4 2 2 2 11 11 0.31
28 4 4 2 4 49 36.8
29 8 4 2 8 4 60 35 3.1
30 16 4 2 16 3 125 35 19.3
31 32 4 2 29 243 >128

Input Output Input Output Time Plot
Case Sum of terms terms complexity complexity (sec) symbol

32 thru 6 16 63 6 8.1
33 8 thru 12, 32 27 135 9 40.1
34 14 thru 16, 33 31 3 150 18 43.6
35 17,34 33 33 164 164 9.6
36 18,34 40 3 193 21 51.8
37 20thru 24,36 60 4 347 36 111
38 26,27,37 62 4 364 36 110
39 29,38 66 5 398 43 123
40 30,39 80 517 >128

variable, and few analyses entail more than 2, so the testing was confined to these
values.

Cases 7, 19 and 35 are examples where the limit function returned UND or an
inconclusive result, or where cancellation occurred, thus forcing ASYMP to retain all
terms.

298 DAVID R. STOUTEMYER

Cases 13, 25, 31, and 40 are examples where computation was manually inter-
rupted after exceeding an arbitrary limit of 128 seconds.

Despite its relatively modest total complexity, Case 28 was automatically
terminated after 37 seconds because of insufficient space for large integers. The
example was

M3 LOG2(LOG(LOG(LOG(M))))NLOG(6 LOG(N))+2 +4096M LOG(M) NNN+N9

+M2 N7 +8 M N2,
so it is not hard to understand why LIMIT had such a hard time. This example illustrates
the fact that the performance is very sensitive to the difficulty of the most difficult
factors. The performance is also sensitive to how soon difficult factors occur during
testing, especially if they are relatively dominant. This sensitivity is also illustrated by
the appreciable scattering in Fig. 1 despite the fact that it is a 3-decade log-log plot.
Although the data suggests a slope of about 2, hence a roughly quadratic growth of
computing time with input complexity for this class of expressions, it would be rash to fit
any specific curve to data having this much variability.

Cases 32 through 40 were constructed by adding together the inputs for previous
successful cases, in order to gather data for longer expressions than is likely to be
successfully simplified for this random expression generator. For example the input and
output for case 39 are respectively

N2 LOGT(LOG(4) LOG(LOG(N)))+5 M4 N LOG(9 LOG(N))

+LOG(LOG(N))LGV+LOG(6) Mz4 N LOG(LOG(N))

+ 11 LOG(LOG(N)) + LOG(N)u2 + LOG(6561) LOGN(N)

+ LOG(9) N LOG9(N) +LOG7(N) + LOG(M) N6 LOG2(N) +N3 LOG2(N)
+ 25 M LOG2(N) + LCG2(N) + 3 LOG(4) N28 LOG(N) +N8 LOG(N)

+ 7 N5 LOG(N) + 8 N2 LOG(N) +4096M N LOG(N)

+m2 N LOG(N) +LOG(7) N LOG(N) +67 N LOG(N)

+LOG(M) LOG(N)+M:z LOG(N) + 5 M LOG(N)

+ LOG(LOG(3)) LOG(N) + LOG(3) LOG(N)

+12 LOG(N)+N 6N+N5u2+1 +6 NU+NIS+N9+M NS+M N7+4 N7

+ 56 N6 +N3 +M2 N2 + LOG(7) M Nz +4M N2 +7N2

+M LOG2(M) LOG(LOG(LOG(M))) N+M5 LOG(M) N

+5 LOG(M) N+M9 N+4 M7 N+Mz N+15 M N+LOG(8) N

+2 LOG(7) N+3 LOG3(2) N+884518 N+M:ZM6+LOG(LOG(M))
+LOGZ(M)+10 M1 LOG(M)+134217728 MM+9 M6+7 LOG(5) Ms

+ 7 Mz + 3LOG9) M+LOGN(3) M + 2 LOGg(LOG(4)) M+ 48 M

+ 10 LOG(8) + 6 LOG(2) + 16942
and

ASYMP(4096M N LOG(N) +N5N:+I +Mz N2-t’M2M6+1 LOG(LOG(M))

+LOGU(3)M)

AUTOMATIC ASYMPTOTIC AND BIG-O CALCULATIONS 299

Case 34 is the only instance where the LIMIT function returned UND or an
inconclusive result, or where cancellation occured, for a case constructed by adding
together previously successful cases.

Expressions generated by this generator are rarely suitable for the TAYLOR
function, so all testing was done with the default setting of MAXTAYLOR 0.

5. Conclusions and suggestions for further research. The demonstration in 3
and the test results in 4 indicate that order algebra is a feasible and worthwhile
supplementary package for a computer-algebra system. However, there are open
questions about what type of simplifications most users would like in such a package and
about how best to implement the package. Hopefully, experience gained from varied
use of the prototype described here will lead to the development of a more efficient,
flexible, and comprehensive package. Especially promising improvements are:

1. extension of the TAYLOR function to form expansions in terms of a set of
arbitrary basis functions specified by the user or automatically deduced from
the given expression;

2. provision of optional and more drastic simplification for the operators o and o
3. provision for asymptotic approximation of sums and integrals in terms of

asymptotic approximations of their limits and their summands or integrands.

Acknowledgment. I thank D. Askey, R. W. Gosper, N. Pippenger, and R. Zippel
for their helpful suggestions.

REFERENCES

[1] A. V. AHO, J. E. HO’CROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1975.

[2] J. COHEN AND J. KATCOFF, Symbolic solution of finite-difference equations, ACM Trans. Math.
Software 3 (1977), pp. 261-271.

[3] R. W. GOSr’ER, JR., Indefinite hyperbolic Sums in MACSYMA, Proceedings of the 1977 MACSYMA
Users’ Conference, NASA CP-2012, pp. 237-252.

[4], Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. U.S.A., 75
(1978), pp. 40-42.

[5] J. H. HALTON, Asymptotics for formula manipulation, Proceedings of the 1968 Summer Institute in
Symbolic Mathematical Computation, IBM, June 1969, pp. 149-194.

[6] G. H. HAIDY, Orders of Infinity, Cambridge University Press, London, 1910.
[7] J. IVIE, Some MACSYMA programs for solving difference equations, ACM Trans. Math Software, 4

(1978), pp. 24-33.
[8] D. E. KNUTH, Big Omicron and Big Omega, and Big Theta, ACM SIGACT News, April-June, 1976,

pp. 18-24.
[9] MATHLAB GROUP, MACSYMA Reference Manual, Laboratory for Computer Science, M.I.T.,

Cambridge, MA, 1977.
10] R. MOENCK, On computing closed forms for summations, Proceedings of the 1977 MACSYMA Users’

Conference, NASA CP-2012, pp. 237-252.
[11] P. WANG, Evaluation of Definite Integral by Symbolic Manipulation, Ph.D. dissertation and Project

MAC Technical Report TR-92, M.I.T., Cambridge, MA, October, 1971.
[12] R. ZII’PEL, Univariate power series expansions in MACSYMA, Proceedings of the 1976 ACM

Symposium on Symbolic and Algebraic Computation, R. D. Jenks, ed., pp. 198-208.

SlAM J. COMPUT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0002 $01.00/0

NEW ALGORITHMS FOR POLYNOMIAL SQUARE-FREE
DECOMPOSITION OVER THE INTEGERS*

PAUL S. WANG" AND BARRY M. TRAGER

Abstract. Previously-known algorithms for polynomial square-free decomposition rely on greatest
common divisor (gcd) computations over the same coefficient domain where the decomposition is to be
performed. In particular, gcd of the given polynomial and its first derivative (with respect to some variable) is
obtained to begin with. Application of modular homomorphism and p-adic construction (multivariate case) or
the Chinese remainder algorithm (univariate case) results in new square-free decomposition algorithms
which, generally speaking, take less time than a single gcd between the given polynomial and its first
derivative. The key idea is to obtain one or several "correct" homomorphic images of the desired square-free
decomposition first. This provides information as to how many different square-free factors there are, their
multiplicities and their homomorphic images. Since the multiplicities are known, only the square-free factors
need be constructed. Thus, these new algorithms are relatively insensitive to the multiplicities of the
square-free factors.

Key words, square-free decomposition, lucky evaluation, polynomial factoring, Chinese remainder
algorithm, p-adic construction

1. Introduction. The polynomial square-free decomposition process has many
uses in symbolic algebraic computation. Its applications include polynomial factoriza-
tion, partial fraction decomposition, and integration of rational functions. A recent
paper by David Yun [7] describes several algorithms for square-free (SQFR)
decomposition. Each of these methods depends on computing the greatest common
divisor (GCD) of the polynomial to be decomposed and its first derivative (with respect
to some variable). For these methods, this GCD computation dominates the cost of the
SQFR decomposition. When computing over the integers, this GCD computation can
be costly, especially if the polynomial is multivariate.

Several new algorithms for SQFR decomposition over the integers are presented.
These algorithms avoid computing the above mentioned GCD over the original
coefficient domain and are generally less costly than that single GCD computation when
applied to non-SQFR polynomials. The key idea is to obtain one or several "correct"
homomorphic images of the desired SQFR decomposition first. This provides informa-
tion as to how many different SQFR parts (or factors) there are, their multiplicities, and
their homomorphic images. If the homomorphic image is square-free, then the given
polynomial is square-free. Thus SQFR polynomials are detected very early in these
algorithms. Otherwise, the homomorphic images of the SQFR factors are used to
construct these factors which leads to the complete SQFR decomposition. Since only
the SQFR factors need to be reconstructed, these new algorithms are relatively
insensitive to the multiplicities of the factors.

Two different SQFR algorithms are described. The modular SQFR algorithm
described in 3 uses the Chinese remainder algorithm for reconstruction and is

* Received by the editors May 23, 1978. This work was supported in part by the Laboratory for
Computer Science (formerly Project MAC), an M.I.T. Interdepartmental Laboratory, sponsored by the
United States Department of Energy under contract E(11-1)-3070, and by the National Aeronautics and
Space Administration under Grant NSG 1323. This work was also supported in part by Kent State University
and some of the materials incorporated in this work were developed with the financial support of National
Science Foundation Grant NCS78-02234.

" Department of Mathematics, Kent State University, Kent, Ohio 44242.
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139.

300

POLYNOMIAL SQUARE-FREE DECOMPOSITION 301

especially suited to univariate polynomials. The p-adic square-free algorithm described
in 2 uses a Hensel type p-adic procedure for construction and is more efficient for
multivariate polynomials.

Our algorithms depend on the use of correct or "lucky" homomorphic mappings.
In 4 we carefully discuss the concept of "luckiness" and related issues. Finally in 5
we outline generalizations of our approach and its implications for symbolic manipula-
tion systems [3]. Actual machine timings are included in the Appendix.

2. The p-adic SQFR algorithm. Let F(x, x2, , Xt) E Z[x, x2, xt] be a poly-
nomial primitive with respect to x. A SQFR decomposition of F(x, x2, , xt) consists
of finding polynomials Fl(x, x2, , xt), , Fn(x, x2, , x,) over Z such that

(2.1)

F Fe’F Fe#

O<el<e2"" <en
gcd (F, F/) 1 for # j

and each F has no repeated factors (is SQFR).
Let {a2,’", at} be a set of integers (not necessarily distinct) and Fo(x)=

F(x, a2,"’, at). If deg (F0)=deg (F(x, x2,’", xt)) in x then {a2,"’, at} is called a

valid evaluation (or simply evaluation). Let Fio(X)= Fi(x, a2,’", at) for 1,..., n,
d deg (gcd (Fo, F)) and 8 deg (gcd (F, OF/Ox)) in x, with d >_- 6 always true.

LEMMA 2.1. If Fo(x) is obtained by a valid evaluation of F, then

el Fe#o(2.2) Fo(x) =Fxo

is the square-free decomposition of Fo(x) if and only if d 6.

Proof. The "only if" part is obvious. If (2.2) is not the square-free decomposition of
Fo(x) then at least one of the following is true: (a) Fio(X) is not SQFR for some i, (b)
gcd (Fio, o)# 1 for some ij. It can be deduced that (a) and/or (b) imply that
d>8.]

In this algorithm a few different evaluations will be generated. From these different
evaluations, a set, say {a2, at}, that gives a minimum value for d will be used. If d is
zero for any evaluation, then F0 is SQFR and so is F. Suppose d s 0, then F0 is not
SQFR. In this case, one applies the univariate SQFR algorithm of 3 to Fo(x) obtaining
the square-free decomposition of Fo(x) over Z:

(2.3) Fo(x) fr f= fr,,,,,, 0 < ra < r2’’ < r,.

Note that r, _-> en and if r,, e, then deg (f,,) => deg (Fn) in x.
If the evaluation {a2,’’’, at} used is selected from randomly generated evalua-

tions, then d 6 with high probability (see 4 for details). If d 6 then by Lemma 2.1
we have m n, ri ei and fi F/o for all i. In other words (2.3) is exactly the same as
(2.2). The algorithm proceeds to construct F from f,, on the assumption that r, en
and f,, Fn which is a weaker condition than d 6. The evaluation {a2,’’’, at} is
"unlucky" if this assumption is incorrect. In the unlucky case a division test later in the
algorithm will fail, causing the selection of a different evaluation that lowers the value
of d.

If m 1 and r, k 1 then the algorithm proceeds by taking the kth root of
F(x, x2, , xt). If the kth root is not exact then {az, , at} is unlucky. For m > 1, the

302 PAUL S. WANG AND BARRY M. TRAGER

algorithm computes

D(x, ,xt)=
1 (X) rm-1

(r, 1)!
F(x,... ,xt),

Do(x)
(r,, 1)’{ Fo(x).

THEOREM 2.1. IfG is the "most repeated part" ofthe square-free decomposition ofF
and e is its multiplicity, i.e., F HGe, G is SQFR, gcd (H, G) 1 and H has no factors
with multiplicity greater than e 1, then GID (O/ox)e-aFand G andD/G are relatively
prime.

Proof. Consider

(X)e-1 e(x)e-1 Ge(x)e-2F=G H+ (e 1)--x H+

(e- 1)(O’Ox) (x)
e-i-1

H(x)e-lae"+ G H+...+

Each term on the right hand side of the above equation is divisible by G2 except the last
term which is

G e .HG\ ,gx /
+ HG:zP

for some polynomial P. Therefore G ID and gcd (G, D/G) 1 since gcd (G, OG/Ox)
1o [3.

It follows from Theorem 2.1 that f,, (x)l Do(x), gcd (f,,,Do 1 and

(2.4) D(x, x2, x)-- f,,(x)(Do(x)/f,(x)) mod S

where S is the ideal (X2-- a2, xt- at). Thus the congruence (2.4) can be lifted using a
multivariate p-adic construction. One can use the well-known EZ algorithm [5] for this
purpose. If one wishes to take advantage of the new EEZ p-adic construction devised
recently which features correct leading coefficient distribution and variable-by-variable
construction, more conditions have to be imposed on the evaluation integers ai.
Interested readers are referred to [6] for details of the EEZ algorithm. Let f()(x)=

#i) (X," Xt) andf(x) and g(1)(X) Do(x)/fm(X). A sequence of polynomials ,n

g)(x,..., xt), i= 1, 2,... will be constructed such that
g,) mod S and D(x,..., x,)=-f)g mod Si. The construction terminates whenever
f) stops changing and becomes a divisor of D over Z or when exceeds h, the total
degree of D(x,..., x,) in xz,’’’, x,. In any case we have ,, f+l).

LEMMA 2.2. F is divisible by f" if and only if r, e,, and +/-F,,.
Proof. Obviously, F, [F. Since r,, >-_ e,,, f[F implies that r, e and/, F. Since

F is primitive and deg (,) _>-deg (F) in x, we have 1, +F,.
Now divide r,2 into F. If the division is exact then, by Lemma 2.2, F <-f, and

e,, <--r,. Now set FF/Fe,;’, Fo’*-Fo/fr,,7, d d-(e,,- 1)deg (f,) and iterate the above
process to find F,-1 and e,,-a etc. until the SQFR decomposition is complete.

If the division does not succeed then the evaluation {a2," , at} is "unlucky". In
this case the algorithm goes back for a different evaluation that lowers the value of d.

POLYNOMIAL SQUARE-FREE DECOMPOSITION 303

3. Modular SQFR algorithm. Here we will consider the SQFR decomposition of a
primitive polynomial F(x) Z[x]. We will use as moduli a sequence of large primes,
usually chosen to be just smaller than the word size on the machine used. The algorithm
generalizes immediately to multivariate polynomials if we replace our moduli by linear
forms xi- ai, where the a are elements of some finite field. This generalization is
inefficient by comparison with the algorithm of 2 since we believe that large multi-
variate computations are almost invariably sparse. Modular algorithms do not take
advantage of the sparseness of their inputs, unlike algorithms based on Hensel’s lemma.
On the other hand modular algorithms are much less sensitive to unlucky primes or
unlucky evaluations. A Hensel algorithm performs its lifting with only one homomor-
phic image and its unluckiness may only be determined after lifting past some
predetermined bound. Modular algorithms construct the solution from many different
homomorphic images and the occurrence of the first lucky image will cause any previous
unlucky images to be discarded. In the univariate case sparsity is less of an issue and
modular algorithms tend to perform quite well.

By induction suppose that we have computed the SQFR decomposition F(x)=
e e eff f," mod q, where q is a product of the different primes used. The algorithm
proceeds by reducing F(x) modulo the next prime modulus p which does not divide the
leading coefficient of F(x) yielding f(x)eZ[x]. The SQFR decomposition f(x)=
f f’- is then computed in the image domain, Z. As long as the modulus is greater
than the degree of F(x), one can show that any of the SQFR algorithms presented by
Yun [7] will work properly. However, his algorithm (c) is computationally somewhat
better than the others and is recommended. Now we check whether the current SQFR
decomposition is compatible with the ones obtained before. Being compatible means
that each has the same number of factors (n m), corresponding degrees, and multi-
plicities (ri ei). As in Lemma 2.1 compatibility is completely determined by d
deg (gcd (f(x), f’(x))) deg (f- f"-) which is easily computed from the SQFR
decomposition of f(x). Potentially "lucky" primes are those associated with the
minimal d so far. Any prime giving rise to a larger value of d is discarded, and the
discovery of a smaller value of d than any seen so far will cause the currently
accumulated results to be discarded. We now apply the Chinese remainder algorithm
[1] in parallel to the ordered lists (f,..., f,n) and (fx,"" ",j,) yielding a new list
(JX,""", ?m) such that F(x)---f"l f"g,1 modulo pq. We will show that there are only a
finite number of unlucky primes. The appearance of the first lucky prime guarantees
that we will only perform Chinese remainder interpolations with lucky primes from
then on. The occurrence of unlucky primes is actually an extremely rare event, so we
will almost never have any wasted computation.

As in most modular algorithms there is a problem with nonuniqueness during
interpolation. We have to impose a leading coefficient in the/ which is guaranteed to be
a multiple of the correct leading coefficient. We do this by imposing the leading
coefficient (lcf) of F on each/. Then we check], after every Chinese remainder stage to
see whether or not it changed. If it is unchanged then it is very likely that the primitive
part of f, is precisely F,. We verify this by attempting to divide principalpart (f,)e into
F. If the division succeeds then we set F to the quotient and decrement m by 1. Then we
investigate whether or not the new ,, was unchanged by the last interpolation. If the
division fails or 1, did change, then we simply continue accumulating results with more
primes.

4. Unlucky primes and substitution values. In this section moduli will refer to both
integer primes and linear forms xi- ai. A prime is lucky if and only if the modular

304 PAUL S. WANG AND BARRY M. TRAGER

homomorphism commutes with SQFR decomposition, i.e. (SQFR(F))=
SQFR ((F)). It is easily seen that this is equivalent to F having compatible SQFR
decompositions in the domain and image spaces. The commutative diagram formula-
tion generalizes to any operation for which one might want to use a Hensel or modular
algorithm. One should note that there are some algorithms like factoring univariate
polynomials for which Hensel algorithms are applicable even though every prime may
be unlucky. An example is x4+ 1 which factors modulo every prime even though it is
irreducible over the integers. Unlucky primes can yield useful information which may
enable one to solve problems, albeit usually requiring more computation than lucky
primes would.

When computing SQFR decompositions of polynomials, however, as with GCD
computations, unlucky moduli do not provide much useful information and we need to
be sure that "almost all" moduli are lucky. Assuming a SQFR decomposition of F as in
(2.1), an unlucky prime implies that either some Fio is not SQFR, or god (Fio, Fio) i for
some f. If we let G F F2" F, and Go (G), then G is SQFR and an unlucky
modulus implies that Go is not SQFR. G is SQFR implies that gcd (G, G)= 1 which
forces discriminant (G) 0 (discriminant (G)= resultant (G, G’)/lcf(G)). An unlucky
modulus implies discriminant (Go)= 0. By Collins’ theorem 4 [2] discriminant (Go)=
0 implies (discriminant (G)) 0. Thus the polynomial discriminant (G)
Z[x2, , xt] is nonzero and vanishes for all unlucky homomorphisms. For univariate F
this shows that there are only a finite number of unlucky primes. For multivariate F the
space of unlucky evaluations satisfies this polynomial relation and thus lies on an n -2
dimensional hypersurface of the n- 1 dimensional space of evaluations. This implies
that almost all points are lucky. (See also [1]).

5. Conclusions. The central idea behind these new SQFR algorithms is to take
advantage of a compact representation of the answer in order to minimize the number
of modular images or Hensel lifting stages required to reconstruct the answer. Previous
SQFR algorithms started by computing gcd (F, F’) as a multivariate polynomial over the
integers. Since we are really only interested in the SQFR factor F/ and their multi-
plicities ei, there is no need to actually compute the gcd in the original domain. Instead
we perform complete SQFR decompositions in the image domain, and use the
information generated to reconstruct only the Fi’s in our original domain.

Modular and Hensel algorithms were first introduced to symbolic computation
systems as a technique for combating intermediate expression swell. The greatest
advantage can be obtained from these algorithms by maximizing the time spent in the
image domains and minimizing the time spent reconstructing solutions in the original
domain. Currently, independent algorithms have been published which take advantage
of modular techniques, but complex computations tend to proceed by applying these
algorithms sequentially to multivariat polynomials over the integers. More emphasis
should be placed on performing entire computations in the image domain, and only
reconstructing solutions over the integers for the final results. The central problems
include insuring uniqueness in the image domain and finding tests which verify "good
reduction". A general solution along these lines would be a big step toward eliminating
intermediate expression swell during symbolic computations.

Appendix. The timing examples were done using the MACSYMA system running
on a DEC KL10 [3]. NSQFR refers to the hybrid algorithm described in 2 and 3 of
this paper. OSQFR is Yun’s algorithm (c) in conjunction with the EZGCD algorithm
[4] directly applied to multivariate polynomials over Z. All times are in seconds.

POLYNOMIAL SQUARE-FREE DECOMPOSITION 305

Polynomial NSQFR OSQFR

(3x + x + 1)y + 2xy + x + X .04 .03

(y4 + X3)(y3 + X2)2(y2 d- X) 1.08 2.04

(z + y + x + 1)(z y + x + 4)2(z -2y + x + 7) .35 1.3

(y X -- 5)(6y + 2x + 31)3(xy + 8y x) 5.05 46.47

(z2+xyz +x2)2(3z2+(y2+x)z-4)
(z3+z2+(x- 1)y)4

30.36 70.1

(3),4 + x + 5)(6y + 2X + 31)
((x2 + X + 1)y3-- y +x +8)4(xy +8y + X)1

15.73 321.23

(x4351x3+27x2-31x + 1)
(6x + 25 lx3- 372x2 + 15x- 323)

1.22 1.69

(x4 d- 351x + 27x2-- 31x + 1)
(6x + 25 lx3- 372x + 15x 323)9

2.3 4.53

(x3+ 75x +68x + 1)3(x2 + 15x + 35)6

(7x + 750x + 137)9(x + 75) 1:’
3.06 5.53

(X d- 75X +68X + 1)5(X + 15X + 35)1

(7X + 750X + 137)15(X + 75)20
7.74 18.99

REFERENCES

[1] W. S. BROWN, On Euclid’s algorithm and the computation ol polynomial greatest common divisors,
J. Assoc. Comput. Mach., 18 (1971), pp. 478-504.

[2] G. E. COLLINS, The calculation of multivariate polynomial resultants, Ibid., 18 (1971), pp. 515-532.
[3] MATHLAB GROUP, MACSYMA Re]erence Manual, Version 10, Laboratory for Computer Science,

M.I.T., Cambridge, MA, 1979.
[4] J. MOSES AND D. Y. Y. YUN, The EZGCD algorithm, Proc. of ACM Annual Conference, Aug. 1973

(Atlanta), pp. 159-166.
[5] P. S. WANG AND L. P. ROTHSCHILD, Factoring multivariate polynomials over the integers, Math.

Comput., 29, (1975), pp. 935-950.
[6] P. S. WANG, An improved multivariate polynomial factoring algorithm, Ibid., 32 (1978), pp. 1215-1231.
[7] D. Y. Y. YUN, On square-free decomposition algorithms, Proceedings of 1976 ACM SYMSAC, Aug.

1976 (Yorktown Heights, NY),’pp. 26-35.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

979 Society for Industrial and Applied Mathematics
0097-5397/79/0803-0003 $01.00/0

SYMBOLIC VECTOR AND DYADIC ANALYSIS*

MICHAEL C. WIRTH?

Abstract. A computer program is described which performs symbolic algebra and calculus with vectors
and dyadics. Implemented on the MACSYMA algebraic manipulation system, it is intended to be a
reasonably complete analysis system for applications such as plasma physics and fluid dynamics. It includes
manipulations of dot and cross products; gradient, divergence, curl and Laplacian operators; directional
derivatives and outer products. Vector and dyadic equations can be automatically expanded into components
for arbitrary orthogonal coordinate systems. Designed primarily for 2-dimensional and 3-dimensional use,
the program also has some capability for higher dimensions. The internal structure of the code is discussed
with regard to efficiency considerations. Example calculations and execution times are presented.

Key words, computer algebra, algebraic manipulation, vectors, dyadics, tensors, vector calculus,
MACSYMA, fluid dynamics, magnetohydrodynamics

Introduction. The algebra and calculus of vectors and dyadics is indispensable to
many areas of the engineering and physical sciences. For example, it is extensively used
in computational fluid dynamics for applications such as aerodynamics and magneto-
hydrodynamics. In both of these areas, it allows the description and manipulation of the
physical equations which govern fluid flow, independent of coordinate system and in a
compact form. These vector/dyadic equations can then be converted to component
form (with respect to a particular coordinate system), resulting in a set of scalar partial
differential equations. These, in turn, can be solved numerically by techniques such as
finite differencing or spectral methods.

The author has been using the algebraic manipulation system, MACSYMA1, to
build software tools which automate these steps, including the generation of FOR3:RAN
code for finite difference calculations. An earlier MACSYMA program developed by
David R. Stoutemyer [5] was used for the symbolic vector analysis portion of this work..
It provided the capability to expand and simplify vector differential equations, and
express them in component form for a wide variety of orthogonal coordinate systems.
Scalar and vector potentials could also be calculated. Unfortunately, it lacked some
desired capabilities: the vector simplifications were not complete enough; directional
derivatives and outer products were not handled; and dyadics2 could not be used.

This paper describes an extended and restructured MACSYMA program that
corrects these deficiencies. Its capabilities are described, the internal structure of the
code and related efficiency issues are discussed, and a list of possible improvements is
presented. Example calculations and execution times are presented in the Appendix.

Capabilities. The system can manipulate scalars, vectors and dyadics. Expressions
containing higher rank tensors composed of these objects (e.g., the outer product of 3

* Received by the editors May 23, 1978.

" AF Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio 45433.

MACSYMA is a large computer programming system developed by the Mathlab Group of the MIT
Laboratory for Computer Science [2], Accessible over the ARPA network, it provides symbolic manipulation
facilities for differentiating, integrating, taking limits, solving systems of linear or polynomial equations,
factoring polynomials, expanding functions in Laurent or Taylor series, solving differential equations (by
direct or transform methods), etc. It also provides a language similar to ALGOL-60 for writing user
programs.

The term "dyadic" is used here to denote an unindexed object composed of physical components, as
distinguished from "second-rank tensor" which is generally used to denote an indexed object of contravari-
ant-covariant components [3]. This is the same distinction that is usually drawn between "vector" and
"first-rank tensor."

306

SYMBOLIC VECTOR AND DYADIC ANALYSIS 307

vectors) can be manipulated and simplified, but cannot be expressed in component
form. Scalars, vectors and dyadics can take any of the forms shown in Table 1.

TABLE
Forms of scalars, vectors and dyadics.

Object Form Representation Examples*

Scalar Named object A MACSYMA variable F, G
Scalar Single vector or An indexed vector name, or doubly-indexed A[1], T[1, 2]

dyadic dyadic name
component

Expression Any MACSYMA scalar expression or an
expression composed of scalar, vector and
dyadic objects which evaluates to a scalar.

Vector Named object A MACSYMA variable which is declared to A, B, C, D, E
be a vector (e.g., VECTOR (A, B, C, D,
E);)

Vector Collection of A MACSYMA list of explicit, scalar [1, 2, 3],
components components IX, X + Y, 2 * Z + 3]

Vector Expression An expression composed of scalar, vector A + B, GRAD F,
and dyadic objects and the operations A + [1, 2, 3]
from Table 2 which evaluates to a vector

A MACSYMA variable which is declared to
be a dyadic (e.g., DYADIC(T, U);)

A MACSYMA matrix of explicit, scalar
components

Dyadic Named object T, U

Dyadic Collection of
components

Dyadic Expression An expression composed of scalar, vector
and dyadic objects and the operations
from Table 2 which evaluates to a dyadic

F+G,A.B

[1 2 3
[XY Z
[P (2 x + r]
T+U,T.U

The variables A, B, C, D, and E will be consistently used vectors in this paper, T and U dyadics.

TABLE 2
Operators.

Operation Syntax Type of operator

Addition A +B
Subtraction A B
Component by component multiplication A B
Component by component division A/B
Dot (inner) product A. B
Cross product A-B
Gradient GRAD F
Divergence DIV A
Curl CURL A
Laplacian LAPLACIAN A
Directional derivative A DOTDEL B
Outer product {A, B, C}

Infix, binary operator
Infix, binary operator
Infix, binary operator
Infix, binary operator
Infix, binary operator
Infix, binary operator
Prefix, unary operator
Prefix, unary operator
Prefix, unary operator
Prefix, unary operator
Infix, binary operator
Operator with arbitrary
number of arguments

All variables are assumed to be scalars unless declared otherwise (as noted in Table
1). These objects can be composed into expressions using the algebraic and differential
operators shown in Table 2. Note that the component by component operations of
scalar multiplication, ",", and scalar division, "/", are a by-product of the normal
MACSYMA facilities for element by element operations with lists and matrices.

308 MICHAEL C. WlRTH

The program offers three types of capabilities for manipulating these expressions:
expression simplification, specification of coordinate system, and conversion to
component form.

Simplification. The simplification of vector and dyadic expressions involves the
application of standard vector theorem transformations under the control of user-set
flags. For example, executing VECTORSIMP(A-(B-C)); with the flag EXPAND-
CROSS set to TRUE, results in the value (A. C).B-(A. B). C. The set of
transformations which was implemented was chosen to be a reasonably complete set
and was taken directly from a review article commonly used by plasma physicists [1].
The Appendix gives examples of these transformations. The capabilities of the simplifier
are discussed in more detail in the following section on the structure of the code.

Coordinate system specification. Arbitrary curvilinear orthogonal coordinate
systems can be used by specifying an analytic transformation from the coordinate
system to Cartesian coordinates. For example, spherical coordinates are specified by:

SCALEFACTORS([[R SIN(THETA) COS(PHI), R SIN(THETA) SIN(PHI),
R COS(THETA)], R, THETA, PHIl);

The last three elements of the outer list are the new coordinate variables, and the three
elements of the inner list specify the transformation from the new coordinates to
Cartesian coordinates. The number of elements in these lists denotes the dimension.

Orthogonal coordinate systems of dimension higher than 3 can be specified and
handled by the system, with the exception of expressions involving the operations of
cross product and curl. The tensor rank of the results of these operations depends on the
dimension of the space used. For example, the cross product of two vectors (or the curl
of one vector) in 2-dimensions and 3-dimensions is a scalar and a vector, respectively,
but in 4-dimensions is a dyadic. The current version of the system is not capable of
expanding a dyadic formed by a 4-dimensional vector cross product (or curl) into
component form. With the exception of cross product and curl operations, the system is
usuable for arbitrary dimension. Note that the dimension-dependent behavior of these
operations also implies that the dimension of the space must be chosen (SCALE-
FACTORS must be executed) before simplifying expressions involving these opera-
tions, not just before expanding into component form.

Because the program is designed for curvilinear orthogonal coordinate systems, all
of the differential operations (i.e., gradient, divergence, etc.) can be defined in terms of
scale factors [1, 3], SF. In 3-dimensions, these are related to the differential arc length
dL by

dL
2

dX
2
/ dY2 + dZ2 SF12 2 2 2 2 2

,dE1 +SF2 *dE2 +SF3 *dE3
where the E designate the new curvilinear coordinates, and X, Y, and Z are Cartesian
coordinates. The SCALEFACTORS function calculates these scale factors from the
Jacobian of the transformation specified in its argument and stores them in an array
named SF. For example, in spherical coordinates,

dL
2

dX
2
+ dy2 R

2
+ dZ

2
dR

2
+ dTHETA

2
+R SIN(THETA)

2
* dPHI

2

and the scalefactors are

SF
1

1, SF
2

R, SF
3

R SIN(THETA)

SYMBOLIC VECTOR AND DYADIC ANALYSIS 309

Some of the differential operations such as the gradient of a vector and the
divergence of a dyadic involve collections of derivatives of the scale factors which make
it convenient to introduce the Christoffel symbols defined by

CHRISTOFFEL/,j,K

where DELTA(/, J) equals 1 if 1 J and 0 otherwise [1]. The SCALEFACTORS
function also Calculates the Christoffel symbols and stores them in an array named
CHRISTOFFEL.

Conversion to component form. The EXPRESS function converts a scalar, vector,
or dyadic expression into a set of scalar component expressions with respect to the
currently specified coordinate system. Scalars remain scalars, vectors become lists of
components, and dyadics become matrices of components. The various differential
operators (GRAD, DIV, etc.) become differential expressions in the components which
involve the scalefactors and, in some cases, Christoffel symbols. For example, for
general curvilinear coordinates [E 1, E2, E3], the gradient of a vector A is a dyadic T
with components"

T
3

CHRISTOFFELLJ,K * AK

d
dE Aj

I

SF
I

These differential expressions in the scalar components can then be manipulated by the
standard MACSYMA facilities.

Structure of the code.
Modeling. Scientific programming can often be viewed as a modeling process

consisting of two parts" a set of data structures which represent the objects modeled,
and algorithms (programs) which simulate the transformations the objects undergo in
the modeled physical or mathematical process. The figure below shows the cor-
respondence between abstract vector simplification and the computational model that
is used in the expression simplifier portion of the program. The abstract mathematical
objects are represented by data structures, the transformations which these objects
undergo when vector/dyadic theorems are applied are modeled by the simplification
algorithms and the resulting data structures represent the simplified abstract objects.

Abstract Mathematical Objects
(scalars, vectors, dyadics)

Data Structures
(variables, lists, matrices)

Vector/Dyadic
Theorems

Simplification
Algorithms

Simplified
Objects

Simplified Data
Structures

310 MICHAEL C. WIRTH

Data structures. As the figure illustrates, data structures and algorithms play an
interdependent role in algebraic manipulation. The ease with which the transformation
algorithms can be constructed is critically dependent on the structures chosen to
represent the abstract objects. If the set of transformations to be modeled is too broad,
multiple representations may be needed for the same abstract object, each one
appropriate to a particular class of transformations [4]. For example, MACSYMA
offers a large set of mathematical capabilities and uses multiple representations [2]. In
this program, the following representations are used (also see Table 1): A symbolic
vector (dyadic) is represented by a named variable which is declared to MACSYMA to
be "NONSCALAR" and which carries a "TENSOR" property with a value of 1 (2).
The component form of a vector (dyadic) consists of a list (matrix) of scalar components.
The simplifier treats the named object and its component form identically; the
EXPRESS function produces the second from the first. Expressions composed of these
structures are represented in MACSYMA’s general recursive form. These structures
were chosen to take advantage of the existing MACSYMA facilities for handling
nonscalar variables and for performing algebra with lists and matrices.

Expansion control. When the user simplifies a vector expression by hand, a certain
goal is usually in mind. A sequence of transformations are applied which drive the
expression toward a particular form. The choice of the goal, the "simplest" such form, is
a subjective judgment and is often not easy to automate [4]. Our simplifier function
leaves this judgment up to the user; by setting flag variables the user can control which
vector/dyadic transformations are applied by the simplifier.

But this is not a complete solution; the user could have chosen an inconsistent set of
flag settings. For example, the system contains an expansion for the Laplacian of a
vector:

LAPLACIAN A GRAD DIV A -CURL CURLA

and it also contains an expansion for curl of curl"

CURL CURLA GRAD DIV A LAPLACIAN A.

If both of these transformations were enabled at the same time, an infinite circular
substitution would result.

This problem is solved for the case of an operator applied to a compound argument
by always applying the transformations in the direction that implies expansion. Thus,
the simplifier will expand GRAD(F G) to F GRAD(G) + G GRAD(F), but will
not do the reverse transformation. In those cases where the transformation is not an
argument expansion and where circular substitutions are possible, as in the case of
LAPLACIAN A above, special checks are included in the simplifier algorithm.

The set of expansion control flags which are used by the simplifier is shown in Table
3. These flags are arranged in a hierarchy. EXPANDALL when set to TRUE enables
all expansions (except for the special case, LAPLACIAN vector). EXPANDPLUS
enables all expansions of linear operators

OP(A +B =:> OP(A) + OP(B).

EXPANDGRAD enables all expansions of GRAD. EXPANDGRADDOT is more
specific and controls just expansions of GRAD(A B) forms.

SYMBOLIC VECTOR AND DYADIC ANALYSIS 311

TABLE 3
Expansion control flags.*

Flag variable Expansions controlled

EXPANDALL
EXPANDPLUS
EXPANDPROD
EXPANDDOT
EXPANDDOTPLUS
EXPANDDOTPROD

EXPANDCROSS
EXPANDCROSSPLUS
EXPANDCROSSPROD
EXPANDCROSSCROSS

EXPANDGRAD
EXPANDGRADPLUS
EXPANDGRADPROD
EXPANDGRADDOT

EXPANDDIV
EXPANDDIVPLUS
EXPANDDIVPROD
EXPANDDIVCROSS

EXPANDCURL
EXPANDCURLPLUS
EXPANDCURLPROD
EXPANDCURLCROSS
EXPANDCURLCURL

EXPANDLAPL

EXPANDLAPLPLUS
EXPANDLAPLPROD
EXPANDLAPLSCLR

EXPANDLAPLVECT

EXPANDOUTP
EXPANDDOTDEL

All forms below, except LAPLACIAN vector
Operator(term / term)
Operator(factor * factor)
All "." forms.
(term / term) (term / term)
(factor * factor) (factor * factor)
all forms.
(term + term)"(term + term)
(factor * factor)’(factor * factor)
arg~(arg’arg) or (arg’arg)’arg
All "GRAD" forms.
GRAD(term / term)
GRAD(factor factor)
GRAD(arg. arg)
All "DIV" forms.
DIV(term + term)
DIV(factor * factor)
DIV(arg’arg)
All "CURL" forms.
CURL(term + term)
CURL(factor factor)
CURL(arg’arg)
CURL CURL arg, Null effect if
EXPANDLAPLVECT is set.

All "LAPLACIAN" forms, except
LAPLACIAN vector

LAPLACIAN(term + term)
LAPLACIAN(factor factor)
LAPLACIAN(scalar)
LAPLACIAN(vector), Note comment on

EXPANDCURLCURL.
All "{arg, .., arg}" forms.
All "arg DOTDEL arg" forms.

1. Arg, factor, and term arbitrary arguments, factors and terms, respectively.
2. The variable, EXPANDFLAGS, has value list of the of all the expansion flags.
3. The default value for all flags is FALSE.

Canonical forms. Besides expansion, the simplifier also transforms expressions
into canonical form. For example, B A, where A and B are vectors, is transformed
into A. B, based on the internal MACSYMA lexical ordering of expressions. This
allows reductions to take place by cancellation of like terms, e.g., A. B-
B A :=> A. B-A. B =:> 0. The combination of e.xp.ansion and transformation to
canonical form allows expressions like A"B"C +B C A + C"A~B to be reduced to
zero.

Transformation mechanisms. MACSYMA offers a number of facilities for
implementing these simplifier transformations, all of which were used by Stoutemyer’s
vector-expression simplifier: the MACSYMA internal simplifier, pattern matching and
replacement facilities, and the ability to write a function which the user can explicitly
call to accomplish simplification.

312 MICHAEL C. WIRTH

The MACSYMA internal simplifier transforms an expression based on its lead
operator and recursively simplifies subexpressions. It handles all of the normal arith-
metic operations, and accommodates both scalars and nonscalars. The operator "." is
normally treated as noncommutative multiplication. Various flags control
simplification. Thus by setting DOTDISTRIB true, the original vector-only program
directs the MACSYMA simplifier to expand A (B + C) to A B +A C. New opera-
tors and functions can be declared to have special properties. For example, if the flag,
EXPANDGRAD, is set to true, then the vector package when invoked temporarily
declares GRAD to be linear and the internal MACSYMA simplifier will transform
GRAD(3. F) into 3 * (GRAD F). Similarly, the operator "." is declared to be
commutative by the original program so that MACSYMA will transform dot products
into canonical order.

MACSYMA allows pattern matching rules to be defined which may be applied
locally or globally. The orig.inal program sp.ecified a number of global rules for canonical
transformations such as A B C =A B C. The anti-commutative property for cross

pr.oducts was. implemented by a global rule which performed the replacement
B A =-A B using a pattern of the form

ANY’BEFORE.
ANY is declared to be a pattern variable that matches any expression. BEFORE is
declared to be a pattern variable that matches any expression satisfying
ORDER(BEFORE,ANY), a predicate which tests to see if the right hand side of the
cross product is lexicographically before the left hand side. Thus the above pattern
matches only if a cross pr.oduct is out of canonical order. The matched expression is then
replaced by -BEFORE ANY.

Finally, the user can write a MACSYMA function which explicitly performs any
required transformation. The original program contains such a function, VECTOR-
$IMP. Given a vector expression, it interprets the user-set expansion flags and declares
the appropriate properties to the internal simplifier. For example, if any or all of
EXPANDDOTPLUS, EXPANDPLUS, EXPANDDOT, or EXPANDALL are set,
then DOTDISTRIB is set so that MACSYMA will expand dot products of sums. Then
VECTORSIMP invokes VSIMP which examines the lead operator of expressions,
sequentially checking them for equivalence with one of "’", GRAD, DIV, CURL, or
LAPLACIAN. If one of these operators is found and the appropriate expansion flag is
set, an ad hoc replacement is made. Subexpressions are recursively simplified.

Type checking. The extension of the driginal vector-only system required more
than simply adding a data structure for dyadics and code for the additional manipula-
tions. Some of the original vector simplifications were no longer applicable. For
example, cross product is anti-commutative for vectors, but not for dyadics. Thus the
global pattern replacement rule B’A :=>-A’B needed to check not only the lexico-
graphic ordering of A and B but also whether they were vectors or dyadics.

Therefore, a type checking function, VTYPE, was introduced which determines
the tensor rank of an expression (scalar => 0, vector => 1, dyadic => 2, etc.) and condi-
tions the application of vector/dyadic transformations. Unfortunately, VTYPE is
expensive to execute; it needs to recursively examine each subexpression and variable
of an expression to determine its rank. This makes the matching of pattern
ANY’BEFORE time consuming. To compound the problem, this global match is
repeatedly attempted by MACSYMA whenever an expression involving a cross
product is evaluated, even when there is little probability of a successful match. A

SYMBOLIC VECTOR AND DYADIC ANALYSIS 313

pa.rti.cularly.bla.tant example of this problem is the reduction of the expression A"B"C +
B C A + C A B to zero. In the original system, which did no type checking, this
reduction took approximately 3.4 seconds. In a preliminary version of the extended
system after VTYPE was included, this time increased to over 25 seconds. The global
pattern match for ANY’BEFORE was attempted almost 1,000 times and VTYPE was
executed over 2,100 times! The use of global pattern matching rules was convenient for
programming, but in this case, proved to be very inefficient. In the current version of the
system, almost all uses of the pattern matching facilities have been replaced with.exp.licit
code in the VECTORSIMP function. The execution time for the reduction of A B C +
B"C"A + C~A~B to zero is now 1.3 seconds.

Structure of the simplifier. The increased generality of the simplifier, the necessity
for type checking, and efficiency considerations led to the following structure for vector
and dyadic simplification in the current system"

1. The internal MACSYMA features for manipulating nonscalar variables are not
used because, the required simplifications differ between vectors and dyadics.

2. The use of pattern matching facilities has been reduced to a few special cases
because of the efficiency problems mentioned above.

3. The function VECTORSIMP now does the bulk of the simplification work. It is
table-driven and structured much like the MACSYMA internal simplifier. Called with a
single argument, a vector/dyadic expression, it recursively examines subexpressions,
invokes operator-associated simplification functions (e.g., the GRAD operator has an
associated function GRADSIMP), marks simplified subexpressions to prevent their
unnecessary rescanning, and returns the simplified result.

4. The function VTYPE marks expressions internally with their tensor rank so
that subsequent applications of VTYPE to them execute quickly.

The net result of these changes is that the new vector/dyadic simplifier is more
powerful and often executes faster than the original vector-only version. Simplification
examples and run times which compare the two versions are shown in the Appendix.

Structure of SCALEFACTORS and EXPRESS. The coordinate system facilities
embodied in the SCALEFACTORS function, and the component form facilities in
EXPRESS are straightforward revisions of the original versions. SCALEFACTORS
now computes the Christoffel symbols for the new orthogonal coordinate system as well
as the scalefactors. EXPRESS has been extended to handle directional derivatives,
outer products and dyadics. Like VECTORSIMP, it is table-driven; each vector
operator has an associated function (e.g., DOTEXPRESS for dot product) which is
invoked when an expression with that lead operator is encountered. This means that
new vector operators can be added to the system without changing its structure by
defining functions for the simplification and conversion to component form.

Possible improvements. The current MACSYMA program is a reasonably
complete system for vector and dyadic algebra and differential calculus. Future
improvements might include"

1. Incorporation of VECTORSIMP into the internal MACSYMA simplifier so
that it need not be called explicitly.

2. Elimination of the EXPAND flags for controlling simplification since they are
too numerous (30 now) and too cumbersome, to be replaced by a subexpression
selection facility (like MACSYMA’s BOX function) which allows the user to specify
subexpressions based on position rather than operators contained.

314 MICHAEL C. WIRTH

3. Addition of line and wavy line underscores for typeout of vector and dyadic
variables.

4. Extension of the system to integral calculus for vectors and dyadics (e.g., Stokes’
theorem and Gauss’ theorem).

Appendix. Examples and execution times. The following examples have been
extracted from actual output files and have been edited only to save space and to add the
columns which compare execution times for the current system with those for the
original program by Stoutemyer. These times are for interpreted MACSYMA code.

Expression simplification. The following MACSYMA statements were executed
before running the simplification examples shown below:
BATCH(VECT,">",DSK,SHARE); Load latest version of vector/dyadic

DECLARE([K 1, K2], CONSTANT);

VECTOR(A, B, C, D, E);
DYADIC(T, U);
FOR I IN EXPANDFLAGS DO
I" TRUE;

package from SHARE directory.
Declare K1 and K2 to be constants.
Note: F and G are scalars by default.
Declare A, B, C, D, and E to be vectors.
Declare T and U to be dyadics.

Set all of the expansion flags to true.

Execution time (msec.)

VECTORSIMP(expression) :=> simplified expression

A B"C =, A B’C, A’B C ==> A B’C
B C"A :=> A. B’C, B’C. A =>A B’C
C A’B :=> A B’C, C"A B =,, A B’C
A B =e;, A B, B A =C, A B, A T=A T,
T A ==> T. A

A~B => A’B, B"A ==> -A"B, A"T ::, A"T,
T"A =e;, T"A

0"A.0, A’00, A"A :=>0
DIV CURL A 0, CURL GRAD F 0
GRAD K 1 0, LAPLACIAN K 1 0
GRAD (K1 F)K1 GRAD F
DIV (K1 A) K1 DIV A
CURL (K1 A) K1 CURLA
LAPLACIAN (K1 F) K1 LAPLACIAN F
A (B+C)=C,A C+A B
A. {B, C} ==> A BC
{A, B}. C => AB C
(K1 A). (K2 B):=> K1K2A B
A (B+C)=>A C+A B
(A+B) C=:B C+A C
(F A) (G B)==> A BEG
A (B C):=>A. CB-A. BC
(C B) A =:>A CB-A BC
A’{B, .C} == {A"B,~C}
{A,B} C => {A, B C}

Current Original
system system

420 avg 520 avg

75 Not handled

70 Not handled
50 35
8 8
5 Not handled
6 5
6 6
6 6
6 5
158 69
232 Not handled
222 Not handled
93 75
248 1227
246 1229
309 580
306 995
552 831
305 Not handled
296 Not handled

SYMBOLIC VECTOR AND DYADIC ANALYSIS 315

Execution time (msec.)

VECTORSIMP(expression) => simplified expression
Current Original
system system

A’B C +B"C’A + C’A’B :=> 0
(A’B). (C’D):=> A CB D-A DB C

(A’B)’(C’D :=> A C’DB AB C’D
GRAD(F + G) =:> GRAD O +GRAD F
GRAD(F G) :=> F GRAD G +GRAD F G
GRAD(A B) =:> A DOTDEL B -CURLA B

+A" CURL B +B DOTDELA
DIV(A + B) :=> DIV B +DIV A
DIV(F A)=, DIV A F +A GRAD F
DIV(F T) :=> F DIV T +GRAD F. T
DIV(A’B) =:> CURLA B -A CURL B
DIV{A, B} :=> A DOTDEL B" +DIV A B
CURL(A +B) =, CURL B +CURL A
CURL(F A)=:> CURL A F-A GRAD F

1264
975

1670
108
186

468
109
336
233
363
150
109
270

CURL(A’B) :=> -A DOTDEL B +A DIV B
-DIVA B+BDOTDELA 220

CURL CURLA :=> GRAD DIV A LAPLACIAN A 165
Note. With EXPANDLAPLVECT set to FALSE.

LAPLACIAN(A +B) :=> GRAD DIV B
-CURL CURL B +GRAD DIVA-CURL CURLA 350

LAPLACIAN(F G) :=> F DIV GRAD G
+DIVGRADF G+2GRADF.GRADG 490

LAPLACIAN(F A)=:> A DIV GRAD F
+GRAD DIVA F-CURL CURLA F 403

+ 2 (GRAD F) DOTDELA
LAPLACIAN F =:> DIV GRAD F 107
LAPLACIAN A =:> GRAD DIV A -CURL CURLA 165

{A} :=> A 40
{A, B + C, D +E} :=> {A, C, E} + {A, C, D}+ {A, B, E}

+{A,B,D} 360
{A, F B, O C} :=> {A, B, C}FO 190
C DOTDEL(A + B) :=> C DOTDEL A+C DOTDEL B 113
B DOTDEL(F A) :=> (B DOTDEL A)F

+A B.GRADF 240
(B + C) DOTDELA :=> C DOTDELA +B DOTDELA 94
(F B) DOTDELA :=> (B DOTDEL A)F 110

3392
Not fully
expanded
2250
59
79

Not handled
63
9O
9O
Not handled
Not handled
65
Not fully
expanded
Not fully
expanded
75

Not fully
expanded
Not fully
expanded
Not fully
expanded

46
Not fully
expanded
Not handled

Not handled
Not handled
Not handled

Not handled
Not handled
Not handled

Conversion to component form. The following examples are taken directly from
MACSYMA output and demonstrate conversion to component form first for 3-
dimensional Cartesian coordinates (the default dimension and coordinate system) and
then for spherical coordinates. Note that integer subscripts denote components and that

316 MICHAEL C. WIRTH

coordinate variable subscripts denote differentiation. The same MACSYMA state-
ments for initialization are used here as in the simplification examples above. The
"gctimes" shown below refer to garbage collections for reclaiming list storage space,
which occur periodically.

(C 10) EXPRESS(F);
time 31 msec.
(D10)

(C11) EXPRESS(A + B);
time 86 msec.
(Dll)

(C12) EXPRESS(T);
time 67 msec.

(D12)

(C13) EXPRESS(A. B);
time 85 msec.
(D13)

F

[BI+A1, B2+A2, B3+A3]

IT T r
1, 1 1,2 1,3]

[T T T
2, 1 2,2 2,3]

[T T T
[3, 1 3,2 3,3]

B +A ,B2+A *BA3 3 2 1 1

(C14) EXPRESS(A T);
time 119 msec.
(D14) T +A ,T2, +A ,T A3,T3 +A2*T2[A3 3, 1 2 1 1 1, 1’ ,2 ,2

+A2. +A T
3A3 T3,3 T2,3 1 1,

(C15) EXPRESS(A B);
time 167 msec.
(D15) B-B ,A ,B ,A-A ,B ,A ,B-B ,A"A2 3 2 3 1 3 1 3 1 2 1 2

(C16) EXPRESS(GRAD F);
totaltime 643 msec. gctime 557 msec.
(D16) [Fx, Fy, FZ]
(C17) EXPRESS(GRAD A);
time 402 msec.

(D17)

[A A
1 2
x x

[A A
1 2
Y Y

[A A
1 2
z z

A
3
X]

A
3
Y]

A
3
Z]

+A ,T
1 1,2’

SYMBOLIC VECTOR AND DYADIC ANALYSIS 317

(C18) EXPRESS(DIV A);
time 122 msec.
(D18) A3z+A2y+A1X
(C19) EXPRESS(CURL A);
time 137 msec.
(D19) [A3 y-A2 A -A ,A2x1Z 3

X

(C20) EXPRESS(LAPLACIAN F);
time 92 msec.
(D20) FZZ +Fyy +FXX
(C21) EXPRESS(A DOTDEL B);
totaltime 873 msec. gctime 494 msec.
(D21) [B +A ,B +A ,B"A3 1 2 1 1

Z Y
,A3*B1X 2

Z
+A2*B2

Y
+A ,B

1

A ,B +A ,B +A ,B
3 3 2 3 1

Z Y

(C22) EXPRESS({A, B});
time 167 msec.

(D22)

[A *B A *B A *B
[1 1 1 2 1 3]

[B ,A A ,B A ,B
[1 2 2 2 2 3]

[B ,A B ,A A ,B
[1 3 2 3 3 3]

(C23) SPHERICAL: [[R SIN(THETA) COS(PHI), R SIN(THETA) SIN(PHI),
R COS(THETA)], R, THETA, PHI]$

time 14 msec.

(C24) SCALEFACTORS(SPHERICAL)$

SF 1
1

SF2= R
SF

3
R SIN(THETA)

CHRISTOFFEL
2,1,2

1
CHRISTOFFEL2, 2, 1 -CHRISTOFFEL3, 1, 3

1

318 MICHAEL C. WIRTH

CHRISTOFFEL3, 2, 3
COS(THETA)

R SIN(THETA)

1
CHRISTOFFEL

3,1,1 R

CHRISTOFFEL
3,3,2

totaltime 11,572 msec. gctime 3,594 msec.

(C25) EXPRESS(DIV A);
time 128 msec.

COS(THETA)
R SIN(THETA)

2
R SIN(THETA))THETAR SIN(THETA))

R
+ (a

2
(A

1
(D25)

,R+(A3)PHI

(C26) EXPRESS(GRAD F);
time 86 msec.

(D26)

2
R SIN(THETA)

FTHETA FPHI]FR’ R R SIN(THETA)

(C27) EXPRESS(CURL A);
time 145 msec.

(D27)

,R(A
3
*R * SIN(THETA))THETA (A

2)PHI
2

R SIN(THETA)

R SIN(THETA))
R (A2 * R)R AA

1
(A

3
PHI

1
THETA

R SIN(THETA) R

(C28) EXPRESS(LAPLACIAN F);
time 102 msec.

(D28)

2
(F R SIN(THETA))R+(FTHETAR SIN(THETA))THETA +

SIN(THETA)/pHI

2
R SIN(THETA)

Acknowledgment. I would like to acknowledge the following people and
organizations for their assistance"

David R. Stoutemyer for providing the original vector manipulation system.

SYMBOLIC VECTOR AND DYADIC ANALYSIS 319

The MACSYMA Consortium for providing MACSYMA, which is supported, in
part, by the Department of Energy under contract Number E(11-1)-3070 and by the
National Aeronautics and Space Administration under Grant NSG 1323.

Brendan McNamara, from Lawrence Livermore Laboratory, for his guidance in
making this program useful to real users.

The reviewers for their suggestions which improved the structure of this paper.

REFERENCES

1] D. L. BROOK, Revised and enlarged collection ofplasma physics formulas and data, NRL Memorandum
Report 3332, Naval Research Laboratory, May 1977.

[2] MACSYMA Reference Manual Version Nine, Laboratory for Computer Science, MIT, Cambridge,
1977.

[3] P. M. MORSE AND H. FESHBACH, Methods of Theoretical Physics, Vol. I, McGraw-Hill, New York,
1953.

[4] J. MOSES, Algebraic Simplification: A Guide for the Perplexed, Comm. ACM, 14 (1971), pp. 527-537.
[5] D. R. STOUTEMYER, Symbolic computer vector analysis, Comput. Math. Appl., to appear.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

Society for Industrial and Applied Mathematics

0097-5397/79/0803-0004 $01.00/0

A NATURAL STRUCTURE THEOREM FOR COMPLEX FIELDS*

H. I. EPSTEIN?

Abstract. This paper presents a theorem which describes the structure of algebraic relationships which
must hold when a certain set of transcendental functions are algebraically dependent. The functions in the set
may be logarithmic, exponential, trigonometric, hyperbolic, or indefinite integrals. This structure theorem
has important applications to symbolic mathematical computation. A procedure for finding regular represen-
tations for classes of transcendental expressions based upon the structure theorem is discussed. By use of this
representation procedure, it is possible to solve the equivalence problem for expressions in the class being
considered.

Key words, symbolic mathematical computation, simplification, regular representation, structure

theorem, transcendental function arithmetic, exponential function, logarithmic function, trigonometric
function, hyperbolic function, algebraic independence, differential field, differential algebra

1. Introduction. In this paper we show how a theorem, which tells whether a set of
transcendental functions are algebraically independent, can be used to develop a
procedure for representing functions in transcendental function fields. The function
fields we deal with, called eplath fields, are those obtained by starting with the rational
functions and the algebraic operations and then taking indefinite integrals, or applying
the exponential function, a trigonometric function, or a hyperbolic function, to a
function previously obtained.

In 2 of this paper, the basic notions necessary to define eplath field precisely are
presented. In 3, eplath field is defined and the natural structure theorem for eplath
fields is presented. This theorem is a generalization of the structure theorem in [7] and
[8]. That theorem, first proven by Rothstein, is a structure theorem dealing with what
Caviness and Rothstein call a generalized log-explicit field. (See [7] or [8] for precise
definitions.) For our purposes, it is sufficient to know that an eplath field can always be
embedded in a generalized log-explicit field. Thus, any function field to which our
natural structure theorem applies, can be embedded in a field to which Caviness and
Rothstein’s structure theorem applies. Indeed, this is the essence of the proof of the
natural structure theorem. For this reason the proofs of the structure theorem and its
corollary will not be presented in this paper.

Embedding an eplath field in a generalized log-explicit field, however, requires
representing trigonometric and hyperbolic functions in terms of exponentials. Thus, a
system of procedures for doing symbolic computation based on the Caviness-Rothstein
structure theorem, would require converting all trigonometric and hyperbolic functions
into exponential equivalents in the representation step, before doing any computation.
The natural structure theorem, on the other hand, offers the possibility of carrying out
the computation with trigonometric and hyperbolic functions in their more natural
form.

In 4, the outline of a procedure for representing functions in an eplath field is
presented. The basic idea of this procedure is analogous to the basic ideas involved in
the simplification algorithms in 1 and [2] which are based on Risch’s structure theorem
(see [4]). They are also similar to the simplification procedures described in [7] and [8].

Received by the editors May 23, 1978.

" Raytheon Corporation, Sudbury, Massachusetts.

320

A NATURAL STRUCTURE THEOREM FOR COMPLEX FIELDS 321

2. Definitions and notation. Let F be a field and D1,’’ ", Dn mappings from F
into F satisfying the three rules

(1)

(2)

(3)

Di(a + b) Di(a) + Di(b),

Di(ab) aDi(b)+ bDi(a),

Di(Dk(a)) Dk(Di(a))

for any a, b in F and 1 <= j, k -< n. F is called a differential field with derivation operators
D1,’", Dn. Let F* be a subfield of the differential field F. Then each derivation
operator, D, on F has a restriction to F* called a derivative. If, for any derivative, D, and
any a in F*, Da is in F*, then F* is itself a differential field. In this case F* is said to be a

differential subfield of F and F is said to be a differential extension of F*.
Henceforth, it is assumed that F is a differential field with n derivation operators

D1, , D, and F* is a subfield of F. The set C(F) r= {a F’Dra 0} is called the
constant field ofF. Let K be a subfield of the complex numbers. In [3] Kolchin proved
that to each F there corresponds a differential extension field U with the property that
any finitely generated differential extension of F is isomorphic to a subfield of U via an
isomorphism which commutes with the derivation operators (i.e. preserves derivatives).
U will always be assumed to be such an extension of F and a differential extension of F
will be identified with its isomorphic image in U.

Let a be in F* and 0 in U. If DO is in F* for each derivative D, then 0 is said to be
primitive over F*. If, for each derivative D, aDO Da then 0 is said to be a logarithm
over F* and is written 0 log a. If 0 is primitive over F*, 0 is said to be simple-
logarithmic over F* if there are ar in F* and c in C(U) such that 0+c is in
F*(log al,. , log ak). Otherwise, 0 is said to be nonsimple.

If DO ODa for each derivative.in F*, 0 is said to be exponential over F* and is
written 0 exp a. If is a hyperbolic function of a, written hyp a, is in the field
F*(exp a) which is a subfield of the differential field F(exp a). Furthermore, exp a is
algebraic over F*(hyp a). Similarly, if DO= OD(ia) for each derivative in F*, 0=
exp (ia). Then, if is a trigonometric function of a, written O=trig a, is in
F*(i, exp (ia)) which is a subfield of the differential field F(i, exp ia). Moreover,
exp (ia) is algebraic over F*(trig a).

An element, 0, in U which is transcendental over F* and such that C(F*)=
C(F*(O)) is said to be a transcendental variable over F*.

3. The structure theorem for elementary fields. Let K be a subfield of the complex
numbers. Let Fo=K(zl, z,) be the differential field of rational functions in n
indeterminates z1,’", z, with coefficients in K having n derivation operators
D1,"’,D, such that Drzk =0 for j k, Drz 1 and Drc =0 for c in K. For j=
1, 2, , m let F. Fo(0I, , Or). Suppose C(Fo) C(F,) and one of the following
conditions hold for each 0r"

a. Or exp ar, ar e Fr-1,
b. Or is primitive and nonsimple over Fr_l,
c. Or log at, ar Fr-1,
d. 0 is algebraic over
e. Or =trig ar, arFr-1,
f. Or hyp ar, ar F_1.

322 H.I. EPSTEIN

Then F,, is said to be an eplath field. Define the index sets

E {/’: 0i exp ai is a transcendental variable over Fi_l};

L {j: 0i log ai is a transcendental variable over Fi-1};

T {f: 0i trig ai is a transcendental variable over Fi_l}; and

H {/’: 0i hyp ai is a transcendental variable over Fi-1}.

When F,, is an eplath field and T and H are empty, F,, is what Caviness and
Rothstein call a generalized log-explicit field. If is in F,,, the field G,, obtained by
replacing 0 trig (a) with 0 exp (ia) and replacing 0 hyp (a) with 0 exp (a) will be
a generalized log-explicit field containing Fm.

An eplath field F, may not be a differential field. For example, let F1 Fo(sin z 1).
Then, since Dl(sin Zl) cos zl, is not in F1, F1 is not a differential field. However, there
is always an eplath field G which is an algebraic extension of Fm and a differential
extension of Fo. One such G is G=F,(I, ,m) where i=expa for jH;
ff. sin ai if Oi cos ai or Oi sec ai and i cos ai if/" T and neither Oi cos ai nor

0i--sec ai; 4i 1 otherwise. If is in F0, it is possible to find a G =F0(4q,""", ff,)
where each F0(ffx, , ffi) is a differential field.

Before stating the structure theorem for eplath fields it should be pointed out that
eplath fields may contain elements which are not elementary functions. For example,
erf z exp (z a) dz is in the eplath field O(z, exp (z), err z) but it is not an elementary
function. However, an elementary field can always be considered an eplath field if the
constant field K is suitably chosen.

THEOREM (Structure theorem for eplath fields). LetF,, F0(0x, 0_, , 0,,) be an
eplath field. Suppose Fo and a F. Then

(a) log a is not a transcendental variable over F, if and only if there are rational
integers hi, not all zero, and k in C(F,) such that

rtj(4) a" I-I ai l-I 0 I-I (exp’ "tai) 1-I (expai) =k"
jL jE j T jell

(b) exp a or hyp a is not a trascendental variable over F. if and only if there are
rational integers hi, not all zero, and k in C(F.) such that

(5) noa + nia + . niO + nia k;
jeELJH jeL jeT

(c) trig a is not a transcendental variable over F if and only if there are rational
integers ni, not all zero, and k in C(F,) such that

(6) noia + Y. niai + . niOi + Y. niiai k.
jeEUH jeL jeT

Because the condition in part (a) of the theorem involves both the 0i’s (in which the
ai’s are expressed) and the 4,i’s the condition stated in the following corollary may be
preferable in applications.

COROLLARY 1. Suppose Fo and a Fm= F0(91, , Ore) where F., is an eplath
field. Then log a is not a transcendental variable over F., iff there are rational integers ni,

not all zero, such that for each differential operator D,

(7) 0 noDa/a + Z niDai/ai + Y’. niDai + Y’. niiDai.
jeL jeEUH jeT

Observe that the structure theorem and its corollary both require that be an
element of C(Fm). This is to insure that iai be in Fo(61, , 6i-1) whenever Oi trig ai.

A NATURAL STRUCTURE THEOREM FOR COMPLEX FIELDS 323

Thus, if no 0. are both trigonometric and transcendental, the requirement that be in
can be dropped provided 0 is not trigonometric.

Although it appears that one could circumvent the requirement in the structure
theorem that be an element of F0, by adjoining to F0, this has certain pitfalls. For
example, suppose is not in K, F0 K(z) and 0x dz/(z 2 + 1). Then F F0(01) is an
eplath field since 0 is nonsimple over F0. But, if is adjoined to F0, 0x is no longer
nonsimple since, now, 20 log (z + i)- log (z i) + c for some c in U. Thus, when a
new constant is adjoined to F,,, F,, may cease to be eplath. However, this can happen
only if there is some nonsimple, primitive, transcendental variable among the 0i.

Thus, it has been shown that the structure theorem holds even when is not in F,
provided that either (i) there is no nonsimple, primitive, and transcendental 0. or (ii)
there is no trigonometric Oi and 0 trig a is not considered.

4. Representation and equivalence. The structure theorem can be used as a basis
for finding regular representations for elements in an eplath field. This is done by first
finding an eplath field containing a given expression and then determining its canonical
representation relative to the O’s in that eplath field. Because an expression which is in
an eplath field is in several eplath fields, the representation obtained is not entirely
unique. It is unique relative to the choice of O’s in the eplath field used, however. Still, in
order to determine whether two expressions are equivalent, it is sufficient to find an
eplath field which contains both and see whether they have the same representation
relative to.this field.

The representation procedure is essentially inductive. Since canonical forms for
rational functions are well known, suppose that F,,, Fo(Ox," ", 0,,) is an eplath field
containing to whose elements the representation procedure can be applied. Consider
the problem of finding regular representations for elements of F,,(O). The following
method is a generalization of algorithms in [1], which implement part of the Risch
structure theorem and is an extension of the procedure in [7] for implementing the
structure theorem in [8].

If 0 is algebraic over F,, with p(x) as its minimum polynomial, then elements of
F,,,(O) are represented as elements of F,,[O] modulo p(O).

If 0 exp a, 0 hyp a or 0 trig a with a F,, apply the structure theorem to
determine whether 0 is a transcendental variable over F,,. If it is, simply consider 0 as
another indeterminate for representation purposes. Otherwise, the structure theorem
implies that 0 is algebraic over F,,(e c) for some c in C(Fm). Here serious difficulties can
arise. For, it may be a difficult unsolved problem to find a unique representation for
elements of F, (e) even for relatively simple values of c. For example, if c- 1 and
7r F, finding a unique representation for e + r is complicated by the fact that it is not
known whether e + r is a rational number. If it is assumed that elements of F,, (e c) can
be represented uniquely, since 0 is algebraic over F,, (e c) the algebraic case now applies.
Note that when e is algebraic over F,,,, e need not be adjoined to F,, before returning
to the algebraic case.

Suppose 0 log a, with a F,,. If 0 is a transcendental variable over F,,, simply
consider 0 a new indeterminate. Either the theorem or the corollary can be used. Both
will require solving systems of linear equations and may require representing elements
in G, (a generalized log-explicit field containing F,,) which are not in F,,. When
applying the structure theorem, itself, a 0i -trig a. introduces exp (iai) which may not
be in F,,. In applying the corollary, new elements can arise because F,, need not be
closed under differentiation. In either event, G, F, (t) for some algebraic over
since G,, is algebraic and finitely generated over F,,. So, elements in G,, can be

324 I4. . Er’sa’FN

represented by applying the algebraic case; then, the structure theorem is applied to
discover whether or not 0 is a transcendental variable over

If 0 is not a transcendental variable, the structure theorem implies that there are
c C(F,,) and rational number r such that k log c + irrr and 0 6 Gin(k). Here, there is
a two-fold problem with constants. First, the value of k depends on the branches of the
logarithm function chosen for each logarithmic 0i and 0. Thus, the user of the procedure
should probably be questioned before going further. Secondly, representing elements
in G,,,(k) may involve difficult unsolved problems such as whether log 2. log 3 is
rational. However, if the problems with constants can be resolved, 0 is in G,(k).

Finally, suppose 0 is primitive over F,. If 0 is a transcendental variable over
can, again, be treated as another indeterminate for representation purposes. It follows
from Liouville’s theorem [4] that 0 will be a transcendental variable over G,, F,, (t),
and, therefore, also over F,,, if it is nonsimple over G,,. This can be determined by using
either a modification of the Risch integration algorithm i-5] and [6] or Rothstein’s
integration algorithm [7]. In either case, it will be necessary to do computation in G,, so
as in the logarithmic case, it may be necessary to adjoin an algebraic to F, in order to
determine that 0 is a transcendental variable. If 0 is simple-logarithmic, either
integration algorithm will find 0 E c. log v. + w + k, with v, w G,n, c. C(G,,) and
k C(U). If adjoining these logarithms to G, as in the logarithmic case can be
accomplished, and k can be adjoined to the resulting field, elements of Fm (0) can now
be represented.

Since each possibility for 0 such that F,n(O) is an eplath field has been considered,
the induction step in the representation procedure is complete. Notice that if F, (0) is,
indeed, an eplath field, it will have the same constant field as F,. This is important
because of the inductive nature of the representation procedure. For, once a new
constant is adjoined to some F,,, the resulting field may fail to be an eplath field and the
induction can no longer continue. For example, let F,, Q(z, 01), where Q is the field of
rational numbers, and 01 dz/(z2+ 2). If 0 causes / to be adjoined the F,,, 01 is no
longer nonsimple. Thus, if 01 is not replaced by logarithms, the structure theorem could
no longer be used to determine whether there are algebraic relationships between 01, 0,
and any further O’s.

5. Conclusions. The structure theorem presented in 3 is a potentially powerful
tool for doing algebraic simplification. The representation procedure based on it allows
trigonometric and hyperbolic functions to be handled directly without an intermediate
step in which these functions are first converted into equivalent expressions involving
exponentials. This representation procedure is an important step in doing transcen-
dental function arithmetic with trigonometric and hyperbolic functions. Furthermore, it
offers the hope of developing algorithms for integration in finite terms of expressions
involving trigonometric and hyperbolic functions without first expressing them in
exponential terms.

However, at present the full power of this structure theorem cannot be exploited.
For, doing so would require an algorithm for doing integration in finite terms for
elements of an eplath field. While Rothstein [7] points out that such an algorithm exists,
he claims it is impractical. He does, however, present an algorithm which can be applied
to eplath fields in which there are no algebraic 0’s. Risch [5], [6] on the other hand,
presented an integration algorithm which can be applied to eplath fields in which there
is no 0 which is simultaneously primitive, nonsimple, and transcendental. Although it
seems possible to generalize these algorithms to work in an eplath field, they would still
have the drawback of requiring trigonometric and hyperbolic functions be converted

A NATURAL STRUCTURE THEOREM FOR COMPLEX FIELDS 325

into exponential equivalents. Thus, this new structure theorem implies both the need
for and the possibility of developing an improved integration algorithm.

REFERENCES

[1] H. I. EPSTEIN, Algorithms for elementary transcendental function arithmetic, Ph.D. Thesis, Univ. of
Wisconsin, Madison, 1975.

[2] H. I. EPSTEIN AND B. F. CAVINESS, A structure theorem for the elementary functions and its applications
to the identity problem, Internat. J. Comput. Information Sci., to appear.

[3] E. B. KOLCHIN, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.
[4] R. H. RISCH, Further results on elementary functions, RC2402, IBM Thomas J. Watson Res. Ctr.,

Yorktown Hts., NY, Mar. 1969.
[5], The problem of integration in finite terms, Trans. Amer. Math. Soc., 139 (1969), pp. 167-189.
[6], The solution of the problem of integration in finite terms, Bull. Amer. Math. Soc., 76 (1970),

pp. 605-608.
[7] M. ROTHSTEIN, Aspects ofsymbolic integration and simplification of exponential and primitive functions,

Ph.D. Thesis, Univ. of Wisconsin, Madison, 1976.
[8] M. ROTHSTEIN AND B. F. CAVINESS, A structure theorem for exponential and primitive functions, this

Journal, to appear.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

979 Society for Industrial and Applied Mathematics
0097-5397/79/0803-0005 $01.00/0

NEW ALGORITHMS FOR POLYNOMIAL MULTIPLICATION*

DOROTHEA A. KLIP"

Abstract. Exploiting the structure of the 2-dimensional sorting problem associated with the polynomial
product has been the strategy in the design of certain algorithms which are faster for a large class of problems
than those found in the literature. First a parallel is drawn between GEN-MULT and Horowitz’s SORT-
MULT algorithm [A sorting algorithm]’or polynomial multiplication, J. Assoc. Comput. Mach., 22 (1975),
pp. 450-462]. The former owes its better performance to the global incorporation of the structure. A
geometric picture of the relative location of the product exponents enabled us to present a new approach,
implemented by the SLICE algorithms, in whichthe product exponents are sorted in separate parallel slices.
For a class of problems of moderate size and sparsity, which was investigated by Johnson [Sparse polynomial
arithmetic, Proc. Eurosam Conf., SIGSAM Bull., 8 (1974), pp. 63-71 with the ALTRAN system, the simple
SLICE-S algorithm gave a 1:4 improvement, timewise and relative to sorting effort, as compared with
ALTRAN’s LI algorithm. The optimized version, for large, sparse problems, is based on theoretical
arguments. It performs in linear time as an average with respect to its major operations.

Key words, polynomial multiplication, systems for symbolic manipulation, time complexity of X + Y
sorting

1. Introduction. The importance of efficient algorithms in the field of symbolic
mathematics arises from the large storage requirements for mathematical expressions
in general combined with the expense of manipulating them. In the case of the
polynomial product one has to generate an expression whose size is the product of the
size of each of the operands. It is the general consensus that symbolic entities can only
be dealt with in an efficient way when adhering to a predefined canonical ordering for
the indeterminates. However, since the algorithms presented in the literature [1], [6]
require at best O(mn log n) for the sorting effort for operands containing m and n
terms respectively, Gustavson and Yun [3] proposed the generation of a nonsorted
product, which could be done in O(rnn) operations. We shall only consider algorithms
for the generation of a sorted product.

Since order of magnitude is not the sole criterion for efficiency, attempts have been
made to construct more efficient algorithms for certain problems which may frequently
occur in practice. We shall present results of our comparative study of these algorithms.

When starting with ordered operands, the product matrix has a certain structure,
which is a tableau in reverse order, as Horowitz [5] pointed out. His algorithm
SORT-MULT, which requires O(n- log n) operations, will be compared with our
algorithm GEN-MULT, which is also based on the tableau properties. GEN-MULT’s
better behavior for the test cases presented by Horowitz is due to the incorporation of
the tableau properties in a global way.

However, ALTRAN’s original algorithm and the improved HEAP version were in
fact also based on the tableau properties. Difficulty in handling equal exponents led to
the design of the List-Insertion or LI algorithm. Its better performance for a large class
of problems is also based on the structure of the product matrix, as will be-explained by
usin {}5.

Being aware of the importance of exploiting the information contained in both
operands, while at the same time realizing that GEN-MULT only exploits the structure
of a general tableau, we looked for a scheme based on the minimal information, which

* Received by the editors May 23, 1978. This work was supported by PHS Program Project Grant No.
HE11310 and a Medical Center Faculty Research Grant.

t Department of Physiology and Biophysics and Department of Computer and Information Sciences,
University of Alabama, Birmingham, Alabama 35294.

326

POLYNOMIAL MULTIPLICATION 327

would be a guideline for a more efficient approach. A geometric picture of the relative
location of the product exponents was obtained, from which it was seen that the product
terms can be sorted in separate parallel slices. The SLICE algorithms are based on this
premise. For a large class of problems of moderate size, which were presented by
Johnson [6], the simple SLICE-S algorithm gave a ratio 1:4 in performance as an
average relative to the LI algorithm.

For large, sparse problems an analysis of the sparse random case was made, which
resulted in an optimized version, projected in algorithm SLICE-O. The average
complexity for the sorting procedure is O(mn) for its major operations. The factor of
proportionality is dependent on the number of equal exponents in the product and on
environmental conditions.

From a theoretical point of view, SLICE-O could be modified to the extent that it
works exactly in linear time, which means that the execution time is proportional with
nm, at the expense of auxiliary storage of the same size as the m n product. This
approach has been recently implemented as the bucket-sort algorithm by Teer [14] in
the FORMULAPASCAL system. The complexity of "X + Y sorting", which is the
term for the mathematical abstraction of the multiplication problem was studied by
Harper, Payne, Savage and Straus [4]. Their main results were that any algorithm for
binary sorting (taking for convenience n m) cannot perform better than n 2 log2 n,
when making only use of the tableau properties. This lower bound is sharp. When
taking into account .the special properties of the product matrix and calculating an upper
bound for the number of order types in the product, assuming that X and Y are already
sorted, the lower bound for the complexity of sortingX + Y is <8n log2 n. On the basis
of this result Fredman [2] challenges us by means of a nonconstructive proof with the
assertion that any X + Y problem can be sorted in O(n2).

The test data presented were obtained on an IBM 370/158 computer with MVS
operating system from FORTRAN coded programs (G1 compiler), with the aid of our
VARLIST list processing system [10], [11]. Only univariate polynomials were
considered with single word length integer coefficients, represented in distributive form
[8], [9].

by

2. Notation.
Polynomial operands. In the univariate case the input polynomials are represented

A(x)= Z aix’ and B(x)= btx ’.
l_i<=n l<-i<=m

at and/3 are positive integers which are decreasing with increasing]; at and bt are
numerical coefficients,

pp-matrix. The nm matrix of the exponent set {eit} of the product terms

Pit aibix

ell el2 elm

e21

en enm
FIG. 1. The pp-matrix.

is a special case of a tableau (see 3.1). It is called, following Horowitz, the pp-matrix:
Covering set. A set of product terms P0 which has the property that product terms

not calculated yet have lower ordering than the largest of this set is called a "covering
set" for the pp-matrix.

328 DOROTHEA A. KLIP

Structure number S. In case the exponent differences of the operands are random,
the largest of these differences is called, following Johnson [6], the structure number for
this particular random case.

PPL. This is the abbreviation for partial product list, which is an ordered subset of
the product terms.

FINL. This is the abbreviation for final product list; the sorted termswhich are no
longer needed for the sorting of the remaining terms are deleted to FINL.

3. The algorithms GEN-MULT and SORT-MULT.
3.1. GEN-MULT. In early years of symbolic mathematics at our Institution, when

cornputer memory was small, an algorithm was developed which was based on the
properties of the matrix of the product exponents (Fig. 1). Horowitz [5] was the first to
observe that this matrix is a tableau in reverse order; the integers in each row are
decreasing with increasing row number, and the same property holds relative to the
columns. His referral to this matrix as the pp-matrix will be adhered to in the sequel.

The algorithm GEN-MULT generates the terms from certain diagonal sections of
the pp-matrix (see example in Fig. 2). One should bear in mind that this matrix is only a
frame of reference as to the order in which product terms should be produced from the

t_z.

_
t2_ t2_

120 116 97 90

112 108 89 82

95 91 72 65

90 86 67 60

77 73 54 47

74 70 51 44

64 60 41 34

[2_
75 63 56

67 60 48

50 43 31

45 38 26

32 25 13

29 22 10

19 12 0

FIG. 2. pp-matrix used as a reference for the algorithm GEN-MULT. The terms calculated in a particular
step are indicated by the corresponding step number in the upper right corner. The underlined elements are the
reference terms for the next step.

operands A(x) and B(x). At a certain stage in the process certain terms have been
calculated and put in order. Realizing that the exponents form a tableau, the left upper
corner represents those terms. Part of the calculated terms, no longer needed for the
sorting process of the remaining terms, has been deleted to the final product list. Those
which are needed for the proper continuation of the process form the so-called
"covering set". They are the sorted terms of the linear partial product list PPL. In the
next step PPL is updated relative to the term with lowest ordering, which is called the
reference term, Pref, for this step; the pp-matrix is scanned in increasing order of the
rows, inserting terms on a particular row until the current term has lower or equal
ordering than Pref, or until the column number of its right neighbor equals that of a term,
earlier processed in this step, which had lower or equal ordering relative to Pref. AS soon
as updating is achieved, the top part of PPL up to the reference term is deleted to FINL.

POLYNOMIAL MULTIPLICATION 329

The formal outline of the algorithm GEN-MULT, presented in Fig. 4, will be
clarified by the example of the polynomials.

A(x) x 56 ..[_ X48
__
X31 _[_ X26 _[_ X13 q.. X10 _[.. 1,

B(x) x64
-b- x 60

-b x41 + x 34
-b x 19 -+- x 12 q-- 1.

The pp-matrix associated with it, is pictured in Fig. 2.

Step Start End Comparisons Step Start End Comparisons

120 0 10

2 116
112

3 112 112
97

4 97 108
97
95

95 95
90 1
89 2

9O
89

91
90
89
86
77
75

86
77
75

86
82
77
75
74
73
72

11

12

60
56
54
5O

48
47
41

60 4
56
54
51 2
50
48
47 2
41 3

38
32
31

48
47
45
44
43
41
38
32
31

13 29
25

38
34
32
31
29
25

29
26
25
19

74
73
72

74
73
72
70
68
67
64

70
68
67
64

70
68
67
65
64
60
56
54
50

3
2

2+2

4
3

14 19 22

15 13 13
12

16 12

17

12 1
10
0 0

Total comparisons: 90

FIG. 3. Listing of steps for example in Fig. 2.

330 DOROTHEA A. KLIP

The total number of exponent comparisons for sorting the total product was 90, as
can be verified from the steplisting in Fig. 3. The algorithm was mentioned in [8] and
was documented with respect to its major aspects in [7].

Procedure GEN-MULT:
[re->n>2]
[COL(i) is column number of term on row to
be processed next]
[calculate Pxx and delete to FINL]
[calculate Px: and put on PPL]
[CMIN is the reference column number;
terms with /" =CMIN do not have to be
processed in current step]
[ITOP is the first row which has not been fully
processed]

[main loop]
[Pii is calculated and inserted in PPL

[next row]

[end main loop]
[delete top part of PPL; generate produces iref
and/’ref, row resp. column number of bottom
term Prf]

init;
COL(i)<-1; [i 2,...,hi
delete (p a);
enter (pl:);
CMIN 2;
COL(l) 3;

ITOP 1; eref el2;

i<-2;
while (terms are left) do"
while (i =< n and COL(i) < CMIN) do;

COL(i); insert (Pii);
if COL(i) m then ITOP ITOP+ I"

COL(i) COL(i) + 1;
trm eli;
if (trm >= erie or COL(i) CMIN) then do;
ii+1;

if trm >= er then CMIN j; end;
if (CMIN or n) then do;
delete (TOP); generate (eref);
CMIN m + 1; ITOP;
if iref--- ITOP then do; CMIN]f;

+ 1; end;
else ii+l; end end

end
end GEN-MULT

FIG. 4. Outline of GEN-MULT. Procedure insert inserts the term in PPL, starting a the reference term,

going either upward or downward until its proper position is found.

3.2. SORT-MULT, Horowitz’s best algorithm for polynomial sorting. In this
algorithm [5, p. 458] a set of product terms is generated (and maintained as a binary tree
structure) with the property that at most one term from each row of the pp-matrix is
represented; if the column number of a possible candidate in row is represented on the
list (by a term with row i’ <i) then this term will not be inserted in this step.
Consequently this set is called a minimal covering set relative to the term with highest
ordering. When updating is completed, the term with highest ordering is deleted and
appended to the final product. Insertion of a candidate into the tree occurs from a point
which is randomly selected.

In Table 1 (columns 2 and 4) the exponent comparisons are listed for the most
relevant "random case," which is defined as follows: the exponents a and fl of the
polynomials A(x) and B (x) are generated according to the rule

a,, 0; a,,_j a,-j+l + RAND(20) (/" 1,. , n 1)

m 0" m-] m-]+l +RAND(20) (] 1,. ., m 1)

where RAND(20) is an integer randomly selected from the set {1, 2,..., 20}. The
structure number $ is 20 in this case.

POLYNOMIAL MULTIPLICATION 331

TABLE

Comparison of Horowitz’s SORT-MULT with GEN-MULT and
SLICE-S, for the random case with structure number 20, for polynomial
operands with number of terms n m. The values in the second column are
taken from [5]. Although SLICE-S is more efficient, GEN-MULT will find
application in case of multivariate operands with a large number of indeter-
minates, because SLICE-S requires isomorphic conversion of the exponent sets

to their univariate images.

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

SORT-MULT

Exponent
comparisons

11
33
53
107
157
221
264
387
554
668
757
1053
1118
1409
1596
1643
2289
2031

GEN-MULT

Steps

4
7
10
12
14
16
18
21
23
25
26
27
29
31
32
34
36
38

Exponent
comparisons

5
15
31
5O
79
114
159
208
273
343
413
5O8
600
720
855
951
1103
1268

SLICE-S

Exponent
comparisons

0

3
7
16
28
42
58
82
110
141
179
213
251
299
364
394
489

3.3. Comparison of GEN-MULT and SORT-MULT for Horowitz’s input poly-
nomials. The test data which Horowitz presented [5, p. 461 were classified as "dense,"
"sparse", "intermediate" and "random". However, the distinction "structured" and
"unstructured" would have been more meaningful as a basis for comparison of
performance. "Structured" could be defined as a regular pattern for the exponent
sequences of either operand. Any algorithm that takes advantage of the structure of the
problem is bound to perform better than algorithms which are not designed on this
basis. This fact becomes clear when inspecting Horowitz’s test data for his SORT-
MULT algorithm against conventional methods, .which have the same upper bound
O(mn log n) for the sorting effort.

GEN-MULT is an improvement over SORT-MULT due to the global incorpora-
tion of the structure. For the "random case" with S 20 an average ratio 0,52 was
found in favor of GEN-MULT as can be verified by inspecting the data in columns 2
and 4 of Table 1. Although the linear insertion gives an a priori O(mn) bound for the
sorting effort of GEN-MULT, as opposed to SORT-MULT’s bound O(nm log n) due
to the binary search strategy, a consistent increase in ratio with increasing n was not
observed for the low values of n in the test data. With the availability of the SLICE
algorithms, the application of GEN-MULT will be restricted to special multivariate
problems in which n and m are of moderate size. In 6 a review is given.

332 DOROTHEA A. KLIP

The characteristics and differences of the algorithms are listed below.

GEN-MULT $ORT-MULT

I. CHARACTERISTICS

1. A partial product list, maintaining a
linear list structure, is updated by
inserting terms from the pp-matrix,
relative to the term which is at the
bottom of the list after completion of
the previous step.

2. A step terminates by deleting the. top
part of the partial product list up to the
reference term.

1. A partial product list, in the form of a
binary tree, is updated relative to the
top term until each row of the ppo
matrix either has a representative, or if
it is known that the current candidate
has lower ordering than the top term.

2. A step terminates by deleting the top
term from the list.

II. DIFFERENCES

1. The algorithm incorporates dynamic-
ally the global structure of the pp-
matrix, since it may occur that several
closely spaced terms on a particular
row are inserted in one step.

2. The number of steps is O(n + m).
3. Although theoretically the same

upperbound O(mn log2 n) holds for
the number of exponent comparisons
when the partial product list would be
maintained as a tree structure, the
cheaper linear list structure proved
sufficiently adequate to bring out
GEN-MULT’s superior performance
for the test cases presented by
Horowitz.

4. The partial product list contains O(2n)
terms.

1. The algorithm looks for the largest
exponent of a minimal set, which
means that only the local structure of
the pp-matrix is taken into account.

2. The number of steps ranges from
O(n + m) for the dense case to O(nm)
for the sparse case.

3. The number of exponent comparisons
was proven to be O(mn log2 n).

4. The partial product list contains a
number of terms which is _-<n.

4. The algorithms SLICE-S and SLICE-O.
4.1. The 2-dimensional picture of the relative location of the product exponents.

We have seen in 2 that GEN-MULT exploits the properties of a general tableau.
However, the pp-matrix has additional properties, namely the difference of two
elements in the same row only depends on their column numbers; a similar statement
holds for 2 elements in the same column. In formula:

eii eik Ol, 3_ j Ol [3k i k,

eii eki ai + 8i Ol.k j Ol.i Ol.k.

This means that we do not need all the information contained in the pp-matrix; the
order of the product terms is completely defined by the two linear arrays vii and vii of
the exponent differences of each of the operands. If one defines"

/211=0; Vii el el (] 2,’’’ ,m); Vi1-e11--eil (i =2,’’. ,n)

it follows vii vi Bi i vii vi ai ai.

POLYNOMIAL MULTIPLICATION 333

The exponent differences vii and/31/are plotted on the axes and r of a Cartesian
coordinate system, such that :i-1 vii (i 2, , n), rh-i --- vl/(j 2, , rn). When
assigning to the points vii (with coordinates c_x, r//-x) the norm Iv0l :i-1 + r//-i, then
these points can be considered the images of the product exponents in the sense that the
following relationships are valid"

1. ei/ ekl -Ivi/I + IVkll;
2. ei/= ekl iff i- + r/i- k-l+ r/l-l, i.e. if the corresponding points vii, VkZ are

located on the straight line : + rt c, such that c :i-1 + r/i-1.
3. eq > ekg iff i- + rt/- < k-1 + rtl-.

These formal results can be stated in the following simple manner:
When moving a rod from the origin to the opposite end of the rectangle under equal
angles with the coordinate axes one encounters the images ofthe product exponents in
their correct ordering.

4.2. Algorithm SLICE-S. In a first intuitive approach, presented by algorithm
SLICE-S, the rectangle is divided in (at most) 2(n + m)- 6 slices by choosing the set of
parallel lines

+n=vi (/=2,.’. ,g/); :-k-’0 "---/21/ (/" 2,... ,m);

-I- ’g/ /2nl -I- /21i (j=2,..., m-l);

-t- "0 /21m -t"/2il (]=2,... ,n-l)

as shown in Fig. 5. The marked reduction in number of symbolic comparisons is
obtained at the expense of a number of numerical comparisons for each element
whether or not it is located in the current slice. This implies that the linear arrays v/and
Vil actually have to be constructed as the initializing step.

25

30

43
46

56

FIG. 5. The pp-matrix ofFig. 2, pictured relative to the value of the exponents. The points on the coordinate
axes represent the partial sums of the exponent differences of the polynomials B(x) and A(x) from the example.
Only the internal points ofthe rectangle which are located in one "slice" (section between adjacentparallel lines)
have to be put in order on PPL. Following procedure PUTLIST one can verify that 14 symbolic exponent
comparisons are required, when comparison starts from the bottom of PPL. It was earlier found that the same
example requires 90 comparisons for GEN-MULT.

334 DOROTHEA A. KLIP

In Table 1 the symbolic comparisons for SLICE-S for Horowitz’s input poly-
nomials for the random case are listed in the 4th column.

4.3. Optimization for the sparse, random case implemented in algorithm SLICE-
O.

4.3.1. Division of the rectangle. In an attempt to find the optimal approach, we
present the following lemmas.

LEMMA 1. The division of the rectangle in slices ofequal area will ensure minimiza-
tion of the symbolic sorting effort, when averages are taken over a large number of tests.

Proof. The points of the rectangular network are distributed with uniform density,
when averages are taken over a large number of tests, in which n, rn and S are kept
constant. Equal partitioning of the rectangle as a means for optimization is a direct
consequence of a simple calculation from the calculus of variations; since the sorting for
the jth section, containing xi terms, requires O(xi (in case of a linear list structure), the
sum S--21<_j<_TX has to be minimized under the constraint 21<_j<=TXj =constant
(=nm). It is readily found that X x2 XT, in which T is the total number of
sections.

4.3.2. The rigorous approach. Once the constant of proportionality c in the
relationship T cmn for a particular computing environment is obtained (see 4.3.6),
the optimal value for T can be calculated. The division of the rectangle in slices of equal
area then involves the following calculations. Referring to the notation of the outline in
Fig. 6, we define

a VA(n) (degree of A(x)); b VB(m) (degree of B(x))

and assume that b->_ a. Dividing the rectangle into two congruent triangles and the
parallelogram which they enclose, we introduce

Procedure SLICE-S:
[choose m -> n > 2]
[partial sums of exp. diff. of A(x)]
[partial sums of exp. diff. of B(x)]
[column number of next term on row
i]
[main loop in PUT-LIST starts with
row I]
[Pll has highest ordering]

[since e22 < e12 and e22 < e21,

initialization comprises deletion of
terms Pli and Pi up to
min (PIE, P21)]

[TERM1 and TERM2 are terms at
the boundary; sidel true if V1
moves along left vertical boundary;
side2 true if V2 moves along
upper horizontal boundary]
[DIAG min(V1,V2). At start V1
moves along left vertical boundary,
V2 along upper horizontal
boundary]

VA(1)*- 0; VA(i)*- Oil [i 2," , n]
VB(1)*- 0; VB(/’)*- vxi; [/= 2,. ., m]
COL(i)*- 2; [i =2,..., n- 1]

delete (px); 2;/*- 2;
init: begin;
while VA(2) > VB(/) do; delete(pli);]*-] + 1; end;
while VA(i) < VB(2) do; delete(pi); i*- + 1; end;
if VA(i) < VB(/’) then dol delete(p); i*- + 1; end;
else do;
if VA(i) > VB(]) then do; delete(pi);/’*-] + 1; end;
if VA(i) VB(]) then do; TERM sum(px, pli);

delete(TERM); + 1;/"] + 1;
end; end;

end;
V1 VA(i); TERM1 p; V2
sidel true; side2 *- true; DIAG
main loop:
while
DIAG <_- min(VA(n) +VB(m 1), VB(m) +VA(n 1))

if V1 < V2 then do; DIAG*- V1; TERM*-TERM1; end;
else do; DIAG*- V2; TERM*-TERM2; end;

if V1 V2 then TERM*- sum(TERM1, TERM2);
put-list(DIAG); append(TERM);
delete (PPL);

do

POLYNOMIAL MULTIPLICATION 335

[terms above the line : x r DIAG
are inserted in PPL; after the terms
on DIAG have been contracted and
appended to PPL, PPL is appended
to FINL]
[next value for V1]
[initialize moving along lower
horizontal boundary]
[next value for V2]
[initialize moving along right vertical
boundary]

if(V1 <_- V2 and side1 true then do;
if < n then do; + 1; V1 ** VA(i); "FERMI Pil;

end; else do; side 1 ** false; i** 2;
end; end;

if(V1 >_-V2 and side2 true) then do;
if j<m then do; j**j+ 1; V2** VB(/’); TERM2**plj;

end; else do; side2 false; j 2;
end; end;

if(V1 <_- V2 and side false) then do;
V1 ** VA(n) + VB(i); TERM1 P,,i; ** +

end;
if(V1 -> V2 and side2 false) then do;
V2 VB(m) + VA(/’); TERM2 ** Pjm;]] + 1;

end;
delete(remaining terms);
end SLICE-S;

Procedure PUT-LIST:

[THRU is true if all terms above
DIAG have been processed;
THR(i) is true if next term on row

is below DIAG]

[in each cycle only one term per row
is inserted, because diagonally
located terms tend to be closer
spaced than terms on the same row]

init;
THRU** false; THR(i)** false; [i =/,. ., n 1]
while THRU false do; THRU true; ** I; CMIN** m;
main loop:
while(i _-< n or CMIN> 2) do;
if THR(i) =false then do;]**COL(i);
if vi < DIAG then do; insert(pii);

if COL(i)= m- then I I + 1;
else do; COL(i) COL(i) + 1;

vii** VA(i) + VB(/’); THRU **-false;
end; end;

if vii DIAG then TERM sum(TERM, Pii);
if vii DIAG then do; CMIN**]; THR(i)** true;

end; end; + 1;
end

end;
end PUT-LIST;

FIG. 6. Outline ofprocedure SLICE-S with subprocedure PUT-LIST.

end"

Str the number of slices of each triangle,

So the number of slices of the parallelogram.

Str and So can be solved from T 2Str+ So (total number of slices) and 0.5a2/Str
(b- a)a/So (equal area for trapezoidal and parallelogrammic slices). It follows Str
0.5Ta/b; So= T(b-a)/b. The increments of DIAG (see outline in Fig. 6) in the
triangular sections are dependent on the slice number and are denoted by sj (/"
1, , Str). With the notation U =- a/Str"5 it is found after a simple calculation

(1) sj U(/s-(i- 1)s) U/(/ +(j- 1)’5) (1 1,..., Str).

Provided that So--> 1, the equal increments so of the parallelogrammic area are b/T.

4.3.3. Relaxing the condition (1). For each individual random case the network
vertices are nonuniformly distributed over the rectangular area. The implementation of
(1) would not be practical, due to the great amount of square root calculations. By
means of the following considerations we virtually eliminate the cumbersome compu-
tations, but are globally upholding the requirement of equal area for the separate slices.
It is first noticed in Lemma 2.

336 DOROTHZa h. KLIV

Procedure SLICE-O’

[Str is number of slices for triangle]

Jim is number of main intervals of equal length
Mine, the main increment, which is the length
of the interval between the/’Zth and (/" + 1)2-
th diagonal]

[each main division point (=]2) is the center
of 2i subintervals of length Mine/(2/)" these
are the subincrements Sine]

[last increment Linc equals Minc divided by
2*Ir. These increments are added to DIAG,
starting at the center of the Imth interval until
a total length a]

ISo is number of slices in parallelogram]
Iso are equal increments]

[algorithm for second triangle equals that of
first triangle in reverse order]

a min(VA(n), VB(m));
b max(VA(n), VB(m));
T total number of slices;
Str0.5 T, a/b;

0.5I minc a/Im;
first triangle:
DIAG Mine; put-list(DIAG);
DIAG DIAG+ 0.5 Mine; put-list(DIAG);
STEPS Im-
main loop:
for <--2 to STEPS do;
]’ 2/; Sc M.c/]’;

for k to/" do; DIAG DIAG+ Sinc;
put-list(DIAG); end;

end;
remaining slices:
Linc Minc/(2 *
STEPS Im+ (a Im * Minc)/Linc;
tork 1 to STEPS do;
DIAG DIAG+ Linc; put-list(DIAG):

end;
parallelogram:
it a b then goto last-triangle;

So T(b-a)/b;so-b/T;
if (Sp= or so=0) then go to next-vertex;
for k to So do;
DIAG DIAG+ so; imt-list(DIAG);

end;
next vertex: DIAG b; Imt-l|st(DIAG):

last-triangle:

end SLICE-O;

FIG. 7. Outline of the main aspects of algorithm SLICE-O. For greater clarity we have omitted the obvious
actions at each step, i.e. initializing TERM (= terms located on DIAG; see PUT-LIST, Fig. 6) as an empty list
and, after insertion is completed, appending TERM to PPL. Then PPL is de&ted to FINL.

LEMMA 2. The sum of the increments between the j2-th and the (j + 1)Z-th slice is
--" Strindependent of] and thus equals U a 0.5

Proof. It follows from (1) that

Z U(i5-(i 1)5) U(-j +(] + 1))= U.
j2+li<(j+l)2

Consequently, after dividing the triangle side in St; equal main intervals U, we now
take U/(2j) for the slice width around the jth main interval. Since j)= i, where
numbers the subintervals, the exact slice width U/(i’s +(i-1)’s) at the jth main
division point is approximated by U/(2i5). Thus, instead of dividing the trapezoidal
sections between the 1.2 and (j + 1)2 diagonals into 2j + 1 sections of equal area, this
section is divided into j sections of equal slice length U/(2j) and j + 1 sections of equal
slice length U/(2j + 2).

4.3.4. Outline oi algorithm SLICE-O. The simplified version of the rigorous
approach, discussed above, is outlined in Fig. 7.

4.3.5. Order of magnitude for the sorting effort.
The essential operations.

POLYNOMIAL MULTIPLICATION 337

LEMMA 3. Asymptotic optimalperformance ofSLICE-Ofor the sparse random case,
for its major operations, occurs when the total number of slices T is chosen proportional
with ran; T- cmn, where c depends on the degree of sparseness and on environmental
conditions. This implies that the algorithm performs in linear time and requires O(mn for
the symbolic sorting effort.

Proof. The major operations of the algorithm are
1. The numeric operations for calculating DIAG, which are O(T).
2. The symbolic sorting effort per term for the terms of each slice, which, in our

case of linear insertion, requires O(nm/T). Accordingly, the total effort is
O(n2m2/T).

3. Concatenation of the sorted PPL’s which requires O(T) operations.
It follows that if and only if T is chosen proportional with nm, the asymptotic

behavior of the algorithm is O(mn).
Consequently, the total symbolic sorting effort is O(mn) and the total computing

time is proportional with ran.
The minor operations. An operation not included in the proof above is the

assignment of the correct slice to each product term. It is considered a minor operation
in the area of symbol manipulation due to its low weight factor. In the outline of
algorithm PUT-LIST (Fig. 6) the value vii (see 4.1), corresponding with a candidate
product term P0, has to be compared with the slice boundary value DIAG. Since
T O(mn), while only m terms in each row are placed in a slice, the number of vain
comparisons per term is O(n). This accounts for the nonlinearity of the total procedure.
Other minor operations in PUT-LIST have the same bound.

Theoretical improvement of the term insertion. The term insertion could be reduced
to linear behavior when generating the T PPL’s simultaneously and calculating for each
term its appropriate slice. The linearity achieved in this manner would be at the cost of
auxiliary memory space, which in our system, for n m 300, would be approximately
180K bytes.

An intermediate approach, which requires approximately of the auxiliary space
mentioned above for the same example, would be to generate the T5 major PPL’s
(with equal slice width (see 4.3.3)) sequentially, but generating the 2/" minor PPL’s
within each major slice simultaneously. With i term per row as an average located in a
major slice, the insertion of this term in the correct minor slice would be bounded by
log2 n, when applying binary search.

4.3.6. Experimental results.
Tests with algorithm SLICE-O. Tests with SLICE-O were done for n m, with

values 50, 70, 90, 150, 200, 300 and S-values 64 and 1000. The definition of the
structure number S was given in 2 and 3.2.64 was the largest value for S employed
in Johnson’s experiments. From observation it was found that for S 64 approximately- of the nm product terms are distinct. S-1000 corresponded with 98% sparsity.
Therefore this value for S was used to generate operands which were good represen-
tations of the completely sparse random case. In Table 2 are displayed the symbolic
comparison effort per term, the value of c (see 4.3.5) which gives the ratio of the
optimal number of slices T versus n 2. The observed minimal time divided by rt

2 is listed
in the last column. The data listed for optimal T were derived from a great number of
tests over a certain range of T values, such that a significant increase in time was
observed at both ends of the spectrum.

With respect to the data, the following comments are made:
1. The uncertainty in symbolic sorting effort (which is closely related to that in

338 DOROTHEA A. KLIP

TABLE 2
Data obtained with algorithm SLICE-O]’or S-values 64; 1,000; 10,000. In the first column the value of

n(= m) is displayed. The number of symbolic sorting operations per term is shown in the 2nd column. From the
factor of proportionality c the optimal value of T can be derived. The data in the 4th column show that the
algorithm exhibits near linear behavior.

5O
70
90
150
200
3O0

Symb.
sort/n2

+10%

2.2
2.7
2.8
2.8
2.9
3.3

S =64

c=T/n
+10%

0.12
0.08
0.06
0.05
0.05
0.05

Time/n
(millisec)
+2%

:2.5
2.5
2.4
2.5
2.4
2.6

5O
70
90
150
200
300

Symb.
sort

+10%

2.3
2.6
3.0
3.2
3.3
3.5

s 1,000

Tin
+10%

0.16
0.12
0.10
O.O8
0.08
0.O7

Time/n
(millisec)
+2%

3.1
3.1
3.1
3.3
3.4
3.5

150

S 10,000

Symb.
sort/n
+10%

3.1

T/n
+10%

0.10

Time/n
(millisec)

+/-2%

3.3

Tin 2) is much larger than the uncertainty in computing time. This is due to the low
weight factors of the operations which are linearly dependent on T as specified in
4.3.5. In mathematical terms this can be seen as follows. When defining y:=total

effort/n2, x:=T/n 2, we find y 1/x +(c2+c3n)x/cl+"" (terms of lower order in x)
where Cl and c2 are the weight factors for the operation 2 and 1 + 3 respectively c3 is the
weight factor for term comparison operations.

The significant part of this equation represents the branch of a nonorthogonal
hyperbola in the first quadrant with asymptotes x 0 and cly (c2 + c3n)x. Due to the
small ratio (C2+C3n)/Cl, the slope of this line is small. From this it follows that the
x-value, corresponding with minimal y, is not sharply defined.

The uncertainty in time is mainly due to fluctuations in observed CPU time for
identical runs, which is inherent with the MVS operating system (for the IBM 370/158).

2. The effect of the nonlinear term on time is not noticeable in the case S 64. In
the completely sparse case there is an increase of approximately 10% in time. Since it is
most likely that the range in problem size of our test runs covers all cases occurring in the
field of symbolic computation, we did not feel the need to implement one of the
alternative approaches mentioned in 4.3.5.

3, The ratio 2.5/3.3 in time of the cases characterized by $ 64 and $ 1000 is in
close agreement with the observed ratio 2/3 for the number of distinct terms versus the
size of the total product; the slightly larger ratio 2.5/3.3 is due to the fact that equal
exponents of terms on an unsorted PPL will in general not occur sequentially.

4, In order to verify that the sorting effort is only dependent on the degree of
sparsity, we listed at the bottom of Table 2 the results of a few tests with S 104, for
n 150.

5, Due to the low average number of terms per slice, which is 1/c (see Table 2), we
do not expect great advantage in time when employing a different list structure.

POLYNOMIAL MULTIPLICATION 339

Comparative data]:or SLICE-S and SLICE-O. More extensive data for SLICE-S
will be presented in 5.4, after discussion of the LI algorithm. The disadvantage of
SLICE-O is that an a priori guess of the optimal number of slices has to be made, which
means that the system constant c has to be determined. The simple SLICE-S algorithm
will cover a large class of problems without substantial sacrifice in computing time, as
can be seen from the data in Table 3.

TABLE 3
Comparison of algorithms SLICE-S and SLICE-O. SLICE-O becomes

significantly more profitable]:or the completely sparse case and large values]’or the
number of terms of the polynomial operands.

50
lO
)0

SLICE-S SLICE-O

$ =64

Symb.
sort/n2

3.5
4.1
4.6

Time/n
2

(millisec)

2.7
2.7
2.8

Symb.
sort/n

2.2
2.7
2.8

Time/n
(millisec)

2.5
2.5
2.4

5O
70
90

S 1,000

4.8
6.4
7.8

3.9 2.3
4.3 2.6
4.6 3.0

3.1

4.3.7. The multivariate case. Construction of the linear arrays of the exponent
differences in the SLICE procedures requires that in the multivariate case (v-_> 2) the
exponent sets

(1) (1){e(x>,e2, .,e; If=l,...,n}ofpolynomialA(x),
(2) (2){e (’), g2i, e i If 1,. m} of polynomial B(x)

have to be mapped into the ring of the integers such that the order of the product terms
produced from the univariate images uniquely defines the order of the multivariate
product.

It is emphasized however that the SLICE algorithms only require knowledge of the
exponent sets

(1){a; 1] 1 ,n} and (2)
"t,; IJ= 1,’’’, m}

of these images, since sorting in each slice is performed on the given multivariate
operands. (The alternative approach, which requires inverse mapping of the univariate
product, has been presented in a different context [13].)

Order of the sets {t(} of the terms of either operand is defined in the usual way by
assigning a certain canonical ordering to the variables, say, xx >x> > x. If

t(xi) :=c(i>x,,x, x., t(i) :=c(i)x,x2 "Xv

then by definition ti) > t(2i) if and only if one of the following condition holds
(1) exx > E12,

(2) eil ei2 (i 1," ,]; j < v) and Ei+l,1 > ei+l,2.

340 DOROTHEA A. KLIP

(If a variable does not explicitly appear on a term, then its exponent is interpreted as 0.)
The isomorphic mapping is achieved as follows.
First the operators {PjIJ 2,. , v} for the mapping operation are defined:

()) ({n ifi=l})P:= E max (e))- min (e) +1 n’=
1--<i-----2 lk<--n l<-kn m if 2

where the maxima (and minima in case of the occurrence of negative exponents (see e.g.
[8, p. 3])) for the]th variable are computed for the terms of A(x) and B(x) respectively.

Then the recursive generation of the integers/3 according to the scheme

(i)/’] e ’; /] e] + pk3 g-l, (k 2, , v)
(i) (i)for each term ti will yield the sets {ai}, with cj :=/., and will guarantee the

required isomorphism.

5. ALTRAN’s List-lnsertion or LI algorithm. The advantage of the LI algorithm
for problems of moderate size over alternative methods in the ALTRAN system is due
to the exploitation of the structure of the partial product list, although this fact has not
been clearly recognized.

5.1. Basic idea. A certain linear ordered partial product list is maintained such that
all terms not processed yet have lower ordering than the current top term. This list of
terms can be considered a "covering set". This property is preserved, if, after deletion of
the top term, say Pii, the "neighbors" p,/l and p/l,, are processed in case the following
conditions are fulfilled:

1. these terms have not been processed earlier;
2. the terms Pi-,i+ and p+,._ have earlier been processed.
Although the LI algorithm with its linear list structure has an a priori O(n2m)

behavior as compared with O(nm log2 n) for the HEAP algorithm [1], [6], [12] with
respect to the number of exponent comparisons, LI performed considerably better than
HEAP for virtually all cases which are likely to occur in applications.

5.2. Explanation of Lrs superior performance. We were able to show that the
effect of two lemmas are responsible for LI’s better performance.

LEMMA 4. If eii> ek then the probability that ei,j+l ek,l+ is greater than 1/2.
Proof. ei,+l-ek,l+l=ai-ak +Bi+--Bl+=(Ci+Bi)--(ak +//) + (/3’+ --/3’)--

(+l--Bl)=(ei--ekl)+(i+--Bi)--(fll+--Bl) Since ei--ekl>O, whereas, in the
random case, the remaining expression has equal probability to be >0 or <0, we
conclude that eij+l--ek,l+l 2>0 in the majority of cases.

One can express Lemma 4 in the following way: if one generates the set of right
"neighbors" of the terms of a covering set, then their ordering will resemble the
ordering of the former set.

LEMMA 5. If Pii and Pgt are terms of a covering set, such that pi > pk then, if Pi,i+ is
inserted prior to Pk,l+, the number of unsuccessful exponent comparisons is minimal if
insertion starts from the bottom ofPPL.

Proof. Since, according to Lemma 4, the probability that ei,i+l > et,,l+l is greater
than 1/2, no unsuccessful comparison of the corresponding terms pi,/l, Pk,l+ is done in the
majority of cases, when processing pi,+l prior to Pk,l+l, while starting the exponent
comparisons from the bottom of PPL. It is further noticed that the terms of a "covering
set" are in general closer spaced than a term and its neighbor on the same row (column);
the average distance of two neighbors is N/(n + m- 2), where N is the degree of the
product. The average distance between two terms of the final product is N/(nm). Since a

POLYNOMIAL MULTIPLICATION 341

covering set (which we supposed to include P0 and Pkl) can be considered a not fully
updated part of the final product list, it is expected that ekt > el,j+1 in the majority of
cases, so that insertion from the bottom of PPL also minimizes the amount of
unsuccessful comparisons relative to this pair.

5.3. The Quasi-Ll or Q-LI algorithm. In order to compare the LI algorithm with
GEN-MULT and SLICE, also relative to time, we implemented a version of LI which is
conceptually simpler, the so-called Quasi-LI algorithm. Starting with a covering set,
only the right neighbor(s) of the top term is (are) processed. In this way one avoids the
complicated checks mentioned under 1 and 2 in 5.1. However, due to the
asymmetric approach the number of exponent comparisons is <10% larger, as can be
seen from Table 4.

TABLE 4
SLICE-Sand GEN-MULTas compared with ALTRAN’sLIalgorithm and with a simpler version, Q-LL

which was implemented in order to obtain time comparisons. In the first column the number of terms n m) is
displayed, in the second the structure number S. The data in the third column are taken from [6]. The advantage
in time o]:GEN-MULTover O-Ll is mainly due to the simpler administrative procedure oftheformer algorithm.
SLICE-S works in linear time (]:or fixed S) for these input polynomials and therefore its relative efficiency
increases with increasing n.

10
10
10

30
30
30

5O
5O
5O

70
70
70

90
90
90

s

4
16
64

4
16
64

4
16
64

4
16
64

4
16
64

Exponent
comp./n

1.39
1.97
2.20

1.93
3.8O
5.18

2.19
4.83
7.46

2.29
5.47
9.64

2.38
5.94

11.93

Exponent
comp./n

1.47
2.17
2.49

2.01
4.25
5.98

2.21
5.26
8.91

2.29
6.01

11.28

2.33
6.47

13.28

Q-LI

(millisec)

4.5
4.5
4.5

7.7
8.1
5.2

4.7
6.4
7.4

5.0
7.6
9.3

5.2
8.1

10.8

GEN-MULT

Exponent
comp./n

1.48
2.00
2.36

1.83
3.44
5.04

1.90
4.01
7.20

1.94
4.39
8.78

1.96
4.65

10.06

Time/n
(millisec)

3.0
3.5
4.0

2.2
3.2
4.3

2.1
3.2
5.2

2.1
3.4
5.9

2.1
3.7
6.9

SLICE-S

Exponent
comp./n

0.18
0.53
0.78

0.36
1.34
2.40

O.37
1.61
3.48

0.37
1.75
4.14

0.40
1.86
4.63

Time/n
(millisec)

2.5
3.0

2.0
2.8

0.8
1.7
2.7

0.7
1.6
2.7

0.7
1.6
2.8

5.4. Comparison of Q-LI with GEN-MULT and SLICE-S. In Table 4 the relative
behavior of the various algorithms is displayed for the test data presented by Johnson.
Comparing first the symbolic sorting effort of LI (and Q-LI) with GEN-MULT it is seen
that GEN-MULT is slightly more profitable. LI recruits new product terms on the
basis of the structure of the previous sorted PPL.

The advantage in time of GEN-MULT is considerably greater. This can be
understood when realizing that with LI, for each product term processed, one has to
keep track of the corresponding row and column number(s). This even leads to the
paradoxical situation (in our system) that it takes longer to process 30 30 terms with
low value for S (so that many could be contracted) than the sparse case.

SLICE-S greatly profits from structured cases (low value for S). It performs better
than GEN-MULT and LI with increasing value of n (keeping S fixed), since the latter

342 DOROTHEA A. KLIP

algorithms do not perform in linear time. Since SLICE-S becomes significantly worse
than SLICE-O only for very large problems, SLICE-S is expected to perform in linear
time (keeping $ fixed) for the problems in Table 4. This expectation is confirmed by the
test data.

6. Review of the presented algorithms. We have shown that GEN-MULT per-
formed better than Horowitz’s SORT-MULT and ALTRAN’s LI-algorithm for the
test cases presented in the respective papers. In its present form GEN-MULT’s
theoretical bound is O(mn2), but transfer to a different data structure could lower this
bound to SORT’MULT’s O(rnn log n) behavior. GEN-MULT will find useful appli-
cation only for multivariate polynomials with many indeterminates for which the
mapping of the exponent sets required for the SLICE approach, as explained in 4.3.7,
could be cumbersome. Those polynomials, when containing a great number of terms,
would be most efficiently handled in recursive representation, as reported by us in [8].
In this case multiplication is likewise done recursively, with each intermediate uni-
variate case, which then would be of moderate size, handled by GEN-MULT.

The SLICE algorithms will be appropriate for the remaining cases, which are the
univariate polynomials and the multivariate polynomials with a small (say less than 5)
number of indeterminates.

SLICE-S is efficient for moderate size (say up to 100 terms) of the operands and
requires O(n) auxiliary space.

SLICE-O requires advance knowledge of the system constant c, although a rough
estimate is sufficient for an efficient performance. In its present form it works in near
linear time (time/n2= constant) as an average for the random case and requires very
little auxiliary storage. Although 1/c 20 terms is the average value for the work space,
in exceptional cases this number could be appreciably higher, due to situations where
clusters of product terms would appear.

7. Connection with theoretical results. The O(mn) performance of the SLICE
algorithms and of Teer’s bucket-sort algorithm [14] as an average for the random case
can be considered a step forward in the design of efficient algorithms for X + Y sorting.
Research should be continued in order to realize the possibility of O(n 2) sorting for any
X + Y problem. Although there is an infinite variety in exponent sequence for each of
the operands, for fixed n, one should take into account that the number of order types
for the product is finite (Harper, Payne, Savage and Straus [4]). The algorithm we are
looking for, should be able to dynamically recognize the order type with which the
problem corresponds. Furthermore, Fredman’s proof [2] is based on queries for each
individual product term relative to a suitably chosen integer. This implies that the
approach of older algorithms, which merely utilize binary comparisons, may have to be
abandoned. The SLICE algorithms could be a first step towards realizing the theoretic-
ally found O(n 2) performance.

Acknowledgment. The author wants to thank the reviewers and also Frank Teer
for their constructive remarks and for their referral to the literature concerning the
mathematical issues of X + Y sorting.

REFERENCES

[1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] M. L. FREDMAN, Two applications of a probabilistic search technique: Sorting X + Y and building
balanced search trees, Proc. 7th Annual ACM Symp. on Theory of Computing (Albuquerque, NM),
May, 1975, pp. 240-244.

POLYNOMIAL MULTIPLICATION 343

[3] F. GUSTAVSON AND D. Y. Y. YUN, Arithmetic complexity ofunordered sparse polynomials, Proc. ACM
Syrup. on Symbolic and Algebraic Computation (Yorktown Heights, NY), Aug., 1976, pp.
149-153.

[4] L. H. HARPER, T. H. PAYNE, J. E. SAVAGE AND E. STRAUS, Sorting X + Y, Comm. ACM, 18
(1975), pp. 347-349.

[5] E. HOROWlTZ, A sorting algorithm]’or polynomial multiplication, J. Assoc. Comput. Mach., 22 (1975),
pp. 450-462.

[6] S. C. JOHNSON, Sparse polynomial arithmetic, Proc. Eurosam Conf., SIGSAM Bull., 8 (1974), pp.
63-71.

[7] D. A. KLIP, Algebra by computer, Technical Report for the Dept. of Computer and Information
Sciences, University of Alabama, Birmingham, AL, September, 1973.

[8] ., Some aspects o]’ a portable algebra system, Proc. ACM South-East Regional Conf. (Nashville,
TN), April, 1974, pp. 1-22.

[9] ., Different polynomial representations and their interaction in the portable algebra system PORT-
ALG, Proc. Eurosam Conf., SIGSAM Bull., 8 (1974), pp. 72-73.

[10] ., The variable cell length listprocessor VARLIST, Proc. ACM National Conf. (San Diego, CA),
Nov. 1974, pp. 128-132.

[11 The VARLIST listprocessing system, Ref. Manual and Doc. Technical Report for the Dept. of
Computer and Information Sciences, University of Alabama, Birmingham, AL, September, 1975.

[12] D. E. KNUTH, The Art o]’ Computer Programming, vol. 3: Sorting and Searching, Addison-Wesley,
Reading, MA, 1971.

[13] R. MOENCK, Practical fast polynomial multiplication, Proc. ACM SYMSAC (Yorktown Heights, NY),
August, 1976, pp. 136-148.

[14] F. TEER, Formula manipulation and PASCAL, D.Sc. Thesis, Vrije Universiteit, Amsterdam, May,
1978.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0006 $01.00/0

SOME REMARKS ON COMPUTING GALOIS GROUPS*

J. McKAY"

Abstract. Computational techniques based on Chebotarev’s density theorem and tests for multiple
transitivity are of use in finding the Galois group of a given polynomial. A computer search for trinomials
having certain Galois groups over the rationals has produced examples with PSL3(2) as Galois group but none
with the Mathieu group M11.

Key words. Galois groups, polynomials, permutation groups

Although Galois theory is over a century old, very little has been published on the
subject of feasible constructive techniques, with the exceptions of Stauduhar [7],
Zassenhaus [8-1, Lefton [6], and Girstmair and Oberst [9]. The main problems of Galois
theory over the rationals are:

(1) To determine Gal (f), given the polynomial]’(x).
(2) To find a polynomial [(x) having a given permutation group G as Galois group.

Of these two problems, the second is the more difficult, since the existence of such an f is
known only for relatively few groups. There appears to be no published construction
producing f(x) from an arbitrary solvable group G even though it is known that such an

f exists for these G.
Throughout this paper, we take the base field to be the rationals and, in discussing

the first problem, we shall assume that f is irreducible. We note in passing that the case
of reducible/c is more difficult, since it requires consideration of subfields common to the
splitting fields of pairs of factors.

For our purposes, a "good" prime relative to some polynomial [is one which does
not divide the discriminant disc (/c) of f. If a prime is not good, then it is "bad": there are
only finitely many bad primes relative to any given

We define the shape of a permutation R of degree n to be the partition of n
induced by the lengths of the disjoint cycles of R. The factorization of a polynomial
modulo any prime p also induces a partition, namely the partition of deg (f) formed by
the degrees of the factors.

The following results follow from the density theorem of Chebotarev (see [5]).
LEMMA 1. For any goodprime p relative to a polynomialf, the degree partition ofthe

factorization off rood p is the shape of some permutation in Gal (f).
LEMMA 2. As s --> o, the proportion ofoccurrences ofa partition rr as degree partition

of the factorization off rnod Pi (i 1, 2, S) tends to the proportion ofpermutations in
Gal (f) whose shape is

Lemma 1 yields lower bounds on Gal (]c) based on the degree partitions of the
factorizations of f modulo various primes, while Lemma 2 can provide estimates of the
proportions of permutations of each shape in Gal (1). These estimates provide a
statistically significant guess as to Gal (f) which may later be confirmed by deterministic
methods such as the use of invariants.

Effective bounds on these estimates of proportions have been calculated by
Lagarios and Odlyzko [5] using assumptions based on the generalized Riemann
hypothesis, enabling Gal () to be determined uniquely in many cases.

We give tables for all transitive permutation groups of degree <-7, supplementing
Stauduhar’s tables [7] and those of Zassenhaus [8], and include the distribution of

* Received by the editors May 23, 1978.

" Computer Science Department, Concordia University, Montreal, Quebec H3G 1M8.

344

COMPUTING GALOIS GROUPS 345

permutation shapes and permutation generators. The notation G/H indicates that G is
represented on the cosets of H. Groups marked "+" are groups of even permutations.

TABLE
Distribution of shapes for all transitive groups of degrees 3 to 7.

Degree
13

+A3
S3 3

a=(1 2 3),b=(1 2)
a3 (a), S (a, b)

Ial

2 3
2 6

Degree 4
14 12 4 [G[

Z4 2 4
+V4 4
Ds 2 3 2 8

+A4 3 8 12
S4 1 6 3 8 6 24

a=(1 3 4),b=(1 3),c=(2 4),d=(1 2)(3 4)
Z4 (ac), V4 (bc, d), D8 (ac, bc),
A4 (a, d), S4 (ac, b)

imp

2x2

Degree 4
15 13 12 [GI

+Z5 4 5
+Dlo 5 4 10
F2o 5 10 4 20

+As 1 15 20 24 60
S5 10 15 20 20 30 24 120

a=(1 2 3 4 5), b=(1 2), c=(2 3 5 4)
Z4 (a), Dlo (a, c2), F2o (a, c),
A5 (a, bab), $5 (a, b)

Degree 6

16 14 12 23

26
$3 3
D12 3 4

+A4 3
G18 3 4
G24 3 3

+$4/V4 9
S4/Z4 3 6
G6 9 6 4
+G6 9 4
Gas 3 9 7

+PSL2(5) 15
072 6 9 6 4
PGL2(5) 15 10

+A6 45 40
$6 15 45 15 40

13

12

120

4 4
12

2
2
2
8
4
8
8 6
8 6
4
4 18
8 6 6

20
4 18

20 30
40 90
40 90 90

a=(1 2 3),b=(1 4)(2 5)(3 6),c=(1 5 2 4)(3 6),d=ab, e=bc2,
r=(1 2), s=(1 3 5)(2 4 6), t=rsrs2, v=(1 3)(2 4),
w=(1 6)(2 5)(3 4),x=(1 2 3 4 5), y=(1 6)(2 5),z=(2 3 5 4)

24

24
144
1.44

6

12
20

120

IGI

6
6

12
12
18
24
24
24
36
36
48
60
72
120
360
720

imp
23

imp
32

346 J. McKAY

Z6 (d), S3 (e, w), D12 (d, e), G18 (a, b), G316 (a, b, e),
G6 (a, c), G72 (a, b, c), A, (s, t), Gz4 (r, s), S4/ W4 (S, t, v),
S4/Z4-- (s, t, w), 048 (r, s, v), PSLz(5) (x, y), PGLz(5) (x, y, z),
A6 (c, x), S6 (d, x)

Degree
23

17 15 13

+Z7
D14 7

+Fzl
F42 7

+PSL3(2) 21
+A7 105
S7 21 105 105

4
4 2 4 6

14 12 22 13 12 IGI

6 7
6 14

14 6 21
14 14 6 42
56 42 48 168

70 210 280 630 504 720 2520
70 420 210 280 210 630 420 504 504 840 720 5040

a=(1 2 3 4 5 6 7), b=(2 4 3 7 5 6),.c=(2 3)(4 7), d=(1 2 3)
Z (a), O14 (a, b3), F21 (a, b2), F42 (a, b), PSL3(2) (a, c),
A7 (a, d), S (b, d)

One may obtain upper bounds for Gal (f) using a method based on the following
lemma [4]:

LEMMA 3. Let Ka be the field generated over the prime field F by A {ai}, IAI- n,
and similarly Kb generated over Fby B {bk }, the partial sums r < n at a time of the {ai},
IBI m "C: then,

(i) K, Kb i char F Y r,
and further, i s ai E F, then

(ii) K Kb if char F ’ n.

Proof. (i) We may assume that r > 1. Now ai- at Kb since ai- a is the difference
of two of the b’s differing in one place. Suppose that bk =ixaj, III r, 1; then

bk + , (ai at) rai Kb.

(ii) With the further assumption that s F we can repeat the above argument
replacing the bk by the complementary sums s bk which yields the result for the case
char F n r, and so, using (i), we obtain (ii).

This result is used to show that the Galois group over the rationals ofP with zeros
{ai} is isomorphic to that of Pb with zeros {bk}.

PROPOSITION. Pb(X) (with distinct zeros) is reducible if and only if Gal (P) is not
r-transitive on its zeros.

Here we take r-transitive to mean r-fold set-transitive, a concept which coincides
with ordinary multiple transitivity in most cases (see Cameron [3] for exceptions). We
note that by a simple counting argument Pb(X) has at least r(n- r)+ 1 distinct zeros.

If we can prove by the Chebotarev lemmas above that G -< Gal (f) -< An, where G
is a maximal subgroup of A,, then this transitivity test will usually determine Gal (f). In
practice it seems possible to determine a candidate for a factor of P (x) derived from
f P(x) by approximation before attempting to factorize it. Two typical examples are:

(1) PSL3(2): order 168, deg (Pa)= 7, r 3. Polynomial Po has degree 7 C3 35 and
has an irreducible factor of degree 7 corresponding to the Steiner system
S(2, 3, 7).

(2) The Mathieu group MI: order 7920, deg (P,) 11, r 5. Polynomial Pb has
degree 11C 462 and has an irreducible factor of degree 66 corresponding to
the Steiner system S(4, 5, 11).

COMPUTING GALOIS GROUPS 347

The Steiner systems arise from the partial sums. The subscripts of the zeros of Pa
which occur will form a Steiner system.

With regard to our second problem, that of finding a polynomial with a given
Galois group, we mention first the effective methods of Atkin and Swinnerton-Dyer [1].

In our own search for polynomials with given Galois groups, we have concentrated
on trinomials xn+axk+ b, using the following computer search technique (imple-
mented by E. Regener and R. Rohlicek)"

(1) For a small set of primes T {Pi} store those polynomials/ with coefficients
mod pi such that pg[disc (f.) or whose factorizations are "good". By a good factorization
we mean one whose degree partition modulo a good prime is the shape of a permutation
in the group under investigation.

(2) Let S be a subset of T consisting of the s primes having the smallest proportion
of good factorizations (usually we take s- 2 or 3). For each s-tuple of trinomials
(fl, , fs) in the tables, lift the coefficients from residues mod Pi to residues mod P
spi by the Chinese remainder theorem. Now test all trinomials f(x) x +Ax ’ +B
with integer coefficients within a predetermined range, choosing all A and B within the
range whose residues mod P are those given.

When Gal (f) consists only of even permutations, one can restrict the coefficients
A and B by the condition that disc (f) is positive, using Swan’s expression for the
discriminant of a trinomial [2, p. 163]. In this case, of course, disc (f) must be square.
Often the number of real roots of f, as determined by the Sturm remainder sequence, is
a further restriction on the possible values of the coefficients, since the number of real
roots is the number of fixed points of the involution induced by complex conjugation if
this operation is nontrivial in Gal (f).

Our search has succeeded in finding several trinomials f for which Gal (f)=
PSL3(2) on 7 letters. Each of these polynomials is of the form x7+TAx k +B. No
trinomials of the form x11+ l lAx k +B with Galois group Mix have been found for
1 <_- k <_- 10 and for coefficients in the ranges IllA1 <- 100,000 and [B[_-< 50,000. It would
be interesting to know whether all trinomials x7+Ax k +B whose Galois group is
PSL3(2) must have A divisible by 7.

Acknowledgment. I thank Dr. David Ford for his help in the preparation of the
tables.

REFERENCES

A. O. L. ATKIN AND H. P. F. SWINNERTON-DYER, Modularforms on noncongruence subgroups, Proc.
Arner. Math. Soc. Syrup. Pure Math., 19 (1971), Combinatorics, pp. 1-25.

[2] E. BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[3] P. CAMERON, Transitivity ofpermutation groups on unordered sets, Math. Z., 148 (1976), pp. 127-139.
[4] D. ERBACH, J. FISCHER AND J. McKAY, Polynomials with PSL3(2) as Galois Group, J. Number

Theory, to appear.
[5] J. C. LAGARIOS AND A. M. ODLYZKO, Effective versions of the Chebotarev density theorem, Algebraic

Number Fields (L-functions and Galois Theory), A. Fr61ich, ed., Academic Press, 1977, pp.
409-464.

[6] P. LEFTON, Galois resolvents ofpermutation groups, Amer. Math. Monthly, 84 (1977), pp. 642-644.
[7] R. P. STAUDUHAR, The determination of Galois groups, Math. Comput., 27 (1973), pp. 981-996.
[8] H. ZASSENHAUS, On the group ofan equation, Computers in Algebra and Number Theory, G. Birkhoff

and M. Hall, eds., SIAM and AMS Proc., 1971, pp. 69-88.
[9] K. GIRSTMAIR AND U. OBERST, Ein Verfahren konstruktiven Bestimmung yon Galoisgruppen,

Jahrbuch Oberblick, Birkhauser-Verlag, 1976, pp. 33-44.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0007501.00/0

UNIFORM BOUNDS FOR A CLASS OF ALGEBRAIC MAPPINGS*

DAVID Y. Y. YUN?

Abstract. The computation of residues with respect to a set of given moduli and the Chinese remainder
algorithm can be considered a pair of general invertible algebraic mappings. This class of algebraic mappings
include the more familiar mappings of evaluation and interpolation as well as forward and inverse fast Fourier
transform (FFT). The utility and significance of these mappings are fully recognized in such fields as symbolic
and algebraic computation and signal processing. The importance of the more general pair of mappings as
algebraic techniques is just beginning to be appreciated. All these mapping techniques are presented in this
paper from a unifying perspective. Then, a uniform upper bound for these pairs of invertible mappings in
terms of computational cost or time is established. Hopefully, this effort alleviates concerns of applicability of
these mapping techniques and encourages their use in numerous other potential application areas.

Key words, residue computation, Chinese remainder algorithm, evaluation, interpolation, fast Fourier
transform (FFT), symbolic and algebraic computation, extended Euclidean algorithm, asymptotic compu-
tational complexity, time or cost upper bound

1. IntroduCtion. Algebraic mappings such as polynomial interpolation and inverse
fast Fourier trar/sform are well known to be special cases of the more general mapping
of the Chinese remainder theorem (CRT) in arbitrary Euclidean domains. Each of these
mappings, denoted here generally as is the inverse of another mapping, denoted by
p, and when taken together they form invertible pairs of mappings satisfying the
relation:

o=o =1,

where denotes composition and 1 denotes the identity mapping. The inverse mapping
corresponding to interpolation is polynomial evaluation whereas the forward fast
Fourier transform and the inverse FFT (denoted forthwith by FFT and IFFT respec-
tively) form another pair of invertible mappings. Both of these pairs of mappings are
derivable from the more general pair of algebraic mappingsmresidue(s) computation
(also known as computing the modular representation) and the Chinese remainder
algorithm (CRA). it is well known that FFT and IFFT both have the same compu-
tational cost (asymptotic upper bound) of O(n log n) while evaluation and inter-
polation have a slightly higher but still equal cost of O(n log2 rt). A natural question to
ask is whether the more general mappings of residue computation and CRA also have
equal computational cost. It can easily be shown that residue computation in the general
case has the same computational cost as evaluation of polynomials (i.e., O(n log2 n)).
So the remaining issue is whether computing with CRA can be shown essentially
equivalent to a general interpolation process, hence equal in cost with the inverse
mapping. Two of the most respected reference books in this field, [1] and [2], give an
affirmative indication and a partial treatment of this issue. One offers a "pre-
conditioned" CRA while the other gives a "single precision" version (exactly cor-
responding to interpolation). It is the intent of this paper to prove that, indeed, this
general pair of invertible mappings also has the equal cost of O(n log2 n) in a natural
way. This general pair of invertible mappings is a common technique in algebraic
computation. Specifically, it is often useful in symbolic systems (such as MACSYMA

* Received by the editors May 23, 1978. Presented at the SIAM-SIGSAM Symposium on Computer
Algebra, SIAM 1978 Spring Meeting, May 24-26, Madison, Wisconsin.

" Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, New
York 10598.

348

A CLASS OF ALGEBRAIC MAPPINGS 349

and SCRATCHPAD) and in algebraic coding theoretic computations (such as Reed-
Solomon or BCH codes) for reducing the problem sizes and recomposing the results.
Motivation for clearly demonstrating this uniform computational bound came from two
additional avenues. Renewed interest in pairs of invertible mappings can be seen in the
area of public-key cryptography [3], [4]. The general CRA turns out to be particularly
relevant in the recent work by S. Winograd [5] on the design of (multiplicatively)
optimal discrete Fourier transforms and digital filters.

2. Preliminaries and definitions. Although the results and relations on these pairs
of invertible mappings hold in arbitrary Euclidean domains, it is most convenient and
clear first to restrict our attention to polynomial Euclidean domains, written as Fix]
where F is the coefficient domain which is a field. Indeed, it is in the polynomial domains
that our main result seems to be new. Furthermore, we will find it necessary to establish
notations and definitions which are most clear in the polynomial domain.

Throughout the paper we will use lower case italic letters to denote coefficient
domain elements and use uppercase italic letters to denote polynomials in variable x.
Thus a general form of a polynomial in Fix] is

deg(P)

P(x) pix i,
i=0

where the pi’s are in the coefficient field F. If deg (P)= n then computing P(x) means
finding the n + 1 coefficients pi. This will involve O(n) coefficient arithmetic operations.
Let M(n, m) be used to denote the upper bound on the number of coefficient arithmetic
operations to multiply two polynomials of degree n and m respectively. It is often
abbreviated by M(n) in the case of multiplying two polynomials of equal degree n. The
following assumption on M(n, m) is a slight generalization of that made on M(n) in [1]:

k

Assumption M. M(nl, n2)+" .+M(nk_l, nk)<-M(n)ifn hi.
i=1

Note the similarity of this convexity assumption with its special case aM(n) <= M(an) for
all a _-> 1.

Given A and B in Fix which is a Euclidean domain, there always exist O and R in
the same domain that satisfy the division (with remainder) relation"

A BQ +R deg(R < deg(B).

Let D(n) denote the cost of dividing a degree 2n polynomial by a degree n polynomial.
Then D(n)=O(M(n))= O(n log n) [2]. With the concept of division, we have the
concept of a divisor, the name given to B when the remainder of division with A is 0. For
any two polynomials A and B, there exists a greatest common divisor (GCD), G, which
divides both A and B while any common divisor of A and B also divides G.

The algorithm for computing GCD’s in any Euclidean domain is the well known
Euclid’s algorithm (E/k). It computes GCD(A0, A1) by an iterative division process
yielding a remainder sequence Ao, A1, , Ak, where Ai for 2 _-< _-< k is the nonzero
remainder from the division of Ai-2 by Ai-. The fact that E/k computes GCD(Ao, A 1)
is easily seen from the division relation of the A;’s and that GCD(A0, A1)
GCD(A1, A2) GCD(Ak_I,A)=A. An algorithm which computes such a
GCD with a cost of O(M(n) log n) is given in [1] which is Moenck’s modification (to
Euclidean domains) of a divide-and-conquer concept applied to calculation of integer
GCD’s due initially to Sch6nhage.

350 DAVID Y. Y. YUN

3. Extended Euclidean algorithm. GCD computations often serve the ultimate
purpose of reducing rational numbers (fractions) or rational functions (ratios of
polynomials) to lowest terms. Thus, it is not the GCD that is of interest but often its
corresponding divisors of the numerator and denominator in the original fraction.
Another frequent use of the GCD computation is to find solutions X and Y to the
equation

AX +BY GCD(A, B), given A and B.

When dealing with finite field, algebraic number, and/or algebraic function arithmetic
where GCD(A, B)= 1, this equation provides the often indispensible operation of
computing the inverse of A with respect to the modulus B or vice versa, i.e.

X A-l(mod B) or Y B-l(mod A).

The algorithm for computing such X and Y given A and B is known as the extended
Euclidean algorithm (EEA) and is a rather straightforward modification of the iteration
in EA:

With Ao A and A B,
Let X0<-- 1; X1 <--0; Y00; Y1 - 1;
Iterate for 1 =< _-< k as in EA,

Ai+l ’-Ai-I-QiAi by division, together with the iterations
Xi/ - Xi- QiXi
Y/+l -" Yi-l-QiYi

Then X Xk and Y Yk satisfy the desired equation

AX +BY GCD(A, B).

In fact, a similar relation holds for each i"

AoXi +AI Y/= Ai(AXi +B Yi).

This relation forms the basis for the O(M(n) log n) GCD algorithm given in [1]. We
show, simply, how to use procedure HGCD and modify the GCD algorithm in [1] to
compute X and Y, with GCD(A, B) as a by-product. For completeness we will state
some definitions and essential results. Most of the omitted proofs can be found in our
two principal reference books, [1] and [2].

DEFINITION. Let A0 and A result in the remainder sequence A0, A 1, , Ak, and
Qi be the quotient of dividing Ai-1 by Ai. For 0 -< < j _<- k, we define

Rii-
0 1

, . .
1 --Oi 1 -Q]-I 1 -Qi+I

LEMMA 3.1.

forO<-i<j<-k, Ro.= forO<-j<k.
+1 Yj+I

The principal technique to be applied here is divide-and-conquer. An algorithm
based on it aims to find the middle element of the remainder sequence with respect to

Ao and AI, i.e., the element of the remainder sequence which has the smallest degree
exceeding half that of A0. An essential concept for discussing such a midpoint is the
following"

A CLASS OF ALGEBRAIC MAPPINGS 351

DEFINITION. l(i) is the unique integer such that deg(A/(i)) > and deg(Al(i)+l) <= i.
LEMMA 3.2. Given polynomials Ao and A1 in F[x] with deg(Ao)= n > deg(A1),

HGCD(Ao, A1)= Ro,l(n/2), i.e., the first row oj this 2 x 2 matrix, say (Xi, Yi), satisfies
AoXi +A1Yi Ai with deg(A) > n/2 and the second row gives the next X+I and Y/+I
which yields Ai+l with degree <- n/2. The computing cost of HGCD is O(M(n) log n).

Based on these results, we can now state the extended Euclidean GCD algorithm
which is a modification of Procedure GCD from [1, p. 308].

Input" Polynomials Ao and A in F[x where n deg (Ao) > deg (A 1).

Output: A row vector (Xk, Yk) such that

(Xk, gk XkAo q" gkA1 aCD(A0, A 1).

procedure EEGCD(A0, A 1);
if A1 divides A0 then retnrn (0, 1);
else begin

R - HGCD(Ao, A 1);

if B1 0 then return first row of R;
if B1 divides Bo then return second row of R;
Q and C - respectively, quotient and remainder of dividing Bo by B1;

return EEGCD(B1, C) * R
1 -O

end

end EEGCD;
It is interesting to compare this algorithm with Procedure GCD of [1] in terms of

their similarities and differences. Their similarity indicates the relatively minor addi-
tional effort for finding not only the GCD but also solving the equation AoXk +A Yk
GCD(A0, A1). The difference, mainly the statement with a test for B1 0, actually
points out a subtle error in Procedure GCD which is also present in HGCD and causes
them to give unexpected answers contrary to those predicted by theory. This error was
discovered by F. Gustavson when he implemented and tested an earlier version of
EEGCD in a draft of this paper.

The next theorem shows the correctness of Procedure EEGCD and establishes its
computing cost.

TX-IEOREM EEGCD. Given A and B in a Euclidean polynomial domain F[x with
n deg(A) >_- deg(B), the problem of finding G GCD(A, B) together with unique X
and Y such that AX+BY=G, where deg(Y)<deg(A)-deg(G) and deg(X)<
deg(B)-deg(G), can be computed in time O(M(n) log n).

Pro@ It is sufficient to show that algorithm EEGCD successfully computes X
(- X) and Y (= Y), since, then, 2 multiplications and an addition will yield the GCD,
G, by Lemma 1. But Lemma 2 implies that the call to HGCD yields R Ro.(,/z). Then
the division of B0 by B1 insures that the recursive calls to EEGCD have arguments (i.e.
B1 and C) with degrees less than n/2. Thus the algorithm terminates. Furthermore,
Lemma I and the definition of Rii (specifically, 0 and/" k) guarantee that the final
2 x 2 matrix must contain X and Y as the elements of the first row.

The uniqueness and degree constraints onX and Y come directly from EEA. First,
EEA and this algorithm guarantee the existence of X and Y satisfying AX +BY G.

352 DAVID Y. Y. YUN

In fact, since the computation ofX and Y uses the quotient sequence associated with A
and B, the degree constraints must hold. Assuming the existence of X’ and Y’ also
satisfying the degree constraints and the equation AX’ +BY’ G, then subtracting the
two equations we get A(X-X’)=B(Y’-Y). Now, A/G and BIG are relatively
prime, so BIG must divide (X-X’) which has degree less than deg (B)-deg (G).
Hence (X-X’) 0, i.e. X X’. Similarly Y Y’. Therefore, the X and Y satisfy the
degree constraints and AX +BY G must be unique.

The computing cost is expressed by the inequality

T(n) <- T(n/2)+ClM(n)+c2M(n) log n.

The first term on the right-hand-side accounts for the recursive call to EEGCD. The
second term accounts for all the multiplications and divisions in the algorithm. The final
term, which is the dominant term of this recurrence relation, reflects the cost of HGCD
which in fact does most of the work. The cost of algorithm EEGCD is, therefore, easily
seen to be O(M(n) log n).

4. Residue computation and Chinese remainder algorithm. The modular
representation of an element A of a Euclidean domain with respect to a given set of k
moduli, P, P, , P, is a set of residues or remainders, R a, R2, , R, which result
from dividing A by P for 1, 2,..., k. Generalizing from integers to polynomial
Euclidean domains, if A and P are two polynomials satisfying deg(A)< deg(P) where
P PPz P and Pg’s are pairwise relatively prime, then A is uniquely represented
by the set of residues R w.r.t. P. Specifically, given Ri and Pg, the unique A with degree
less than deg (P) can be computed by the generalized Lagrange interpolation formula:

k

giCiDi modulo P, where Ci P/Pi and Di C-1 modulo Pi.
i=1

This is the well-known concept of modular representation and Chinese remainder
algorithm. Its use for (large) integer calculations is common in such areas as number
theory. It has also become a popular technique (sometimes known as the modular
homomorphism technique) for computations with polynomials, particularly in symbolic
and algebraic computational algorithms and systems. However, the use there is almost
exclusively restricted to moduli which are linear polynomials of the form x- b. The
modular technique with linear moduli corresponds precisely to the more special
technique of evaluation and interpolation of polynomials. This is perhaps the reason for
some recent literature on this subject to be content in only describing and analyzing
such special versions. Clearly, if such restrictions to single-precision integers were made,
it would immediately be deemed unnecessary and unnatural. In view of the need to

complete the picture for this important and useful class of algebraic mapping techniques
and the renewed interests in computations in the general case, the rest of this paper
intends to present, analyze, and demonstrate the equal computational cost for the
general case. Perhaps, it should be stressed that this equal upper bound for the
computational cost of this general pair of mutually invertible algebraic mappings does
not imply the equivalence of these two problems.

The overall measure for the size of a problem will be n which is assumed to be the
degree of P, and hence bounds the size of every intermediate expression that appears
during computation with the modular technique. Furthermore, let deg(P)= hi; then
n n + n2 +"" + n. The following result on residue computation appears in special
versions in [1] and [2]. Since our version is slightly more general, we include a derivation
here for completeness.

A CLASS OF ALGEBRAIC MAPPINGS 353

The problem of residue computation is finding Ri A (mod Pi), for 1, 2, , k,
given A and Pi. The technique to be employed is that of divide-and-conquer. A
simplifying assumption to be made without loss of generality for results that follow is
k 2 I. We first compute P and all the intermediate binary products ([2] calls them super
moduli)

4 k k/2 k

P1P2,"’,Pk-IPg, l-I Pi,’", l-I Pi,’", l-I Pi, I-I Pi.
i=1 i=k-3 i=1 i=k/2+l

Let the level-O binary products be simply the given P1, P2," "’, Pk. Thus, the level-m
binary products will consist of consecutive products of m Pi’s in the form

(i+1)2

i=/’2m+l
Pi for/’ 0, 1, , 2l-m 1,

so that the level-/binary product is P. The computation of any level-(m + 1) binary
product is a multiplication of two consecutive level-m binary products which were
computed before. Thus, at the ruth level for m 1, 2,..., log k(= l), there are 2l-m

multiplications of level-(m- 1) binary products. But Assumption M implies the cost of
all level-m multiplications is bounded by M(n). Therefore we have derived the
following lemma:

LEMMA 4.1. Given P1, P2,"" ,Pk with degrees nl, n2,"’, nk respectively, P=
PI"’" Pk of degree n and all binary products can be computed with a cost of
O(M(n) log k), hence O(M(n) log n) since k <-n.

Armed with the binary products, the divide-and-conquer technique is now applied
in a reversed direction to compute the Ri’s. Initially, if the given A has degree >_-n then
its remainder upon division by P is computed. This level-l remainder is used to compute
two new level-(l-1) remainders upon division by the level-(/-1) binary products. In
general, at level-m for 0<-m <l, each of 2-"-1 already computed level-(m-1)
remainders are sequentially divided by two of the level-m binary products to get 2l-m

level-m remainders. Since D(n)= M(n), it is clear that the computation at each level is
M(n) so that total cost for computing the Ri’s is O(M(n) log k), or we have

LEMMA 4.2. Given A of degree <-2n and P,P2,...,P of degree n,..., n
respectively where n n + n2 +" + n, Ri A (mod Pi) can be computed in cost of
O(M(n) log k), hence O(M(n) log n).

It is well known that evaluation is a special case of residue computation where
moduli Pi’s are taken to be linear polynomials of the form x- bi for a set of n distinct
points. Thus it is clear that the general result, Lemma 4.2, implies evaluation at n
distinct points can also be done in O(M(n) log n) cost. The same divide-and-conquer
technique applies with these linear polynomial moduli. In the case of FFT, these n
points bi became the special nth roots of unity which are ith powers, 0, 1, , n 1,
of the principal n-th root ofunity, w. The special (cyclic multiplicative) properties of o) are
responsible for the reduction of the cost from O(M(n) log n) for evaluation at arbitrary
points to O(M(n)) or O(n log n) for FFT. Let us now backtrack in this type of
deduction. IFFT is also O(n log n) or O(M(n)), again due to the special properties of w.
The similarity of the formula for FFT and IFFT is striking. This kind of similarity is
exploited in general when interpolation at n points with n functional values is shown
reducible to evaluation; cf. [1]. Specifically, a critical step of this reduction is the
computation of the derivative of P (x- b)(x- bE)"" (x- b) and the evaluation of
that derivative at bl, b2, , bk. Thus, interpolation, as the inverse mapping of evalua-
tion, has the same cost O(M(n) log n) as evaluation. In view of the discussion on the
Lagrange interpolation formula above and the fact that all operations in the formula can

354 DAVID Y. Y. YUN

be performed for the general Chinese remainder process, it is clear that interpolation is
a special case of CRA. What remains is to show that CRA, as inverse mapping of
residue computation, also has a cost of O(M(n) log n). The plan for showing this result
is precisely parallel to the case of reducing interpolation to evaluation. Here we reduce
CRA to residue computation and show that the additional computations for the
completion of CRA are also bounded by O(M(n) log n).

First, we state the most general theorem with the desired computational complex-
ity on CRA to date. This result relies on preconditioning and it can be most directly
specialized to the case of interpolation. By preconditioning we mean that all quantities
depending only on the fixed portion of the input are precomputed and supplied as if they
are also inputs. Thus preconditioning is most advantageous when a number of problems
depend on a common portion of the input or the same input is used for several different
problems. The disadvantage of it is that computational cost improvements are not
realizable when inputs vary with the problem or when the common portion of input is
hard to recognize. We follow the version in [1, Theorem 8.13] with only slight
modifications.

LEMMA 4.3 (residue computation). Suppose P1, P2, Pk are pairwise relatively
prime polynomials in F[x ofdegree at most d, andM(n is the number ofarithmetic steps
needed to multiply two n-th-degree polynomials. Then given polynomials
R1, Rz,"’, Rk, where the degree of Ri is less than that of Pi,]’or 1 <= <-k, there is a
preconditioned algorithm to compute the unique polynomial A o[degree less than that of
P P1Pz" P such that Ri A (mod Pi) for 1, 2,. , k in a cost of0(M(n) log k),
hence O(M(n) log n).

The algorithm for this form of Chinese remaindering is based on the generalized
Lagrange interpolation formula given earlier

k

RiCiDi modulo P,
i=1

where C/= P/Pi and Di C-1 modulo P.

If this formula or CRA is used for several different sets of R’s but the same set of
Pi, then it is clearly advantageous to precompute the C’s and the Di’s since they depend
only on the Pi’s. However, there are certainly many useful situations where the set of
P,.’s will vary with the set of Ri’s. If it is possible to establish the same computational
complexity without preconditioning, then the concern for common input of different
problems naturally disappears. In particular, interpolation through n points can be
done with a cost of O(M(n) log n), based on Lemmas 4.3 and 4.4:

LEMMA 4.4. Let Pi x b for 1 <- <- k, where the bi’s are distinct (i.e., the P’s are
relatively prime). Let P PPz P, Ci P/P andD be the constant polynornial such
thatDCi 1 (mod Pi). ThenD 1/, where , P’(b) (i.e., derivative ofPwith respectto
x evaluated at x b).

We first note that the critical point of reducing interpolation to evaluation is in the
computation of the derivative of P PIP2"’" P and then evaluating that derivative.
The derivative of P in the case of the general CRA has the form

k

P’= E PI I-IPj.

However, in the case of interpolation where Pi (x- b), P is always 1. In the
more general setting of the Chinese remainder theorem, P’ can be used for the
subsequent computations leading to the final sum in the Lagrange interpolation

A CLASS OF ALGEBRAIC MAPPINGS 355

formula. In order not to digress excessively, however, we simply set all P to 1, define

k

PI=E 1-lP;
i=1]’i

and use p1 for the reduction of CRA to residue computation. It is clear that pl Ci
(mod Pi) for all 1 _-< _-< k. Thus, the results of residue computation with p1 and Pi’s as
input are all the Ei=(Ci modPi). Di’s satisfying DiCi=-1 (modPi), can now be
computed from each pair of Ei and Pi via the algorithm EEGCD. With all the Pi’s, Ci’s,
Di’s, and for any set of Ri’s, carrying out the general CRA via Lagrange interpolation
formula is simply the computation for the sum modulo P. We can now state the main
theorem and prove the cost bound which holds for general CRA without pre-
conditioning.

THEOREM CRA. Suppose PI, P2, P are pairwise relatively prime polynomials
in F[x] of degree ha, El2,’’’, n respectively. Then given polynomials R1, R2, R,
with deg (Ri) <deg (Pi) for 1 <=i <-k, there is an algorithm with cost O(M(n) log n) to
compute the unique polynomial A with deg(A)<n=deg(P=PiPz...P)=
nl + n2 +" + n such that Ri A (mod Pi) for 1, 2, , k.

Proof. The steps for this CRA has been given, so it only has to be shown that each is
bounded by O(M(n) log n).

(1) The first step is the computation of P and all binary products. By Lemma 4.1,
the cost for this step is O(M(n) log k).

(2) Since deg (p1) __< deg (P’) < deg (P) n, the step for residue computation of p1
with respect to the Pi’s (i.e., getting the Ei’s) is also bounded by O(M(n)log k), by
Lemma 4.2. The actual computation of p1 is a special case of the recursive formula
given below (in (4) with Ri and C 1), so its bound is also O(M(n) log k).

(3) The next step involves computing Di from Ei and Pi for 1, 2,. , k. But
each computation of Di for a particular is the application of the EEGCD algorithm
which, by Theorem EEGCD, costs O(M(ni) log ni). The total cost for all _-< k is

k k, O(M(ni) log ni)-<(log n) O(M(ni))<-(log n)m(n),
i=1 i=1

by a special form of Assumption M.
(4) That the sum can be formed fast follows from the same identity as for the case

of preconditioned CRA

k k k

Y RiCiDi Y’. RiDi I-I P
i=1 i=1 j=l,ji

k/2 k k k

RiDi 1--[P+ RiD 1-I P
i=1 i=l,i#i i=k/2+l i=l,i#i

k k/2 k/2 k/2 k k

1-I P , giDi I-I P + 1-I P , RiDi I-I P.
j=k/2+l i=1 i=l,j#i /=1 i=k/2+l i=k/2+l,j#i

This recursive formula naturally lends itself to the divide-and-conquer technique.
Notice also that all the binary products needed here have already been computed while
computing P (in Step (1)). Realizing that the cost of each step of the recursion is
bounded by M(n) (again by Assumption M), log k steps of recursion gives the total cost
of O(M(n) log k).

(5) The final division of the sum by P is clearly M(n). [-1

356 DAVID Y. Y. YUN

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
Elsevier, New York, 1975.

[3] W. DIFFIE AND M. HELLMAN, New directions in cryptography, IEEE Trans. Infor. Theory, IT-22
(1976), pp. 644-654.

[4] R. L. RIVEST, A. SHAMIR AND L. ADLEMAN, A method for obtaining digital signatures and public-key
cryptosystems, Comm. ACM, 21 (1978), pp. 120-126.

[5] S. WINOGRAD, On computing the discrete Fourier transform, Math. Comp., 32 (1978), no. 141, pp.
175-199.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics
0097-5397/79/0803-0008501.00/0

A STRUCTURE THEOREM FOR EXPONENTIAL AND PRIMITIVE
FUNCTIONS*

MICHAEL ROTHSTEIN" AND B. F. CAVINESS*

Abstract. In this paper a new theorem is proved that generalizes a result of Risch. The new theorem gives
all the possible algebraic relationships among functions that can be built up from the rational functions by
algebraic operations, by taking exponentials, and by integration. The functions so generated are called
exponential and primitive functions. From the theorem an algorithm for determining algebraic dependence
among a given set of exponential and primitive functions is derived. The algorithm is then applied to a
problem in computer algebra.

Key words, algebraic dependence, differential algebra, Liouville extension fields, computer algebra,
structure theorem, exponential and primitive functions

1. Introduction. In this paper we generalize a theorem of Risch [10] (see also [5]).
The new theorem gives all the possible algebraic relationships among functions that can
be built up from the rational functions by algebraic operations, by taking exponentials,
and by integration. We call this class of functions the exponential and primitive
functions.

The Risch theorem gives all possible algebraic relationships among a set. of
elementary functions. His theorem essentially says that except for explicit algebraic
relationships all other algebraic relations among elementary functions result from
either the law of logarithms, i.e., log (ab)= log (a)+ log (b)+ a constant, that depends
on the branch of the logarithm function, or the exponential law, i.e., exp (a + b)=
exp (a) exp (b). The new theorem, proved herein, extends Risch’s result to include in
addition to the elementary functions other functions defined by indefinite integrals.
Examples of functions covered by the new results are the error function, the Fresnel
integrals, the normal distribution function from statistics, the sine and cosine integrals
(see [8] for definitions of these functions). The new theorem also shows that the only
implicit algebraic relationships that can occur among these functions come from the law
of logarithms and the exponential law provided that logarithms are not hidden under
integral signs.

In 2 we state some results of Rosenlicht that form the basis for this paper. The
results of 2 are then used in an induction proof of the new structure theorem which is
given in 3 as Corollaries 3.2 and 3.3.

In 4 an algorithm is described for determining algebraic relationships among the
exponential and primitive functions. In 5 some examples and applications ar,e
discussed.

2. Rosenlicht’s results. In this section we present the concepts and results from
Rosenlicht’s paper [12] that are used in 3. Let k be a subfield of K. If M is a
K-module, we say that D is a k-derivation ofK intoM if D is a k-linear map D" K -,M
such that D(xy) xD(y) + yD(x) for all x, y K. It follows that Dx nxn-lDx for all
x K. With x 1, n 2 we get D 1 0; hence D(x 1) x.. D 1 = 0 for x k, that is D
vanishes on k. We also obtain that D(x/y) (yDx -xDy)/y2 for all x and all nonzero
yK.

* Received by the editors May 23, 1978. This work was supported in part by the National Science
Foundation under Grant MCS76-23762.

? Department of Mathematics and Computer Science, Universidad Simon Bolivar, Caracas, Venezuela.
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181.

357

358 MICHAEL ROTHSTEIN AND B. F. CAVINESS

Let be the free K-module generated by the symbols {6x:x K} and be the
K-submodule Of generated by all, 6 (x + y)- 6x 6y, 6 (xy)- x3y y6x, for x, y K
and all 6x for x 6 k. Let l:/k denote the K-module/and d be the k-derivation ofK
into l):/k with the property that dx is the equivalence class of fr./k to which 6x belongs.
Then given any k-derivation D of K into K there exists a unique K-homomorphism
f:/k K which composed with d gives D. (On/k, d), unique to within isomorphism, is
called the module of k-differentials of K.

LEMMA 2.1. Let k K be fields ofcharacteristic zero, let u 1, , un, v be elements of
K, with u1,’", un nonzero, and let cl,’",cn be elements of k that are linearly
independent over the rational numbers Q. Then the element dv + i--1 ci dui/ui of fK/k is
zero if and only if v and each ui is algebraic over k.

THEOREM 2.2. Let k be a differential field of characteristic zero, K a differential
extension field of k with the same field of constants C. For each 1,..., n and
j 1, , u let cii C and let vi be an element ofK, uj a nonzero element of K. Suppose
that for each 1,. ., n and each given derivation D ofK

D1)i + ciiDui/ u k.
i=1

Then either tr deg k(ul, ., u, Vl, ", vn)/k >-_ n (tr deg transcendence degree) or
the n elements o]: l):/k given by dvi + i=1 ci dui/ui, 1, , n, are linearly dependent
over C.

3. Strncture theorem. In this section we present the main result, stated as
Corollaries 3.2 and 3.3 of Theorem 3.1. Henceforth all fields are assumed to have
characteristic zero. Let k be a differential field and K a differential extension field of k
such that K k(t) for some t6K. is called a regular monomial over k if is
transcendental over k, the field of constants of K the field of constants of k (i.e., the
introduction of does not introduce any new constants), and is such that

(i) Dt a k. In this case we write a and call primitive over k, or
(ii) Dt/t Da for some a k. In this case we write exp (a) and call exponential

over k. D is an arbitrary derivation operator in K. In case (i) if a Du!u for some u k,
we write log (u), and call logarithmic over k.

Given two differential fields k K we say that K is a regularLiouville extension o]k
if there exist tl, , tn 6 K such that K k(tl, , t,) and each t is a regular monomial
over k(tl,..., t-l). K is called a generalized Liouville extension if each t; is either
algebraic or a regular monomial over k(tl, , t-l), and k andK have the same field of
constants.

Let K be primitive over k, is simple logarithmic over k if there exist
ui, , u k (m _-> 1) such that for some constant c, t + c 6 k(log ul, , log u,,). We
say that is nonsimple if it is not simple-logarithmic over k.

K is a regular (respectively generalized) log-explicit extension o[k if there exist
tl, , t, such that K K, k (tl, , t,) is a regular (generalized) Liouville extension
of k and if for each t. at least one of the following conditions holds:

(i) t. exp (vi), vi Ki-1 (Ko k).
(ii) ti is primitive and nonsimple over Ki-1.
(iii) t. log (u.), u. e Ki-1.
(iv) t. is algebraic over K.-1.
Thus in a log-explicit extension t is simple-logarithmic over K.-1 if and only if

t log (u.), u. Ki- 1.

We now introduce some index sets.

EXPONENTIAL AND PRIMITIVE FUNCTIONS 359

Let Kn k(tl,..., t,) be a regular (generalized) Liouville extension of k. For
l_-<j_-< n, let

Ej {i" ti exp (ai), ai Ki-1, 1 <- <- j},

Pi {i" ti 6 Ki-1, l <-- <-j},

Li {i" ti log (ai), ai gi-1, 1 <= <-_ j}.

Note that Li is a subset of Pi. In most cases of interest j n, in which case we simply write
E, PorL.

We wish to pay particular attention to fields that are finite extensions of Q, the field
of rational numbers. We let C denote a field of constants which is a finite extension of Q.
Let x 1, , x, denote m _-> 1 independent variables. We let F, C(x 1, , x,) be the
usual differential field of rational functions in xl,. , x, with m (partial) derivations.
For notational consistency we denote x1,’’ ", Xm by tl,"" ", t,. Note that each xi is
nonsimple over Fi-. In general F, C(tl,..., tn) denotes an extension field F,
C(x, x,, t,,+, t,).

We will prove the following:
THEOREM 3.1. LetF, C(t, , t,) be a generalized log-explicit extension field of

C, where Cis the field ofconstants ofF,. Ifu and v are members ofF, such thatDu/u Dv
for all D, then there exist rational numbers ri and a constant c C such that

v c + riti + riai
icL icE

where ti exp ai for E.
Before proving this result we show how our desired results follow from it.
COROLLARY 3.2. LetF C(tl, , t,) be a generalized log-explicit extension ofC.

Let a F, and assume that exp (a is not a regular monomial over F. Then there exist
rational numbers r and a constant c C such that

a c + . riti 4- riai
icL icE

where ti exp ai for E.
Proof. It is well known [10] if exp (a) is not a regular monomial then there is a

nonzero integer n, a u F, and a (possibly new) constant c such that (exp a) c u.
Thus Du/u nDa D(na). Let v na and apply the above theorem to obtain

na c + riti 4- riai.
icL icE

Divide both sides of this equation by n to obtain the desired result.
We now obtain the corresponding result for logarithms.
COROLLARY 3.3. AS in the previous corollary letFn C(t, , t,) be a generalized

log-explicit extension of C with a F,. If log (a) is not a regular monomial overF then
there exist rational integers r, ri with r 0 and a constant c C such that

a cl-I(icLai)(iE
where ti log (ai) for L.

Proof. Since log (a) is not a regular monomial over F there exists w F such that
Dw Da/a (see [10]) which implies that exp (w) cxa for some constant Cl. But this
implies that exp (w) is not a regular monomial over F,. Thus by the previous theorem
there exist integers r, ri (with r0) and a constant c2 such that rw=

360 MICHAEL ROTHSTEIN AND B. F. CAVINESS

C2 -I" 2iL riti "nt" 2iE riai where ti exp (ai) for s E. Take exponentials of both sides of
this equation to obtain

(cla)r-(exp(w))r-c3(iLai)(iEti)
where c3 is a constant. Thus

c 1-Ia= (ieL a")(ieE t’i)
where c C3/Crl Note that c e Fn and hence in C since from the above equation it is a
quotient of elements of Fn.

Now we return to the proof of Theorem 3.1. The proof is by induction on/z the
number of nonsimple primitives among tl,." ", t.

For tz 0 it is easy to see that F C so that v C.
induction step: Among the/x (>= 1) ti’s that are nonsimple primitives with respect to

C(tl," ti-1) let tj be the one with the largest subscript. For notational simplicity, let
k C(tl,. , tj_) and t. There are Ul," , up, vl," , vo F, such that

(i) Dui/ui Dvi for 1,. ., p and all derivations D of F,,.
(ii) Precisely one member of each pair (Ui, vi) is algebraic over k(t, Ul," ", ui-1,

I, Vi--1).
(iii) F is algebraic over k(t, u,,.. , up, v,,. ., vo). (This follows because tr deg

k(t, u, ., up, vi, , vo)/k =tr deg F/k.)
In fact one member of each pair (ui, vi) will be some ti. We will apply Rosenlicht’s

theorem. Note that:

Dtk,

Dvi O k, fori=l,...,p,
Ui

Du
-Dv =0k,
u

and that tr deg k(u, u, ., up, v, vl, , vo, t)/k <p+2. We can conclude that the
elements dt, du1/u-dv,... ,duo/uo-dvo, and du/u-dv of 12Fn/k are linearly
dependent over C. In fact du! u dv depends linearly on dt and the dui/ui dvi. We can
therefore find constants 3", , 3"0, 3’ and C such that

o dui(3.1)
du

dv "!" 3"i-- dye + 3" dt O.
U i=1 Ui

Let Co =-1, c,..’,cq be a vector space basis for the O-span of 3"0 =1,
q

3"1, 3"2,’’’, 3"0 and write 3"i =.i=oniici with each n0 O. Replacing each ci by
/LCD {nii} if necessary we can assume n0 Z (LCD means least common denomina-
tor). This means, in particular,

q

1 3"0 Y noiQ nooco; that is no no2 noq O.
i=0

We can rewrite (3.1) as

c, u,O*-.U,,., u?" -d(no,iv+n1.iVl+" "+no.ivo)+3"dt=O.
-0

EXPONENTIAL AND PRIMITIVE FUNCTIONS 361

For/" O, , q let z. unJuli upi, yi =noiv + nlivl +" + npivp and we have
that Ozi/z Dy.i for all derivations D of Fn and

i=o Z

Since the {ci} are linearly independent over Q, we have, by Lemma 2.1 above, that
q

each zi and w Y’.=o ciyi- 3‘t are algebraic over k. We will derive several conclusions
from this.

First of all y must be zero. To see this, note that=o ci(Dzi/zi Dyi) 0 and hence
yDt q

2i=o ci(Dzi/zi)-Dw for all derivations D of F,. Zo," zq, and w are algebraic
over k, so taking traces with respect to kl k(zo,’.., zq, w) and dividing by [k’k]
gives

3‘Dt , Ci DN(zi) 1

[kl k] N(zi) -Dikl k]
Tr (w)

where Tr trace and N norm
If 3‘ # 0, then would be simple logarithmic over k, contrary to the hypotheses. In

particular, we can conclude that Y=o ciyi w (since 3’ -0) is algebraic over k.
Now, let F’= k(zo,..., zq, w, ya,..., yq)C fn. k(zo,.., zq, w) is an algebraic

extension of k and F’ is an extension of k(zo,’’’zq, w) by regular logarithmic
monomials and possibly algebraics (in any case the logarithms we introduce appear
among yx,..., yq). Furthermore v =y0=(w-F.=a ciyi)F’ and Du/u =Dzo/zo=
Dyo- Dv for all D. F’ has one less nonsimple primitive than F, so by the induction
hypothesis, we have"

q

(3.2) v c + Z riti + 2 riai + 2 iyi
icL’ icE’ i=1

where

E’ {i" ti exp ai, ai Fi- and ti k },

L’ {i" ti log ai, ai Fi-1 and ti k}

and ri, ri are rational numbers. Now recall"

Yl n01/2 + nllVl + n11/91 + n2v2 + since no1 O,

(3.3)

yq--FlOql)+nlqDl-t- nlq)l--n,2qD2--. sincenoq=0

so v does not appear in ya, , yq. Substitute the expressions (3.3) in (3.2) and note that
each vi either equals some ti with e L or equals some ai where ti exp (ai), e E, to
obtain

hoot)--C+ 2 r’ti + 2 fiai.
icL ice

Divide by noo to obtain the desired result.
We conclude this section by showing that every generalized Liouville extension of a

given field can be embedded in a generalized log-explicit extension of the same field.
Then we use this result to obtain a structure theorem for generalized Liouville fields.

362 MICHAEL ROTHSTEIN AND B. F. CAVINESS

LEMMA 3.4. Let k be a differential field. For every generalized Liouville extension K
of k there exists a generalized log-explicit extension L of k and a 1, , a, (m >- O) in K
such that

(i) K(log a 1,’" ", log a,)= K is a regular Liouville extension of K.
(ii) K and L are differentially isomorphic and the isomorphism holds k fixed.
Proof. Let K K,, k(tl, tn), n >-_ O. The proof is by induction on n. For n 0,

Kn k and the desired result is trivially true.
Assume that we are given a log-explicit extension L,_ of k and a 1, , a,, e K_

such that
(i) K,_l(lOg al, log a,) K,-I is a regular Liouville extension of K,-I.
(ii) K,_I and Ln-1 are differentially isomorphic with k fixed by the isomorphism.
Let o" mapping K,-1 onto L,-1 denote the isomorphism. There are five cases to

consider.
(a) t, is algebraic over Kn-1. Let P be the monic irreducible polynomial of least

degree over K,-1 such that P(t,) 0. It is not difficult to see that P must be irreducible
over K-I for otherwise {log a l,’’’, log a,,} would not be algebraically independent
over K,_x(tn). Thus o-(P) must be irreducible over L,,-1. Since t, is algebraic, K,
K,(log ax,"" ,log a,.) is a regular Liouville extension of K, and Ln =Ln-l(Sn) is
isomorphic to K, where s, is a root of o-(P).

(b) t exp (v), v Kn-x. By a result of Ostrowski [9] (also see [7]) t is a regular
monomial over Kn-x and thus Kn =K,(logax,... ,loga,.) is a regular Liouville
extension of K,. Since Ln-x is differentially isomorphic to K,_I, exp (r(v)) is a regular
monomial over L,_ and L, -Ln_(exp (o’(v)) is differentially isomorphic to K,.

(c) t is primitive and nonsimple over K_I. tn nonsimple over K,-1 implies that it
is nonsimple over K,-I and thus by Lemma 3.9 of [6] t, is a regular monomial over
K,-I. Hence Kn K, (log a 1, , log a,) is a regular Liouville extension of K,. Let s
be an element of the universal extension of Ln-1 such that D(s,)=r(Dt,). Then
L, -L,_(s,) is differentially isomorphic to K,.

(d) t, is primitive and simple-logarithmic over Kn-x but is not a regular monomial
over K,_. Then from the Liouville theorem

t c + w + ci log ai
i=1

where w e gn-1 and c, ci are constants in gn_1. Let be the smallest such that cg # 0.
Then Kn- K, (log aa,..., log al-1, log at+l,""", log a,,) is a regular Liouville exten-
sion of K,. Furthermore K, is isomorphic to K,_x(solve the above equation for log al to
get the isomorphic image of log al--everything else remains fixed), and thus L, Ln-l.

(e) tn is simple logarithmic over Kn-1 and a regular monomial over K-I. Then by
the weak Liouville theorem [2] (see also Theorem 3 of [12]) there exist constants ci and
u, u, all in K,-1, such that

Dt, Du + ciDui/ ui.
i=1

Let {a,/l, ", al} be a maximal subset of {u, ., u} with the property that/,_1
K_l(lOg al,’’’ ,log a,,... ,log a) is a regular Liouville extension of K,-1. Then
/,-1 is differentially isomorphic to

_
=Ln_l(lOg o’(a,/l),..., log tr(al)) which is

log-explicit. Now t,, is not a regular monomial over/,-1 so apply (d) to/,-1 andn_ to
obtain Kn and L,. [-i

EXPONENTIAL AND PRIMITIVE FUNCTIONS 363

We can say more about the way the isomorphism cr behaves. If K k(tl,. , tn)
and L=k(sl,.... ,s) and tg =exp (vi) then r(ti)=exp(o’(vg))=si. If t is primitive
r(t) w +1= cisi where the c are constants and w is in L.-a.

Now we give a structure theorem for generalized Liouville fields.
THEOREM 3.5. LetFn be a generalized Liouville field F, Fo(h, , &). Let a F,

and assume that exp (a is not a regular monomial over Fn. Then there exist constants c
and ri, ri being rational, and w all in Fn such that

(3.4) a W -t- 2 citi -t- Y’. riai
iP

where ti =exp (ai) for E. Furthermore there exists a positive integer such that
l(Y’.ipCiti + w)= log (t)]:or some 6F,.

Proof. The proof is an immediate consequence of Corollary 3.2, Lemma 3.4 and the
immediately preceding comments. [-1

Note that in (3.4) we cannot restrict the index in the first sum to be over the index
set L for if log a is a regular monomial over F then for any g F, t- (a’/a / g’) is a
regular monomial over F, but exp (t-g) is not a regular monomial over F(t).

4. An algorithm to determine algebraic dependence. From the structure theorem
for log-explicit fields one can derive an algorithm for finding algebraic relationships
among functions built up from the rational functions by integration and by taking
exponentials. The class of functions that can be constructed in this manner includes the
elementary functions as well as special functions such as the Fresnel integrals, the error
function, dilogarithms, exponential and logarithmic integrals, sine and cosine integrals,
Spence functions, and other functions defined by indefinite integrals. Functions defined
by definite integrals, such as the gamma and beta functions, are not covered by these
methods.

To describe the algorithm assume that we have built up a generalized log-explicit
field F-C(tl, t2,’", tin) where ta z and z’= 1. That is each ti, i_->2, is either
algebraic over F/_I, is a regular exponential monomial over F/-1, is a regular logarithmic
monomial over Fi-1, or is a regular primitive, nonsimple monomial over Fi-1.

Now we assume that we are given a which is one of the following four forms.
(i) exp (a), a F.
(ii) log (a), a F.
(iii) adz, a F.
(iv) is algebraic over F and we are given the monic polynomial P over F,

irreducible and of minimal degree so that P(t)= O.
In case (iv) we can add to F and carry out all arithmetic modulo P(t).
In case (i) is either a regular monomial over F or else there exist rational numbers

r and a constant c such that

(1) a C + E riti + ’. riai
iL iE

where ti =exp (a) for E. Now a is a rational function in tx," ", &, each ai is a
rational function in h, , ti-a. Thus in equation (1) above we clear denominators and
equate coefficients of the monomials in the ti’s to obtain a set of linear equations (with
rational coefficients) for the ri. If the set of equations has no solution then is a regular
monomial over F. Otherwise is not a regular monomial and taking exponentials of
both sides of (1) we have

t= Ca(iL a’i)(iE

364 MICHAEL ROTHSTEIN AND B. F. CAVINESS

where ti log (ai) for e L and Cl exp (c). Thus we have the relationship between
and the previous ti’s. However there are no general methods known for determining the
algebraic relationship of the constant Cl to the constants in C. For further discussion of
this problem see [1].

In case (ii) is either a regular monomial over F or there exist rational numbers ri
and a constant c such that

(2) a cl-I t’)
where ti =log a for eL. In [3] and [4] Epstein describes algorithms for solving
equation (2) for the ri’s. The basic idea is to consider a and the a’s as products of
polynomials (with possibly negative exponents) in tl,’’’, tn. Then factor these poly-
nomials into factors that are square-free and pairwise relatively prime. Then equation
(2) can hold only if the powers of each factor in the equation are equal. This yields a set
of linear equations for the r. If the equations have no solution then is a regular
monomial. If not then

c + log (c) + , riti + riai
iL iE

where t exp (a) for e E and ca depends on the branch of the logarithm function.
Once again there is no general method for determining the algebraic dependence of
c + log (c) on C but 1 gives some suggestions.

In case (iii) we apply a modification of an integration algorithm for elementary
functions (see Appendix A of 13]) to determine if there exist constants c, u, and u, all
in F, such that

t=c+u+ clogui
i=1

where c is a constant.
If no such expression exists then by Lemma 3.9 of [6] is a regular monomial over

F. Otherwise we apply the procedure for case (ii) to each log ui. The constant c depends
on which branch of adz is used.

5. Examples and applications. We now apply the algorithm of 4 to an example.
Consider the Fresnel integrals

and the error function

It is well known that

IoS(z) sin
"n" 2z dz,

IoC (z) cos z 2 dz

erf z e dz.

C(z) + iS(z)-(----)err (1- i)z O.

The reduction of the left-hand side by the above methods, proceeds as follows: First let

EXPONENTIAL AND PRIMITIVE FUNCTIONS 365

C O(i, 7r, /-). Rewrite sin ((Tr/2)z 2) and cos ((7/2)Z 2) in exponential form. The
algorithm then scans the resulting expression from the inside to the outside (that is, if we
have nested logarithms, exponentials, and/or integrals the arguments of the outer
functions must be processed before the outer function itself is processed) for exponen-
tials, logarithms and integrals that become candidates for regular monomials. For this
example let the first subexpression found be t2 exp (i(/2)z2). (Recall that ta denotes
the variable z.) According to Theorem 3.3 t2 is a regular monomial over Fa C(z) if
there does not exist a constant c e C such that i(r/2)z2= c. Since z is algebraically
independent over Fo there cannot exist such a constant and t2 is thus a regular
monomial.

Let the next subexpression found be t3 exp (-i(r/2)z2). t3 is a regular monomial
over F2--C(z, t2) only if there do not exist c C and rl 6 O such that -i(/2)z2=
c + ra(i(rr/2)z2). This is possible only if the set of linear equations

t-z- ra + 0

has a solution. A solution is easily computed to be c 0, ra -1. If we let a2, a3 denote
the arguments of t2, t3 respectively, our solution gives a3 --a2. We take the exponen-
tial of both sides of this equation to obtain t3 t-1. Hence we replace exp (i(r/2)z 2) in
our original expression by t2 and exp (-i(r/2)z) by ta. The resulting rational
expressions for sin ((r/2)z 2) and cos ((r/2)z 2) are (t- 1)/(2it2) and (t + 1)/(2tz).

We now apply the integration algorithm (an explanation of which is beyond the
scope of this paper) to discover that the Fresnel integral t3--C(z) is not simple over
F2=C(z, t2) and that ta=S(Z) is not simple over F3. Hence both are regular
monomials.

Now consider erf {(4/2)(1 -i)z} (2/4) e -z2 dz where w (4/2)(1 -i)z.
Apply Leibnitz’s rule to rewrite this integral as

(1 i) exp --fz
2 dz.

Let t5 t dz. The integration algorithms discovers that

ts t3 + it4 + a constant.

If we have some method to determine that the constant is zero, then we have that

1+i) {? } 1+i)C(z)+iS(z)-(--- err (1-i)z :ta+it4-(--- (1-i)[,3+it4]:O.

In general the constant depends on the path of integration that is used (i.e. on the
choice of the particular single-valued branch of the function defined by the integral).
Since this information is not given by the integral sign more information must be given.
Even when the path of integration is specified, the authors know of no general method
for determining the constant.

If there were methods for determining the constant of integration, problems still
arise. The problems arise from the fact that the constant of integration may not lie in our

366 MICHAEL ROTHSTEIN AND B. F. CAVINESS

given field of constants. In this case there are no general methods for determining the
algebraic dependence of the new constant on the previous constants.

The above procedures can also be applied to find closed form solutions to all
first-order linear differential equations in a rather general sense. If we are given such a
differential equation

y’ +f(z)y g(z)

where f(z) and g(z) belong to some regular Liouville extension field of C, we can first
find the representations of f(z) and g(z) and then using the fact that

y(z) =exp (-I fdz)[I exp (I fdz)g(z)dz +c]
we can then find a unique representation for y in terms of the functions used to build up
the regular Liouville extension of F1 C(z). Note that other logarithmic and primitive
functions, other than the ones occurring in f and g, can be included in the extension field
if one is interested in knowing whether or not the solution of the differential equation
can be expressed in terms of the other functions. If it is possible, the methods described
herein will find the proper expression; otherwise one will know that the solution of the
differential equation does not lie in any algebraic or simple logarithmic extension of the
given field of functions.

It would be desirable to have structure theorems for classes of functions satisfying
more complex differential equations. Such theorems would lead to zero-equivalence
algorithms for still larger classes of functions as well as contribute to a general theory on
closed form solutions of differential equations.

Acknowledgment. Theorem 3.1 and its proof are due to Michael Singer. His
methods are shorter and more elegant than our original ones. For his contribution we
are deeply grateful. We are also indebted to B. David Saunders for several helpful
discussions regarding this paper. Finally the careful reports of the referees lead us to
consider substantially revising and, hopefully, substantially improving the original draft
of the paper.

REFERENCES

[1] B. F. CAVINESS AND M. J. PRELLE, A note on algebraic independence of logarithmic and exponential
constants, SIGSAM Bull., 12 (1978), pp. 18-20.

[2] B. F. CAVINESS AND M. ROTHSTEIN, A Liouville theorem on integration in finite terms for line integrals,
Comm. Algebra, 3 (1975), pp. 781-795.

[3] HARVEY I. EPSTEIN, Algorithms for elementary transcendentalfunction arithmetic, Ph.D. Thesis, Univ.
of Wisconsin, Madison, 1975.

[4] Using basis computation to determine pseudo-multiplicative independence, Proceedings of the
1976 ACM Symposium on Symbolic and Algebraic Computation, R. D. Jenks, ed., August, 1976,
pp. 229-237.

[5] HARVEY I. EPSTEIN AND B. F. CAVINESS, A structure theorem for the elementary functions and its
application to the identity problem, Internal. J. Computer Information Sciences, 3 (1979), pp. 9-37.

[6] IRVING KAPLANSKY, An Introduction to Differential Algebra, Hermann, Paris, 1957.
[7] E. KOLCHIN, Algebraic groups and algebraic dependence, Amer. J. Math., 90 (1968), pp. 1151-1164.
[8] ERWIN KREYSZIG, Advanced Engineering Mathematics, John Wiley and Sons, New York, 1963.
[9] ALEXANDRE OSTROWSK, Sur les relations alggbriques entre les intggrales indfinies, Acta Math., 78

(1946), pp. 315-318.
[10] RO3ERT H. RISCH, The problem of integration in finite terms, Trans. Amer. Math. Sot., 139 (1969), pp.

167-189.
11], Algebraic properties of the elementary functions of analysis, preprint.

EXPONENTIAL AND PRIMITIVE FUNCTIONS 367

12 MAXWELL ROSENLICHT, On Liouville’ theory ofelementary functions, Pacific J. Math., 65 1976), pp.
485-492.

[13] MICHAEL ROTHSTEIN, Aspects of symbolic integration and simplification of exponential and primitive

functions, Ph.D. Thesis, Univ of Wisconsin, Madison, 1976.

SIAM J. COMPLIT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0009501.00/0

THE COMPLEXITY OF PATTERN MATCHING
FOR A RANDOM STRING*

ANDREW CHI-CHIH YAO"

Abstract. We study the average-case complexity of finding all occurrences of a given pattern a in an input
text string. Over an alphabet of q symbols, let c(a, n) be the minimum average number of characters that need
to be examined in a random text string of length n. We prove that, for large m, almost all patterns a of length m
satisfy

and

c(a,n)=O log
lnm

m])c(a, n)= 0 n if n >2m.
m

This in particular confirms a conjecture raised in a recent paper by Knuth, Morris, and Pratt (Fast pattern

matching in strings, SIAM J. Comput., 6 (1977), pp. 323-350.

Key words. Algorithm, average-case complexity, complexity, decision tree, pattern matching, random
string, string, weighted q-ary tree

1. Introduction. A basic string pattern matching problem is to find all occurrences
of a given string (called pattern) as a contiguous block in an input string (called text

string). Thus, for the pattern 0 0 1 0 0, there are three occurrences of it to be located in
the text string 1 0 0 0 1 0 0. 1 0 0 0 t0 0 1 0 0 0 1 1. Several efficient algorithms have been

devised to solve this problem [1], [3], [4]. For example, Knuth, Morris, and Pratt [4]
constructed an algorithm that has a worse-case running time of O(m + n), where m and
n are the lengths of the pattern and the text string, respectively.

The optimality question of algorithms for the above problem was investigated in
Knuth, Morris, and Pratt [4] and in Rivest [6]. In their model, an algorithm is a decision
tree that examines the text string one character at a time, and the cost is measured in
terms of the number of characters examined. (For a similar model in a related problem,
see Aho, Hirshberg, and Ullman [2]). Rivest [6] proved that, for any pattern, an
algorithm has to inspect n-m + 1 characters for some text string. This means that,
when n >> m, almost the entire text string has to be examined in the worst case. A
different situation exists for the average-case complexity. Let c(a, n) be the minimum
average number of characters that need to be examined in a random text string of length
n, in order to locate all occurrences of a. Knuth described an algorithm [4, 8] to show
that, for any given pattern a, c(a, n) <- O(n [log m /m) for an alphabet of size q. Thus,
for large m, only a small fraction of the characters in the text string need to be looked at.
Such "sublinear" algorithms are particularly attractive in situations when a text string is
input only once, but will be updated and searched for patterns many times. Knuth
conjectured that the algorithm is optimal in the following sense: there exist patterns
of arbitrarily large length m such that c(a, n)>=f(n [logqm]/m) for all sufficiently
large n. This conjecture is interesting since, as shown in [4], there are patterns such as
for which only O(n/m)characters need to be tested on the average.

In this paper, we study the average-case complexity of pattern matching in the
model of [4]. We prove that, for large m, almost all patterns a of length m satisfy

* Received by the editors September 8, 1977, and in revised form August 18, 1978. This research was
supported in part by National Science Foundation under Grant MCS 72-03752 AO3.

t Computer Science Department, Stanford University, Stanford, California 94305.

368

PATTERN MATCHING FOR A RANDOM STRING 369

c(a, n) 0([logq ((n m)/(ln m) + 2)] if m -<_ n -< 2n, and c(a, n) 0(([logo m if
n > 2m. Moreover, all lower bounds actually apply to the best-case performance of any
algorithms, not just their average case. These results in particular confirm the above-
mentioned conjecture when n -> 2m. We may add that the case m -<_ n =< 2m is mainly of
theoretical interest, as the text strings are usually much longer than the patterns in
practice.

Definitions and precise statements of the main results are given in 2. In 3, we
familiarize ourselves with some useful concepts by analyzing the algorithm in [4] for
m _-< n _-< 2m. In the course of analysis, we shall also develop insight into the design of a
faster algorithm. An improved algorithm is then described and analyzed in 4 to
establish the upper bounds. In 5, we define the complexity notion of a "certificate".
Our lower bounds then follow from stronger results that we can prove about the length
of a minimum certificate. Certain properties of a type of optimal digital search trees (cf.
Knuth [5]) are needed in the paper; their derivations are given in the appendices.

2. Definitions and main results. An alphabet is a finite, nonempty set of symbols.
Throughout our discussions, we will assume a unique underlying alphabet E of size q. A
string oflength is a concatenation of symbols from Z, i.e., " a la2 at where >_- 0
and each ai E. We use st[i] to denote ai, the ith symbol of sr, and IIll to denote l, the
length of sr. The collection of all strings of length is denoted by Zt. Given two strings
acE" and /3" with m<=n, a is said to be a substring of
/3[i]fl[i + 1] /3[i + m 1] for some i, 1 =< <= n m + 1. Alternatively, we say a occurs
in/3, or/3 contains an occurrence of or, etc.; the index is called the (leftmost) position of
the occurrence. The substring/3[i]fl[i + 1] /3[j] of/3 ", where 1 =< <=j -< n, will be
denoted by/3 [i" j].

A pattern is a distinguished string of positive length. Given a pattern a of length m
and an integer n >= m. we shall be interested in locating all occurrences of a in any input
string sr E" (sr is called the text string). Let us refer to this as the pattern-matching
problem with respect to a and n. From now on, the notations a, sr and m, n will be used
exclusively for the pattern, the text string, and their respective length in a pattern-
matching problem. Since the problem is trivial when q IE[1, we shall assume q -> 2.

As our computation model, we consider algorithms that proceed by asking a series
of questions sr[il] ?, sr[i2] ?, , where the choice of each position ir may depend on
answers to all previous probes at sr[il], ’[i2],""", r[L-]. When the algorithm halts, it
must have enough information to determine A(a, ’), the set of all leftmost positions of
c ’s occurrences in sr. Formally, A(, st) {il[i:i + m 1] c}. We shall assume that no
question is repeated twice in a series sr[ia] ?, sr[i2] ?, , so that an algorithm may be
represented by a decision tree with q-ary branchings at each query. (For basic
definitions regarding q-ary trees, see Knuth [5].) An example of such a decision tree is
shown in Fig. 1, with {a, b, c}, a bb and n 3. The queries are enclosed in circles,
and an answer A(a, sr) is attached to each leaf of the ternary tree.

For given a and n, let -(a, n) be the set of all decision trees for the pattern-
matching problem. For any T -(c, n), let hT(sr) be the number of queries asked by T
for the input text string sr ". In Fig. 1, we have for example hT(sr) 3 if sr abc. The
average (or expected) number of queries asked of a random text string by T is

1(1) h-T hT(sr).

Since the number of text strings that reach the same leaf as sr does is q n--hT(), an

370 ANDREW CHI-CHIH YAO

FIG. 1. A pattern-matching algorithm for E {a, b, c}, a bb and n 3.

alternative form of (1) is

dT(t))(2) h-T dT(V)
leaf q

where dT(v) is the distance (path length) from the root to node v. The average-case
complexity c (a, n) of the pattern-matching problem with respect to a and n, then, is the
minimum expected number of queries asked by any algorithm. That is,

(3)
c(a,n)= min hr.

T7"(a,n)

In [4] it was shown that, for any pattern

(4) n/m <-c(o, n)-< const. n [log (m + 1)]/m.

It was also conjectured in [4] that, for infinitely many m, there exists a F_, such that
c(a, n) >- a n [logo (m + 1)]/m for some constant a when n is sufficiently large. The
main results of the present paper are the following theorems. The first theorem
stengthens the upper bound given by formula (4) in the range m <- n -< 2m. The second
theorem proves the conjecture mentioned above in a somewhat stronger form. In fact,
Theorem 2 as stated below follows from a result (Theorem 4) proved in 5, which
implies that the lower bound in Theorem 2 actually holds even for the "best-case"
complexity. (See 5.1 for precise formulations.)

DEFINITION. For n -->_ m > 0, let

fl (m, n) [logq ((n m)/In (m + 1) + 2)],
and

fz(m, n)= n [logq (m + 1)]/(2m).

We shall write d(v) for dr(v) when T is understood.

PATTERN MATCHING FOR A RANDOM STRING 371

Define

(m, n)
fl(m, n) if m_-<n <_-2m,
/2(m, n) if n >2m.

THEOREM 1. There exists a positive constant a such that, for any q >- 2, a e Y_,’, and
n _->m >0, we have c(a, n)<=alf(m, n).

THEOREM 2. There exists a positive constant a2 such that, for any q >-_ 2 and m > O,
there exists a set of strings L C_ E satisfying

and

(ii) for each a eL, c(a, n)>-aff(m, n) for all n >-m.

In the definition of fi(m, n) above, the constants + 1 and + 2, as well as the ceiling
function are just to insure that f(m, n) is well-defined and bounded away from zero.
Indeed, as we have defined it, f(m, n)_-> 1 for all n _-> m. Notice also that, when n 2m,
we have fl(m, n)f2(m, n) [logq (m + 1)]. Figure 2.1 shows the qualitative behavior
of f(m, n) as a function of n when m is fixed.

2 n

FIG. 2.1. The behavior off(m, n) for a fixed m.

Remark. All the constants implied in the "O", "I)", and "0" notations, as well as
other constants used in the paper (e.g. a l, a2 above), are absolute constants (indepen-
dent of q, n, m, etc.).

3. Analysis of a simple algorithm. In [4, 8], a simple algorithm for pattern-
matching was described and shown to have an average running time of O(n [logq
(m + 1)I/m). This establishes the desired upper bound of Theorem 1 for n ->2m. In
fact, since f2(m, n) O(fx(m, n)) for (1 + e)m _<- n _-< 2m where e is any positive
constant, Theorem 1 is true as long as n-m is at least a positive fraction of m.

Therefore, in our discussions of upper bounds in 3 and 4, we shall only be concerned
with the case when n-m is less than some fraction of m, say n-m <-_ m/2.

In 3.1, we first show that the above-mentioned algorithm of [4] (which we shall
refer to as the Basic Algorithm from now on) has a tight bound of O([log (n m + 2)])
for the present range n m <- m/2. Note that this performance is still weaker than the

372 ANDREW CHI-CHIH YAO

O(fl(m, n)) bound we wish to establish. In 3.2 we then introduce an alternative, and
perhaps less obvious way for looking at the behavior of the Basic Algorithm. This new
analysis will shed light on how a better algorithm may be devised. In 4 we then present
an improved algorithm and show that it achieves the time bound O(fl(m, n)).

3.1 The Basic Algorithm and its analysis. We begin with a description of the Basic
Algorithm from [4], slightly modified to fit our purpose.

The Basic Algorithm. Let a E" be the pattern. For any input text string sr En, the
algorithm examines " character by character, in the order stirn l, sr[rn- 1],...,
sr[rn + 1], sr[m +2],..., ’[n]. The algorithm halts as soon as enough information is
known to determine A(a,), the set of all (leftmost) positions of a’s occurrences in

We will show that for the case n-m <-_ m/2, the Basic Algorithm only looks at
O([logq (n-m +2)]) characters on the average. This analysis is a refinement of the
approach used in [4] to prove the general O(n [logq (m + 1)]/m) bound for the same
algorithm. The idea is that, for a random text string, it is unlikely that any occurrence of
a will happen, and the Basic Algorithm can rule out that possibility after examining
O([log (n m + 2)]) characters on the average.

DEFINITION. Let d n m. For any sr E", write (1"2 where [I/3111 [12][-- d.
The substring (’ of sr will be called the prime substring of (, denoted always by (’. Let n’
be the length of (’. Note that n’-n- 2d m- d ->-m/2 as d <-m/2.

It is easy to see that any occurrence of a in sr must cover the prime substring (’ (see
Fig. 2.2(a)). Thus, for A(a,) to be nonempty, sr’ must be a substring of a. In fact, if we
write (’=ala2".’a,,, then for A(a,() to be nonempty, any segment sr’[i’j]
aiai+l’"ai of sr’ must be a substring of a[i,/’+d] (see Fig. 2.2(b)). Based on this
observation, let us divide (’ into consecutive segments of length r, such that
6(t(t-l’’" ’1 where II ’ ll-- r for 1 _-< k _<- and I1 11 < r. Then, in order for (to contain any
occurrence of a, each srk for 1 _-< k _-< must occur in a certain substring ak of a with
[la[I I1’11+ d r + d. The probability that this condition is met by all the r’s of a
random text string r is <-[(d + 1)/qr] t. NOW, what the Basic Algorithm does is to
examine the substrings ’1, ’2," , rt in sequence; hence the probability P that it will
ever look beyond ’k is -_<[(d + 1)/qr]’ for 1 _--< k -<_ t. It follows that the average number
of characters h examined by the Basic Algorithm is

h<:r(l+Pl+P2 + +Pt-1)+n Pt.

.d (’ ..----d

(a)

(’[i’j]

w-’----j+d

(b)

FIG. 2.2. The prime substring (’ of (relative to a.

PATTERN MATCHING FOR A RANDOM STRING 373

We now choose r 2 [logq (d + 2)], so that Pk <= [(d + 1)/(d + 2)2]k _<- 1 / (d + 2)] k. Then,
<=2r+n. (d+2)-tn’/rl

<-2r + m 0(2 -m/(4[lgq(d+2)]))
(6) 2r + O(1)

O([logo (d + 2)1).

We now show that this bound is tight to within a constant factor, i.e., there exist
patterns c for which f([logo (d + 2)] characters on the average are examined by the
Basic Algorithm. Again let r 2 [logo (d + 2)]. We can assume that d >= 4q2 and r >- 4.
Consider a pattern a " which contains as a suffix the concatenation of all possible
strings of length [r/41. That is, a r/q, where q--(Ou(4u--l’’’(4l, U =q[r/4] and
{ql, q2," ", qu} contains every possible string of length lr/41. Note that such a exists
since, with Jr/4] <= [logo (d + 2)]/2, the total length of q is

(7)

Lr/4JIIll [r/4] .q

<
[logq (d + 2)J

(q(d+2))/2
2

< [1og2 (d + 2)] d 1/4

)1/2
2 x/ (d + 2

<d

for d => 4q 2 -> 16. For such an a, the Basic Algorithm cannot halt after examining the
first block of [r/4] characters st[m], sr[m 1],..., r[m [r/4] + 1]. The reason is the
following: if j is the index such that qj r[m [r/4] + 1 :m], then it is still possible for r
to contain an occurrence of ce exactly where r[m [r/4] + 1 :m] matches with qj (see
Fig. 3). Note that the fact [Iqll< d is used here. We have thus shown that for such a
pattern a, the algorithm must look at more than [r/4] characters.

Il<d "’
FIG. 3. " may contain a between the dotted lines.

We have demonstrated that, for any pattern a ’, and a random text string
r e n, the Basic Algorithm examines an average of O([logq (n-m + 2)] characters
assuming n m <- rn/2. Furthermore, there exists a 2, such that f([logq (n rn + 2)]
characters are examined even in the best case for the Basic Algorithm. Thus, to achieve
the better time bound of O(fl(rn, n)), the algorithm has to be improved even beyond its
best-case performance.

3.2. A closer look at the Basic Algorithm. In this subsection we give an alternative
proof that the Basic Algorithm examines at most O([logq (d + 2)] characters on the
average. This analysis may seem less straightforward than the previous one. However, it

374 ANDREW CHI-CHIH YAO

will provide new insight into the pattern-matching process, and help motivate the
improved algorithm to be presented in the next section.

Let us refer to the decision tree corresponding to the Basic Algorithm. We will be
interested in those nodes where a character of the prime substring r’ is examined, i.e.,
those nodes at distance < n’ from the root. Initially, before any query is asked, an
occurrence of a may begin at any of the positions 1, 2,. ., d + 1 in st. After the first
character ([m]= a is examined, the feasible positions for a’s occurrences in (is
reduced from D {1, 2,. , d + 1} to D 7)R(m, a) where we use R(i, a) for the set
{]la [i-] + 1] a}. In general, for a node v at distance < n’ from the root, if ([m] a0,

([m-1]=al,..., ([m-t+l]=a_ is the sequence of probes that led to v, then
D (’] (’] t-1

k=0 R (m- k, ak)) defines the set of positions in sr where an occurrence of a is
still feasible when computation reaches this point. We shall call D
f3 ,-=10 R (m k, a)) the feasible set at v, and denote it by F(v). (For 0, F(root) D.)
The size of F(v) is called the weight of v, denoted by w(v). We first show that the weight
of an internal node v is equal to the total weights of v’s sons, provided that the character
examined by v is located inside the prime substring sr’.

DEFINITION. For an internal node v with query st[i] ?, let sona (v) where a
denote the succeeding node corresponding to the outcome ([i] a.

LEMMA 3.1. Ifv examines a characterinside ’, thenF(v) a, (F(sona (v))) and
F(sona (v)) (qF(sonb (v))=cb for a b.

Proof. Let r[i] ? be the query raised at v. It is easy to see that the family of subsets
R(i,a)={j[a(i-j+l)=a}, for acE, forms a partition of the set {1,2,...,i}. It
follows that, for any subset B of {1, 2, , i}, {B f-) R (i, a)[a E} forms a partition of B.
Since i>=d+l by assumption, we have F(v)C_{1, 2,..., d+l}C_{1, 2,..., i}. There-
fore the subsets F(v)fqR(i, a)=F(son (v)), for a E, form a partition of F(v).

LZMMA 3.2. If V examines a character inside (’, then w(v)= E. w(sona (v)).
Proof. This follows immediately from Lemma 3.1. 71
Note that Lemmas 3.1 and 3.2 may not be true if v probes outside of (’, since we.

may have F(son (v))f-) F(sonb (v)) - .Now, the probability that sr will be examined outside of st’ by the Basic Algorithm is
quite small. In fact, it happens only if (’ is a substring of a, which has probability less
than (d + 1)/qn’. Therefore, the cost of the Basic Algorithm is

d(v) d(v) d(v)
leaf leaf qleaf

d(v)<n d(v)>n’

where the second term s2 is bounded by n(d + 1)/q n’= O(1). To study the first term sl
in (8), we shall use the weight function w. Remember that, when we follow a path in the
decision tree from the root, as soon as w(v)= 0 the computation terminates. This fact,
together with Lemma 3.2, will allow us to bound the quantity

Z d(v)/(q dv))
leaf
d(v)n

by log (w’(root)) + const.
DEFINITION. Let T be a finite q-ary tree. Assume each node v (internal or leaf)of T

is assigned a nonnegative integer w(v) such that
(i) w(v)= =a w(soni(v)) for any internal node v,
(ii) if w(v)= 0 then r is a leaf.

We call such a T a weighted q-ary tree. The initial weight of T is defined to be w(root),
and the terminal weight of T is t(T)= leafd(v)/(qd)), where d(v)is as usual the
distance from root to node v.

PATTERN MATCHING FOR A RANDOM STRING 375

DEFINITION. Let ’q(W)=l.u.b. {t(T)[T is any weighted q-ary tree with initial
weight W}. (Let -q(0)= 0.)

THEOREM A. ’q(W) [logq WJ + 1 +(W/qtlg"wl)(1/(q-1)), for W>= 1.
Proof. (The theorem is proved in Appendix A.)
COROLLARY. 7"o(W) [logq W] + 3, for W >= 1.
(For a related result about optimal digital search trees with n leaves, see Knuth [5,

6.3, ex. 37].)
Clearly now, since w(root)= d + 1 for the decision tree of the Basic Algorithm, we

have

(9) sl: E d(v)< (d+l)<Llogo(d+l)j+ 3
leaf q d(V) "/’0

d(v)<n

Therefore,/= sl + $2 N [logq (d + 1)] + O(1)= O([logq (d + 2)]), the same result as we
showed in 3.1.

3.3 Discussions. What have we gained by the more involved analysis in 3.2?
First, we notice that the O([logo (d+2)]) behavior is not restricted to the Basic
Algorithm. Lemmas 3.1 and 3.2 are true not only for the decision tree corresponding to
the Basic Algorithm, but also for an arbitrary decision tree, as long as the character
examined at v lies inside (’. Therefore, the same analysis that led to (8) and (9) for h
applies to any algorithm which first examines the substring st’ of sr, and halts as soon as
A(ce, st) can be decided. Hence, the following family of algorithms all have an
O([logo (d + 2)]) upper bound.

GENERALIZED BASIC ALGORITHM.
1. G{d+l,d+2,...,m}.
2. While G : do

begin pick any G and examine st[i];
if it is determined that A(c, r)= then stop;
G G-{i};

end;
3. Examine r[i] for {1, 2,. , d} LI {m + 1, m + 2, , n} in any order.
Second, the successful use of F(v) as a measure of progress for the computation

hints on the design of a better algorithm, explicitly exploiting the present F(v) to decide
where to probe next. An improved algorithm based on this idea will be given in the next
section.

We conclude this section by discussing the following generalization of the Basic
Algorithm. Let An be the set of all permutations on (1, 2, , n). Let c be any pattern
of length m and A An. We consider the following algorithm.

ALGORITHM--(A,). For any input text string ", examine the characters in the
order st[A(1)], st[A(2)], sr[A (n)]. Halt as soon as all occurrences of in (can be
determined.

The Basic Algorithm is essentially the use of Algorithm--(,, a), with a particular
permutation A for all a. We have seen that there exists a for which the Basic Algorithm
examines on the average f(I-logo (n m + 2)]) characters. Is it possible to improve over
the Basic Algorithm simply by choosing a different A ? The following theorem answers
this question in the negative.

THEOREM 3. Let 0 < m <= n <= 2m. For any An, there exists an a E" such that
Algorithm--(A, ce) examines an expected f([logo (n m + 2)]) characters for a random
text string in Zn.

376 AYW CHI-CHIH YAO

The proof of this result follows naturally from a counting technique to be
developed in 5. We shall, therefore, delay the proof to 5.4. There we shall actually
show a stronger result" for large d, most a Y_," have the desired property required by
Theorem 3.

4. An improved algorithm. We will construct an algorithm whose performance is
O(fl(m, n)) for d n -m <= m/2. Without loss of generality, we assume m > 16. The
crucial observation is the following. Suppose we are performing a Generalized Basic
Algorithm. After a number of characters have been examined, assume we find
ourselves reaching a node v with w(v)= (logq m)/2. Suppose that at this time the set G
still has IGI >- m/4. We claim that it is possible to finish the computation, examining only
O(1) additional characters on the average, with a different strategy. Notice that in
contrast, the analysis in 3.2 (Theorem A)only guarantees a O(logqw(r))=
O(logq (logq m)) bound if we don’t change strategy. Let us now prove the claim.

Let v be a node as described above, with IF(v)l- w(v) -< (log, m)/2 and the present
IGI--> m/4. Consider all the positions G that we may choose to examine at this node
v. By Lemma 3.1, any G would induce an (ordered)partition {F(v)f-lR(i, a)[a
of F(v) into q parts. Denote this partition by 7r(i). Note that there are only qW(V)<= v m
possible partitions of F(v) all together. Let us divide G into qW(V) equivalence classes by
the induced partitions; that is, and j in G are equivalent if and only if 7r(i) 7r (j). Since
IGl>-m/4, few elements are in an equivalent class consisting of a single element.
Indeed, if we arrange the equivalence classes as El,s E2’I’--’’>_ Es, Es+l,’’’, Eqw(), so
that IEkI_>--2 if and only if l<-k<-s, then we have k=l lEg zm --x/m, which is positive
assuming m > 16. Now, the key to a faster algorithm is contained in the following
lemma.

LEMMA 4.1. Let and f be two distinct elements in Ek, where 1 <- k <- s. If([i] sr[/’],
then does not contain any occurrence of (.

Proof. Assume r[i] : sr[]], and sr does contain a as a substring. Let a sr[i],
b r[/’], and suppose r[/] is a feasible starting position for pattern ce. Since and j are in
G, both ’[i] and sr[f] lie within the prime substring sr’. Therefore, c[i- + 1] a and
c [j + 1] b. But this implies that in partition rr(i) we have F(v) f] R (i, a), while in
partition 7r(/’)we have F(v)f] R (j, b). This contradicts the assumption that 7r(i)and
7r(/’) are the same ordered partition of F(v).

As the string sr is initially random, the probability that sr[i] sr[f] for /" is only
1/q. Thus, it is advantageous to examine sr[i] and sr[]] for i, fEk, which have
probability 1- 1/q to be different, and would thereby terminate the computation with
answer A(a, st) Q. This suggests the following procedure:

PROCEDURE CLEANUP (G, F);
comment: G is the set of remaining unprobed positions in {d + 1, d + 2, , m},

and F is the current feasible set.
1. Examine characters ’[i] for E1 one by one, then for E2 one by one, ,

then for Es one by one. Halt as soon as it is found that r[i] : sr[f] with i,
Ek for some k.

2. Examine sr[i] for i(G- t_J ,_-i Ek)U{1, 2,’’’, d}l..J{m + 1, m+2,. ., n}
in any order.

Analysis of Cleanup. Take elements il, i2,’", it of an equivalence
class Ek, the probability that sr[il]=’[i2] r[i,] is 1/q t-1. Thus the
probability P that in step 1, the + 1st element of Ek+l will be examined is

1 {t-1 ift>-I
P q=, IEil-k)/e(t) where e(t)=

0 if 0.’

PATTERN MATCHING FOR A RANDOM STRING 377

Since }-’=1 IJJl -k ->-/k=l IEil/2, and e(t)>-(t 1)/2, we have

q [02=1 IEjl+t-1)/2]"

Therefore, the probability that or more characters will be read in step I is no more than
1/q r(l-2)/21. The cost of step 2 is bounded by n _-<2m, and it is executed with
probability <-l/q r("-1/21, where u=Y.k=llEkl. Hence the total expected cost of
Cleartup is bounded by

(10) 1 2m 2m
q [(1-2)/2-1" < O(1)+ O(1).

q [(u-1)/2] q [(1/2)(m/4-/m-1)]

This proves our claim. We can now state our new pattern-matching algorithm. Let
n’- [m/4] + 1 and {il, i2, i} be any fixed subset of {d + 1, d + 2,. , m}.
ALGORITHM PM.
1. G-{d+l,d+2,...,m};
F{1, 2,..., d+ 1};/’-0;

2. while (IF[> (logq m)/Z)A(IG[=> m/4) do
begin j j + 1, ii, examine a r[i];

if all occurrences of a can be determined then stop;
Ge-G-{i};
FFf-lR(i, a);

3. if G < rn/4 then examine in any order the remaining characters of sr as needed,
and halt.
4. if F_-< (logq m)/2 then call Cleanup (G, F) to finish the computation.
To analyze the cost of Algorithm PM, let p3, p4 be the respective probability that

steps 3, 4 will be executed, and let h3, ha be upper bounds to the average number of
characters examined in steps 3, 4, respectively, once they are executed. Then, letting h2
be the average number of characters examined in step 2, we have

(11) hem <= h2 + p3h3 + p4h4.

From the analysis of Cleanup, we know that h4 O(1). The probability that step 3 is
reached is bounded by the probability that the following happens (see Fig. 4):

(12)

’[**ac**b*aa**

FIG. 4. Matching (’ with a.

where {il, i2," , it} is the set of positions in substring sr’ that were examined in step 2,
and t> n’-m/4 >-m/4. Therefore p3 <-(d + l)/qt <=(d+ l)/(q"/4), and p3h3-- O(1).
We shall now show that

(13) h2= O(]:l(m, n)).

This will prove hpM O(]l(m, n)), and hence Theorem 1.

378 ANDREW CHI-CHIH YAO

Proofof (13). Let u be a positive integer. A weightedq-ary tree with initial weight W
and cut value u is the same as in the definition of a weighted q-ary tree with initial
weight W, except that condition (ii) is replaced by

(ii)’ if w(v)< u, then v is a leaf.
Thus for u 1, it reduces to the original definition.

DEFINITION. Let zq(W, u)= 1.u.b. {t(T)IT is any weighted q-ary tree with initial
weight W and cut value u}.

THEOREM B. "rq(W, u)--’rq([W/u]).
Proof. (The theorem is proved in Appendix B.)
Now, suppose we draw a decision tree for Algorithm PM beginning from the top,

but only going as far down as step 2 of the algorithm. If we designate these exit
points from step 2 as "leaves", then clearly what we have is a weighted q-ary tree with
initial weight W d + 1 and cut value u [(logq m)/2], since condition (ii)’ is satisfied.
Therefore, the cost of step 2 satisfies

h2 -< rq(d + 1, [(logq m)/2]).

If d + 1 < [(logq m)/2], then h2 0. Otherwise, from Theorems A, B,

d+l ’h2 <= lgq , (lo-q ri/2] + O(1)

(d+l’logq
\ l-----m] + logq In q + O(1)

logq ((d + 1)/In m)+ O(1).

Thus, in both cases,

he O(fl(m, n)).

This completes the proof of Theorem 1.

5. Lower bounds to the complexity of pattern-matching. We shall prove Theorem
2 by showing the existence of a set of "hard" patterns for which not only there is not any
algorithm with good average behavior, but in fact there is not any algorithm with good
best-case behavior. In 5.1, we define the concept of a "certificate", and carry out some
preliminary reductions for the proof of Theorem 2. Section 5.2 proves a central lemma,
and in 5.3 we complete the arguments for the lower bound. In 5.4 we prove
Theorem 3 using a similar argument.

5.1 Preliminary discussions. For any l, 1 =< =< n, let Sn (l) be the set of strings in
(Z tA {*})n with exactly n ,’s. Foreachq6S,(1),letI(o)bethesetofthosestringsin
Z that agree with q except in positions where q has ,’s. For example, let Z {0, 1} and
q =,00,1 6 S5(3), then I(q) {00001, 00011, 10001, 10011}.

Let a 6 zm be a pattern. A string q 6 S,(1) is a certificate (of length l) for a, if all
elements in I(0) contain a in exactly the same set of positions. That is, A(a, rl)=
A(a, ’2) for any rl, rz I (q).

DEFINITION. Let g(a, n) be the minimum length of a certificate for a, i.e.,

g(a, n) min {/[::1(S,(1) such that o is a certificate for a}.

Let T be a decision tree that locates all occurrences of a in text strings from Y_,n. It is
easy to see that any path in T from the root to a leaf must have length at least g(a, n). In
fact, let ’[il] al, r[i2] a2,..., ’[i1] at be the sequence of characters examined

PATTERN MATCHING FOR A RANDOM STRING 379

along the path; then c Sn(l) is a certificate for a where qO[ik]--ak for 1-<_ k-<_ l, and
q[]] =, otherwise. Thus, no algorithm can halt before examining g(a, n)characters
even in the best case.

LEMMA 5.1. C (C, r/)>= g(a, n) for all a, n.
We shall prove the following strengthened version of Theorem 2.
THEOREM 4. There exists a positive constant a2 such that, for any q >-_ 2 and m > O,

there exists a set of strings L C_ ,’ satisfying

q

(II) for each L, g(, n)>-a(m, n)]:or all n >-m.

Before proceeding, we would like to mke one more reduction.
LEMMA 5.2. Let n =>2m; then g(a, n)>= [n/(2m)lg(a, 2m).
Proofi For any string r y_.", we write it as

where Iril 2m for 1 <_-/" <= [n/2mJ. Similarly, we write q qaq2 q t,/z,j r/ for any
q S,(l). If q is a certificate for a in .E", then each
(Note that the reverse may not be true.) Thus g(a, n)

This lemma allows us to reduce condition (II) of Theorem 4 to the following:
(II)’ for each a L, g(a, n) >- a2fl(m, n)]:or m <- n <= 2m.
This is so because g(a, 2m)>-azfl(m, 2m) implies g(a, n) >- [n/2mJg(a, 2m)=>

[n/(2m)J a2 [logq (m/(ln (m + 1)+2))] >-_a’fz(m, n) for some a >0.
The next two subsections are devoted to a proof of Theorem 4.

5.2 The Counting Lemma. A certificate q for a is called a negative certificate if it
disproves the containment of a as a substring, i.e., if A (a, r)= for all r I(q). We
first observe the fact that any certificate shorter than the pattern itself must be a negative
certificate.

FACT. Let a Z" be a pattern. Ifq S,(l) is a certificate for a and < m, then o is a
negative certificate for a.

Proof. Since 0 does not check as many as m non-. characters, it is impossible for
to certify the occurrence of a at any position in r I(0). Therefore, it must be that
a(, if)= (R).

The next lemma is essential to the proof of Theorem 4. It says that not many
patterns in Y_." can share a common certificate which is short.

DEFINITION. For any q S, (1), where 1 -< <_- n, let ,, (q) be the set of all patterns
in .E" for which q is a certificate. That is,

m(q)= {a la e E" and q is a certificate for a }.

THE COUNTING LEMMA. Let 1 <-- < m <-- n, and c Sn (l). Then

q’ where d n m.

Proof. Let 1-<_il < iz <. < it <= n be the positions where q has a non-, character.
For 0 -<_] _-< d, define

Bi {bib {1, 2,. , m} and f + b it for some 1 _<- <_- l}.

(See Fig. 5.) Clearly IBI--< for 1 <_- <- d. Also, for any a ,,,(q), since q is a negative

380 ANDREW CHI-CHIH YAO

certificate by Fact, there must exist an Bi for each such that a[i] : q[j + i]. Now we
show that we can find J {0, 1," d},]JI [d//2], such that Bh f3 Biz for/’1 j2 in
J.

We find J by a "greedy" procedure. Let jl 0. Inductively,/’s is obtained by finding
the smallest j such that Bi is disjoint from B Bh LI Bi2 LI LI Bi_. We claim that this
procedure allows us to find at least [d/l2] such sets. In fact, we shall show that
js <- 12(s 1). The key observation is that B contains at most l(s 1)elements. We claim
that at least one of the sets in {Bo, B1, BlZ(s-1)} is disjoint from B. If not, for
each r, O<-_r<-12(s-1), let (b, it) be a conflict where bBrf3B and r+b =it for some
1 -<_ <_- I. The total number of such pairs is no more than [BI <- 12(s 1). But we have
/2(s-1)+ 1 sets in the family , and no two produce the same conflict, which is
a contradiction.

To prove the lemma, consider a random string from Y_,m. For each jJ, the
probability that there exists some B with a [i] q [/" + i] is 1 1/qlBl. Since all the
sets Bi for j J are disjoint, the probability that this holds for all j is

.j (1- -Vr)<-- (1 -7/)

Since each ,(q) must satisfy this condition, the lemma follows. I-1

5.3 Proog og Theorem 4. In this subsection we complete the proof of Theorem 4.
Roughly, the idea is to use the Counting Lemma to bound the number of patterns in
that have any "short" certificate.

DEFINITION. Let x be a positive number such that (i) x -> 256 and (ii) y > (log2 y)
for all y ->_ x.

LEMMA 5.3. Let m + xq4 In (m + 1)--<_ n _--< 2m, [1/2 logq ((n m)/ln m)], and
-J qSn(1) m(qg) Then Il <= (1/ml)q m.

Note. The assumption in the lemma ensures m > 5; thus In m > 1.

Proof. Clearly < m. By the Counting Lemma, we have for each q S, (l),

q

Therefore,

(14)

I1 <ISn(I)I= (1)
a/12

q

-(n) ()
d/12

lq. 1- .qm

<= (n q)l" e
(d/)(-l/q) qm.

PATTERN MATCHING FOR A RANDOM STRING 381

Since n =<2m, and In (1- q-t) <= -q t, (14) leads to

[l=(2mqjexp(< -qt) q

(15)
=q". exp (-(/2-/. In (2m q))).

FACT.

(16)
d

>2l. In (2mq).l---12q

Proof. (This fact is proved in Appendix C.)
Formula (15)then implies,

19al--<q exp (-I. In m)=(1/mt)q ".

This proves the lemma. I1
We now finish the proof of Theorem 4. As discussed in 5.1, we can assume that

n=<2rn. We can assume that m>=xq2ln(m+l). Otherwise, f(m,n)=
[logq ((n m)/ln(m + 1)+ 2)] O(1), and we can choose L Y_." to satisfy the condi-
tions in Theorem 4.

For each n, m + xq2 In (m + 1) =< n <= 2m, let

(17) (") U ,((),
Sn (ln)

By Lemma 5.2, we have

1 n--mwherel.=[logq(In m)]->10"

1
(18) I(")l =<

ml--U"q" -< --T6q"’m
We define L as follows.

(19) L

where the union is taken over m + xq2 In (m + 1)_-< n _-< 2m. Now we need only check
that L has the properties specified in Theorem 4.

(II)’ We shall prove, for each a eL, g(a, n)>-a2f(m, n) for all m Nn _-<2m, and
an absolute constant a2.

There are two cases"

(a) If m+xqZln (m+ 1)-<_n <_-2m, then a (n) by definition of L. Thus,

[1 (..lnm)]>_a[logq(ln(m+l)g(a,n)> logq
n-m n-rn

for some absolute constant a.
(b) If m <-n < rn + xq2 In (m + 1), then

f(rn, n)= log,
In (m + 1)

+2)] =a .f(m,n)

+2)] 0(1),

382 ANDREW CHI-CHIH YAO

and

g(a, n)>=a2 f(m, n)

for some absolute constant a. Thus, in both cases, we have verified property (II)’.
Therefore, the set L defined by (19) satisfies the conditions (I) and (II)’ set in

Theorem 4. This completes the proof of Theorem 4.
Remark. In the condition ILl => (1 1/m 9) of Theorem 4, the choice of the factor

1 1/m9 is somewhat arbitrary. In fact, we can replace it by any factor 1 1/m b where b
is any fixed positive number. Then, in the proof, we need to divide cases according to
whether n is greater than or less than m + xq2(b+l)ln (m + 1). The resulting constant a2
in the theorem will be different.

5.4 Proof of Theorem 3. We can assume that d n m > max {q4, X}, where x is
defined as in 5.3. Otherwise the bound fl([log0 (d+2)])=fl(1), and any pattern
a e Y_," will meet the conditions in Theorem 3.

By assumption, m =< n=< 2m, and A e A,. Let [(logo (n m + 2))/2]. Recall that
S, (l) is the set of strings of length n over X 12 {.} with non-. characters. Let H_S, (l)
be defined by

H {ql S,(I); q[A (i)] E for 1 <- -<_ l, and []] * for all other]}.

Clearly, there are exactly ql elements in H, i.e., [HI ql.
Now, let 90’ be the set of patterns a s X, such that Algorithm(A, a) halts for

some text string in less than or equal to steps. For any a s 9’, clearly there must be a
q H such that a s 9,,, (). Thus,

(20) ’__c U ,. (0).
H

By the Counting Lemma, we have

lgm (q)l--< (1 q-,)d/,, qm.
Therefore,

(21) I ,I_<_IHI- (l_q-l)cl/,2. qm =ql (l_q-l)cl/l. q.
Since every a in Y_. 9’ meets the conditions set in Theorem 3, we need only show that

--I d/lq .(1-q) <l. Now,

(22) ql (l_q-l)d/l=’<ql exp (_[2).
By using the definition of and the condition d > q, we obtain after some algebraic
manipulations

((d + 2) ’/4

’(23) ql (a_q-,)a/, <-(d + 2)3/4 exp -2(1g.))2].
The right-hand side of (23) can be shown to be less than 1 when d >= x. This proves
Theorem 3.

Remark. The right-hand side of (23) is O(exp (-dl/S)) for large d. We have in fact
shown that, for any fixed e A,, Algorithm(a, a) has to examine fl([logo (d + 2)])
characters in the best case for all but a O(exp (-dl/S)) fraction of the patterns a e y_,m.

An open question: Is the following statement true?

PATTERN MATCHING FOR A RANDOM STRING 383

Let 0 < m =< n -< 2m. For any ce E", there exists a h A,, such that Algorithm--
(A, a) examines 0([(m, n)) characters on the average for a random text string of length
n.

Appendix A. Proof of Theorem A. In this appendix, we shall prove the following
theorem used in 3.2 in the paper. For definitions and notations, see 3.2.

THEOREM A. Let q >= 2 be an integer. Then

W 1
(A1) r(W)-- Llog wJ + 1 + t,o.wj for w > 1

q q-l’

We first derive some properties of the function f defined below.
DEFINITION. Let q => 2 be an integer; we define a function, f by

(A2)
/(0):0,

f(w) [og. w/+ +
W 1

q [logq W] q 1’
for W => 1.

Let g(W)=f(W+ 1)-f(W), for all integers W>=0.
PROPERTY 1.

1 1
g(W)= [logq(W+l)]-I fo.r W>=O.q-lq

PROPERTY 2. g(W) >- g(W’) if 0<= W <= W’.
Property 2 follows from Property 1, which can be verified directly.
PROPERTY 3. The function f satisfies the following recurrence relation"

(A3)

(A4)

f(0)=0,

f(W)= 1 +-
qi= q

for W>=l.

Proof of Property 3. Equation (A3) is true by definition. To prove (A4), let

(A5) W tq + s, with 0 <- s < q.

Then

[W+i-11 {t ifl<-i<=q-s,
q t+l ifq-s+l<-i<--q.

Thus, we need only prove f(tq + s)= 1 +(1/q)((q-s). f(t)+ s. f(t + 1)), i.e.,

S(A6) f(tq + s)= 1 +f(t)+-g(t).
q

From the explicit forms of f and g as given in (A2) and Property 1, it is not difficult to
verify (A6). This implies Property 3. lq

Remark. We shall interpret (A4) as follows. Let us write W WI + W2 + + Wq
such that [W reV[_< 1 for all i, . Then

1
f(W) 1 + f(W,).

384 ANDREW CHI-CHIH YAO

We are now ready to prove Theorem A. Let T be any weighted q-ary tree, and T
be the subtree rooted at soni(root), 1 <_-i <= q. Then the terminal weight of T satisfies

1
t(T)= 1 +- Y t(Ti).

qi=l

This leads to the following equations:

(A7)
.(0)=0,

rq(W)= 1 +- max rq(Wi) integer W/ >_- O, W=W}, forW_->l.
i=1

Clearly (A7) determines %(W) uniquely. Therefore, in order to prove (A1), we need
only prove that [(W) satisfies (A7). Because of Property 3, it suffices to prove

q

(A8) max Y f()
i=1 i=1 q

That is, the sum 2i f(W/) achieves a maximum value when all the W differ from each
other by at most 1. This can be demonstrated as follows. If, for some and],
IV/-> W+2, we make the changes W/ W/-1 and W/ W.+ 1. The value of if(W)
is increased by an amount f(W. + 1)+f(W/- 1)-f(W/)-f(W)= g(W.)-g(Wi- 1),
which is nonnegative because of Property 2. It can be shown that the value of
i.j W- WI is decreased by at least 2 by such a transformation. Therefore, by a finite
number of such transformations, all the W will be within 1 to each other. The value of
] f(W) is at least as great as the initial value before the transformations. This proves
(A8), and hence Theorem A.

Appendix B. Proof of Theorem B. (See 4 for notations.)
THEOREM B. Let q -> 2 and u >- 1. Then

(B1) rq(W, u)=rq(tW/u]), [orall W>-_l.

By definition, a q-ary tree with initial weight W< u and cutoff u can only consist of
a single leaf. There,

(B2) rq(W,u)=O for0_-<W<u.

The following facts can be established by deriving a recurrence relation on rq(W, u)
similar to (A7), and performing some simple reductions.

q
(B3) rq(W,U)=q_l foru<_-W<2u.

(B4)

%(W, u)= 1 +-max rq(W,u) O<-W<Wforl<-_i<-_q,

and 2 W=W forW->2u.
i=1

We shall now use (B4) in an inductive proof of formula (B 1).
Consider q, u as fixed, and the induction is on variable W. By (B2) and (B3), the

formula (B 1) is true for 0 -< W< 2u. Now, assume W -> 2u, and we have proved (B 1) for
all smaller values of W. We shall prove that it is also true for W.

PATTERN MATCHING FOR A RANDOM STRING 385

By (B4), we have

rq(W, u) 1+- max -q(Wi, u) O<-_ W < W for l <-_i <-_q, and Wi W
q i=1 i=1

By inductive hypothesis, rq (W/, u) -q W//u) for 1 _<- _<- q. Therefore,

1
(B5) rq(W, u)= 1 +-max rq([W/u])10 -< W < W, W W

q i=1

We can complete the proof in two steps:

(B6) (i)

Proof. It is not difficult to verify that rq(x) is a nondecreasing function of its
argument. Noting that i W/u] -< [W/u], then we find

1 +- rq(LWi/uJ)<-’rq Lt,V/u]
qi=l

where we have used (A7) in the first step. This proves (B6) because of (B5). El

(B7) (ii) -.(W, u)>--(lW/u]).

Proof. Let W tu + v, where 0 v < u. Define

(B8) W
t+i-_lJuq

[t+q-llu+ v
q

for 1 _--< _--< q 1,

for q.

Then

(B9) [W/u] It+i-l,1q
for 1 -<_ <_- q.

From the fact that Yi W W and (B5), we have

1 q

r(W, u) -> 1 +- Y %([W/u])
(B10)

q i=1

1 (1/+/-11)=1+- rq
qi=l q

In Appendix A, we have shown that the right-hand side of (B 10) is equal to rq(t). (See
(A4); remember that rq(W)=f(W).) Therefore, (B10) leads to

to(W, u)>- ro(t)= r,([W/u]). []

We have now proved that r(W, u) r(W/u). This completes the inductive step
in the proof of Theorem B.

Appendix 12. Proof ot formula (16). We shall prove formula (16) used in 5.3. For
easy reference, we repeat all the notations and assumptions.

Notations. d=n-m, l= [1/21ogq ((n-re)/In m)]. The number x is a positive
number such that (i) x _->256, and (ii) for all y >-x, y --> (log2 y)12.

Assumptions. q >= 2, and m >- d >- xq4 In (m + 1)> 0.

386 ANDREW CHI-CHIH YAO

We wish to prove:

d
(C1) -----_-> 21. In (2mq).lEq

Proof. We shall prove

d _>2/3(C2) q. In (2mq

Now -<_ 1 + 1/2 logq (d/In m); hence

(d) 1/2

(C3) qt-<-q lnm
Also m => d => q4. Thus, m > 2q because q > 2.

(C4) In (2mq)-< In (m 2) 2 In m.

From (C3) and (C4), we have

d d

q In (2mq)-q(d/ln m 2Into 2q Into

Therefore, (C2)will be proved, if we can show

1/2

=>213
2q in

d
>_ 16q 2l6.(C6)

In m

Notice that, by assumption, d/(ln m)_-> q4; hence logq (d/In m)-> 4. Therefore

1 d
lOgq

d
(C7) l_-< 1 + logq in m n m"

Because of (C7), we can prove (C6) if the following is true.

d >_16q2(logq(d))6(C8) ln----- in m
We shall now prove (C8) to complete the proof of (C1).

By assumption, d(ln m) >= xq 4.
(i) Since x => 256, we have

d) 1/2(xq4)1/2 16q2(C9) in m
(ii) Since d/lnm>-x, the following inequality is true. We have d/(lnm)>=

(log2 (d/In m))12, which implies that

d 1/2 6

(C10) (in m) (lgq (indm))

PATTERN MATCHING FOR A RANDOM STRING 387

It follows from (C9) and (C10) that

In m

This proves (C8), and hence (C1).

REFERENCES

[1] A. V. AHO AND M. J. CORASICK, Fast pattern matching: An aid to bibliographic search, Comm. ACM,
18 (1975), pp. 333-340.

[2] A. V. AHO, D. S. HIRSCHBERG AND J. D. ULLMAN, Bounds on the complexity of the longest common
subsequence problem, J. Assoc. Comput. Mech., 23 (1976), pp. 1-12.

[3] R. S. BOYER AND J. S. MOORE, A fast string searching algorithm, Comm. ACM, 20 (1977), pp.
762-772.

[4] D. E. KNUTH, J. H. MORRIS AND V. R. PRATT, Fast pattern matching in strings, this Journal, 6 (1977),
pp. 323-350.

[5] D. E. KNUTH, Sorting and Searching, The Art of Computer Programming, vol. 3, Addison-Wesley, New
York, 1973.

[6] R. L. RIVEST, On the worst-case behavior of string-searching algorithms, this Journal, 6 (1977), pp.
669-674.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics
0097-5397/79/0803-0010501.00/0

ON THE NUMBER OF COMPARISONS TO FIND
THE INTERSECTION OF TWO RELATIONS*

L. J. STOCKMEYER? AND C. K. WONG?

Abstract. Given two finite sets of k-tuples whose component elements are drawn from an infinite totally
ordered set, the problem of identifying the k-tuples which belong to both sets is considered. Attention is
restricted to algorithms that perform pairwise comparisons on the component elements of the k-tuples. If the
two sets have cardinalities rn and n with rn =< n it is shown that, in the worst case,

(m +n). log2 m +(m +n- 1)k

comparisons are sufficient and

max ((m + n). log2 rn-2.9m, (m + n- 1)k)

comparisons are necessary. Upper and lower bounds are also given for the number of comparisons required to
recognize duplicate tuples in a sequence of tuples, and to determine the lexicographic order of a sequence of
tuples. In all cases, the disparity between the upper and lower bounds is at most a factor of two asymptotically.

Key words, relational algebra, computational complexity, comparison tree, sorting vectors

1. Introduction. The main purpose of this paper is to establish bounds on the
number of comparisons required to find the intersection of two relations. The size of an
intersection problem is specified by three parameters: m, the number of rows (or tuples)
in the first relation; n, the number of rows in the second relation; and k, the number of
columns (or domains) in each relation. Formally, in the (m, n, k)-intersection problem,
the relations are viewed as two-dimensional arrays

A={aijll <=i<=rn, l<-_j<-_k}

and

B ={bijll <-i <=n, l <-j <-k}.

The individual elements, aii and bib of A and B take values from some infinite totally
ordered set S; there is no harm in imagining that S is the set of integers, for example. We
let the k-tuples

and

ai ai ai2, aik), 1," m,

bi (bil, bi:2, bik), 1,..., n,

denote the rows of A and B, respectively. The relation A (B) is said to be admissible iff
ai - at (hi hi) for all and with # l; that is, A (B) does not have duplicate rows.
Given admissible relations A and B, the objective is to recognize the rows of A and B
that belong to both relations, or, formally, to find

D(A, B)= {(i, l)lai-- b/}.

We consider algorithms which find D(A,B) by performing comparisons on the
individual elements of A and B. Each comparison involves a pair of elements and has
one of three outcomes depending on whether the value of the first element is less than,
equal to, or greater than, the value of the second element. The two elements in a
comparison can be taken either from the same relation or one each from the two

* Received by the editors March 8, 1978 and in revised form September 22, 1978.
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

388

INTERSECTION OF TWO RELATIONS 389

relations. Formally, the number of comparisons performed by an algorithm is measured
in terms of the well-known comparison tree model (see Knuth [8, 5.3.1]) generalized
to permit three-branch (<, =, >) comparisons. Comparison trees are reviewed in 2 of
the paper.

Letting I(m, n, k) denote the number of comparisons required in the worst case to
solve the (m, n, k)-intersection problem, and assuming m <_- n without loss of generality,
our principal results are that

(1)

(2)

I(m,n,k)<-(m+n) logm+(m+n-1)k-m+l,

I(m, n, k)_-> max ((m + n). log m- 2.9m, (m + n- 1)k).

(In this paper, all logarithms are to the base 2.) Thus, I(m, n, k) is determined to within
a factor of two in the limit of large m. Also note that in the case m-1, which
corresponds to a search for a vector in a set of vectors, the upper and lower bounds are
both nk.

Part of our motivation for studying the relational intersection problem is derived
from the relational model of data introduced by Codd [2]. In this model, a data base is
viewed as a collection of two-dimensional tables, called relations, where all relations are
admissible. One formal language which can be used to manipulate (i.e., initialize, query,
update) a relational data base is the relational algebra [2], [3] which includes, among
other operations, the set-theoretic operations of union, intersection, and difference. It
is clear that the number of comparisons required to find the intersection of two relations
A and B is identical to the number required to find the union of A and B, and to the
number required to find the difference of A and B, since, in all three cases, the
information which must be extracted from A and B in order to perform the operation is
precisely D(A, B). The feasibility of the relational algebra in a practical system for the
manipulation of data has been demonstrated [12]. Of course, in practical terms, the
number of comparisons is an unrealistic measure of the complexity of an algorithm, and
other measures (such as the number of page faults) would be more reasonable.
However, a basic theoretical understanding of the number of comparisons required to
solve the relational intersection problem is of the same nature as similar studies
concerning sorting [4], [9], merging [6], selecting [1], [5], [7], [10], and performing
operations on sets [11]; see also [8, 5.3].

Another motivation is that the relational intersection problem is a multidimen-
sional generalization of a problem which has been studied previously. In the one-
dimensional (k- 1) version of the problem, a relation reduces to a set, the set of
elements in the single column. The intersection problem for sets has been studied by
Reingold [11] and Munro and Spira [9]. Assuming m <-n again, it is known that

(m+n). logm-2.9m<-_I(m,n, 1)-<_(m +n) log m +n.

From this lower bound on I(m, n, 1) and from the upper bound (1) on I(m, n, k), we see
that the k-dimensional problem does not require k times as many comparisons as the
1-dimensional problem. In fact, one can interpret (1) as being (to within O(m + k)) the
number of comparisons which are necessary to solve just the 1-dimensional problem
plus one comparison for each of the (m + n)k elements in the two relations.

In 4 of the paper we consider a related problem: given a single relation A with
m rows and k columns which might contain duplicate rows, partition the rows of A into
equality-classes. The number of comparisons P(m, k) required to solve this problem is

390 L. J. STOCKMEYER AND C. K. WONG

bounded as follows:

(3) P(m, k)-<m log m +(m-1)(k-1),

(4) P(m, k)_->max (m log m- 1.45m, (m- 1)k).

This problem is related to the projection operation in the relational algebra. Given an
admissible relation R with k +p columns and given k specified columns, the result of
the projection operation is a relation A with k columns obtained from R by crossing out
the p unspecified columns. In order that A be made admissible, the equality-classes
must be found and all but one row in each class must be deleted. It is also noted that the
upper and lower bounds (3) and (4) apply to the problem of determining the lexico-
graphic order of m, k-tuples.

For both the intersection problem and the duplication-grouping problem, we also
give bounds in the case that the only information obtained from a comparison is
whether the two elements being compared are equal or unequal.

In 5 of the paper we suggest other variations of these problems which might
provide the basis for further research.

2. Preliminaries.
2.1. Definitions. A comparison tree (for the (rn, n, k)- intersection problem) is a

finite labeled 3-ary tree. With each nonleaf node of a comparison tree there is
associated (i) a pair of elements (aij:apq, bij:bpq, or aii:bo for some i, j, p, q) to be
compared, and (ii) three branches labeled <, =, and >, to be followed depending on the
outcome of the comparison. Each leaf is labeled with a set of pairs of positive integers.
Given a comparison tree T, each pair (A, B) of inputs determines, in the obvious way,
a path from the root of the tree to some leaf h(T, A, B). The tree T solves the
(m, n, k)-intersection problem iff D(A, B) is the label of h (T, A, B) for all admissible
inputs A and B. For example, the tree shown in Fig. 1 solves the (1, 2, 2)-intersection
problem. In the weak (m, n, k)-intersection problem, the objective is only to determine
whether or not D(A, B) is empty. The tree T solves this weak problem iff, for all
admissible (A,B), the leaf A(T,A,B) is labeled "empty" if D(A,B)=(or
"nonempty" otherwise.

For p

_
{<, =, >}, let Co(T, A, B) denote the number of branches labeled by an

outcome in the set p which are traversed along the path from the root to the leaf
h (T, A, B). Define

Co(T) max Co(T, A, B)
A,B

where the maximum ranges over all admissible inputs A and B. The number of
comparisons with outcomes in p that are required in the worst-case to solve the
(m, n, k)- intersection problem is the quantity

(5) Io(m, n, k)= mn Co(T)

where the minimum ranges over all comparison trees which solve the (rn, n, k),-
intersection problem. The set O is introduced because at times we are interested in
counting the comparisons whose outcome is equality separately from the comparisons
whose outcome is either less-than or greater-than. When a set p is not mentioned in
these notations, the set {<, =, >} is understood. For example, the tree of Fig. 1 shows
that

I=(1, 2, 2) -< 3, I<.> (1, 2, 2) -< 2 and 1(1,2,2)-<4.

INTERSECTION OF TWO RELATIONS 391

FIG. 1. A comparison tree which solves the (1, 2, 2)-intersection problem.

The number of comparisons required to solve the weak (m, n, k)-intersection problem,
denoted WIo(rn, n, k), is defined as in (5) except that the minimum ranges over trees
which solve the weak problem. Obviously

Wlo(m, n, k)<-lo(m, n, k).

We establish upper bounds on io(m, n, k) and lower bounds on WIo(m, n, k). We
assume rn <_-n without loss of generality in stating bounds.

If , denotes a nonleaf node of a comparison tree and 3’ e {<, =, >}, the 3,-successor
of , is the node reached from by following the branch labeled 3". At certain points in
the paper, we modify a comparison tree T to a tree T’ by "fixing the outcome of a
comparison to be 3"" where y e {<, =, >}. Formally, if t, is the node of T where the
comparison is performed, then T’ is obtained by replacing the subtree rooted at , by the
subtree rooted at the y-successor of u.

It is convenient to restrict attention to comparison trees which contain no inter-
column comparisons. An intercolurnn comparison is a comparison of the form aij" aoq,
bij" bpo, or aij" boo, where] - q. This restriction entails no loss of generality because of the
following.

PROPOSITION 2.1. Given any tree T which solves the (weak) (m, n, k)-intersection
problem, there is a tree T’ which solves the (weak) (rn, n, k)-intersection problem such that
T’ contains no intercolumn comparisons and Co(T’) <-_ Co(T) [or all 0 - {<, =, >}.

392 L. J. STOCKMEYER AND C. K. WONG

Proof. If xii:ypq is an intercolumn comparison in T, fix the outcome to be < or >
accordingly as] < q or] > q. We need only observe that the modified T’ gives correct
answers. Any input (A, B) can be modified to an input (A’, B’) such that the ordering
within each individual column is preserved (so that D(A,B)=D(A’,B’)), but all
elements in the/’th columns of A’ or B’ are less than all elements in the (] + 1)th columns
of these relations, for 1-<_/’ < k. By construction, T’ with input (AB) gives the same
answer as T with input (A’, B’). [3

We also assume that comparison trees contain no "redundant comparisons"; that
is, for each node the outcome of the comparison at that node is not implicit in the
comparisons that have already been performed on the path to that node.

2.2. Sorting and searching in multisets. To establish an upper bound on I(m, n, k)
we first need upper bounds on the number of comparisons to sort and search multisets.
We include these bounds here as they may be of independent interest. The material of
2.2 is used only in the proof of Theorem 3.2. A multiset is a sequence al,." ", a,

where some of the ai can have the same value. A t-tuple of positive integers
(ml, , mr) is said to be the multiplicity vector of the sequence {ai} if there are distinct
values, say Vl < v2 <’" < vt in the sequence, and, for 1-< p _-< t, exactly mp elements
have the value vp; of course tp=l mp= m. The multiset {ai} is sorted if ai<=ai+l for
l<=i<m.

We first consider the problem of searching for an element b in a sorted multiset
al,. , a,,. For our purposes it is sufficient to perform conventional binary search [8,
6.2.1, Algorithm B] ignoring the fact that {ai} might contain duplicate values. In the

case that b equals none of the ai, it is known that the algorithm performs at most
[log (m + 1)] {<, >}-comparisons and no {=}-comparison. In case that b is found, we
have the following.

PROPOSITION 2.2. Suppose that binary search is performed to find an element b in a
sorted multiset a 1, , a,, and that b is found equal to an element of multiplicity u >- 1.
Then the algorithm performs at most

[log (m + 1)]]log (u + 1)]

{ <, > }-comparisons and exactly one {=}-comparison.
Proof. Let N(m, u) denote the number of {<, >}-comparisons performed. The

proof of the desired upper bound on N(m, u) is by induction on m. If u <_- m < 2u, then
N(m, u)=0 because the first comparison of b with the "midpoint" of {ai} results in
equality; therefore the bound holds in this case. If m >_-2u, then

N(m, u)<=N([m/2], u)+ 1

=<]log (Lm/2] + 1)] [log (u + 1)] + 1,

the second inequality following by induction. Therefore, it is sufficient to show that

[log ([m/2J + 1)] + 1 <_- [log (m + 1)].

If m is even, m 2z and z _-> 1, then

[log ([m/2J + 1)] + 1 [log (2z + 2)] [log (2z + 1)] [log (m + 1)];
the second equality holds because there is no integer such that log (2z + 1)-<_j <
log (2z + 2). If m is odd, m 2z + 1, then

[log ([m/2J + 1)] + 1 [log (2z + 2)] [log (m + 1)].

INTERSECTION OF TWO RELATIONS 393

In sorting a multiset a 1,’’’, am the objective is to find the multiplicity vector
(ml,’" ,mr) and find a permutation 7r of {1,... ,m} such that a(i)<=a(i+l)for
1 <- < m. Munro and Spira [91 show that

mlogm- mologrnp+m-t+O(m)
p=l

comparisons are sufficient. However, when used in finding the intersection of two
relations the O(m) term gives rise to an O(mk) term in the upper bound on I(m, n, k).
Therefore, a bound of this type without the O(m) term is desirable. Consider binary-
insertion-sort. In this algorithm, the elements al, , am are inserted one by one into
an initially empty list using binary search. If the elements of {ai} are all distinct (i.e.,

rn and mi 1 for all i), a known upper bound on the number of {<, >}-comparisons
is

and an upper bound on F(m) is

def

F(m) Y’. [log/I,
i=1

F(m) <- m log m;

see [8, 5.3.1].
PROPOSITION 2.3. When applied to a multiset al, am with multiplicity vector

(m, , rn) binary-insertion-sort performs at most

F(m)- F(me)
p=l

{<, >}-comparisons and exactly m { }-comparisons.
Proof. Consider the number of comparisons required to insert a, where ai is of

multiplicity mo and ai is the jth element of multiplicity m to be inserted (1 =< j _-< rn). By
Proposition 2.2, at most [log i] [log j] {<, >}-comparisons are required. In addition,
one {=}-comparison is performed if j > 1. Summing these quantities for 1 =< i-< m,
1 <= p <= t, and 1 <= j <= mo gives the desired bounds, iq

It should be emphasized that the sorting algorithm need not know the multiplicity
vector in advance.

3. The intersection of two relations.
3.1. The case k = 1. Before considering the general case of relations with k

columns, it is useful to first recall the known upper and lower bounds in the case k 1.
The intersection problem for sets has been studied by Reingold 11], and the bounds of
[11] have been sharpened by Munro and Spira [9, Corollary 3.8]. The known upper and
lower bounds are tight to within O(m + n).

THEOREM 3.1. Let m, n >-_ 1 with m <= n.
(a) (m + n). log m 2.9m <_- WIt<,> (m, n, 1) _-< WI(m, n, 1).
(b) Ii<,> (m, n, 1) <-_I(m, n, 1)<-(re+n) log rn +n.
(c) I= (m, n, 1)= m.
(d) WII=} (m, n, 1)= 1.
Proof. We sketch the proof for completeness; further details relating to parts (a)

and (b) can be found in [9], [11]. In this proof, we elide the second subscript "1" on
elements.

(a) Only the first inequality requires proof. Let T be a comparison tree that solves
the weak (rn, n, 1)-intersection problem. Let zr denote a permutation of {1,..., rn}.

394 L. J. STOCK,MEYER AND C. K. WONG

Let .r denote a map from B {bl, b,} onto {1, , m}, and let B(z) denote those
elements of B that map to under z. (As an occupancy problem r corresponds to a
placement of n distinct balls (the bi) into m distinct boxes (the B(z)) with no box
remaining empty.) A pair (A, B) of sets is said to satisfy (zr, z) provided that, for each i,
a,(is less than all elements in Bg(z) and all elements in B(z) are less than a(i+l); the
ordering within each Bi(z) can be arbitrary. For each 7r and r, choose some (A, B) that
satisfies (Tr, z) and let h(zr, z) denote the leaf A(T, A,B) reached when the input is
(A, B); note that h (zr, z) must be labeled "empty". We claim that

(6) if (Tr, r) (zr’, r’) then h (zr, r) h (r’, z’).

To verify (6), assume for contradiction that (zr, z) (zr’, r’) but h (zr, z) h (zr’, z’). Let
(A, B) and (A’, B’) satisfy (zr, z) and (zr’, z’), respectively. Since (zr, z) (zr’, z’), it can
be seen that there is an and/" such that either a < bi and a’ > b i,’ or a > bi and a’<bi.’
Therefore, in the least defined partial order that is consistent with the comparisons
performed on the path to h (zr, z), a and bi are incomparable. It follows that we can find
an (A", B") with al: b’ and h (T, A", B") h (zr, z). But D(A", B") , and this
contradiction proves (6).

There are at least (m !)m ways of choosing zr and z, and therefore at least this
many leaves h (zr, z). For each 7r and z, only comparisons whose outcome is either < or
> are encountered on the path to h (zr, z). Therefore, at least one of these paths must be
of length at least log ((m!)m"-’), and (a) follows since log m! _-> m log m-m log e.

(b) Only the second inequality requires proof. First sort the set A {ax, am}
using binary-insertion-sort. Now for 1,..., n perform a binary search to see if bi
belongs to the (now sorted) set A. As discussed in 2.2, the number of comparisons is at
most

F(m)+n[log(m+l)] <=(re+n). log m +n.

(c) Since the elements of A and B take on distinct values and since m <-n, the
algorithm of part (b) demonstrates that Ii-_(m, n, 1) m. On the other hand, given any
tree T that solves the (m, n, 1)-intersection problem, consider the leaf ,0 reached by
starting at the root and following branches according to the following rule" if the
comparison at a node is a ai, b hi, or ag hi, then traverse the branch labeled <, =, or >
accordingly as < j, j, or > j, respectively. It is easy to convince oneself that 0 must
be labeled {(i, i)[1 _-< -<_ m}. However, if fewer than m equalities are traversed on the
path to ,0 then there is an az (1 <- z <= m) that is not involved in any comparison with an
outcome of equality, so one can find an (A,B) with h(T,A,B)=ho and
(z, z) c! D(A, B).

(d) If the weak problem is being solved, the algorithm of part (b) terminates as
soon as the first equality is found. The proof that WI=(m, n, 1)=> 1 is similar to part
(c). 1

Any comparison tree T which solves the (m, n, 1)-intersection problem can be
modified to obtain a tree T which solves the (m, n, k)-intersection problem. Namely,
define a total order on k-tuples by lexicographic ordering, and apply the algorithm T
viewing each k-tuple as a single "element". Each comparison in T is replaced by at
most k comparisons (exactly k in the worst case) to determine the lexicographic order of
the two "elements" being compared. It can be seen that C(T,)-k. C(T). By
Theorem 3.1(b), this leads to the upper bound

I(m, n, k) <- k((m + n) log m +n).

A better upper bound is possible, however.

INTERSECTION OF TWO RELATIONS 395

3.2. Upper bounds for general k.
THEOREM 3.2. Let m, n, k >- 1 with rn <- n.
(a) I(<,> (rn, n, k) -< (rn + n). log m + n.
(b) I(--(m, n, k) <- (m + n 1)(k 1) + m.
(c) I(m,n,k)<-(m+n) logm+(m+n-1)(k-1)+n.

Moreover, the three upper bounds are achieved simultaneously by one comparison tree.

Proof. Actually we prove (b) and
(a’) I{<.>} (m, n, k) <- F(m) + n [log (m + 1)],
(c’) I(m,n,k)<-F(m)+n[log(m+l)] +(m+n-1)(k-1),

where F(m) is defined in 2.2; recall that F(tn)<-rn log m. The basic strategy of the
algorithm (comparison tree) is to break the problem into several subproblems, where
each subproblem consists of rows of A and B that agree in their first coordinate. The
subproblems involve one fewer column, so the proofs of (a’), (b), and (c’) proceed by
induction on k. Note that the algorithm of Theorem 3.1 (b) provides the basis k 1 in all
three cases. The algorithm divides naturally into three stages.

Stage 1 (Sort). The first goal is to sort the first column of A which is the sequence
{ail}= all, a21, am1. In the case k > 1 it is possible that certain elements in the first
column have the same value. If (rn 1," , rnt) is the multiplicity vector of {ail}, then the
number of comparisons used by binary-insertion-sort is bounded above by Proposition
2.3 as follows:

(7) {<, >}: at most F(rn)- F(rn19);
19=1

(8) {=}" at most m 1.

Stage 2 (Search). For j 1,..., n the next goal is to search for b. in the (now
sorted) first column of A. For 1 <-p <-t let n19 be the number of elements in the first
column of B that are found equal to an element of multiplicity rn19, and let no be the
number not found. The number of comparisons performed in this stage is bounded
above by Proposition 2.2 as follows:

(9) {<, >}: at most Y n19([log (rn + 1)] [log (rn19 + 1)])+ n0[log (rn + 1)]
p=l

n [log (m + 1)] Y n19 [log (rn19 + 1)];
19=1

(10) {-}" exactly Y n19.
p=l

Stage 3 (Recurse). For 1 _-<p _<- t, solve the resulting (rn19, n19, k 1)-intersection
problem.

By summing the costs from the three stages we obtain inductive upper bounds on
the total cost. For part (a’), we have from (7) and (9)

(lla) I{<,>t (rn, n, k) <-_F(rn) + n [log (m + 1)] -E (F(rn19) + n19 [log (rn19 + 1)]

+E I/<,>/(rn19, n19, k 1),

where the summations are taken from p 1 to t. By induction we have

II<,>l (m19, n19, k- 1)<-F(rn19)+ n19 flog (m19 + 1)].

396 L. J. STOCKMEYER AND C. K. WONG

(Note that this inequality is valid also for no 0 and for no < rap.) Substituting this
inequality in (1 l a) proves the induction step.

For part (b), we have from (8) and (10)

(llb) I=(m, n, k)<-_m- l + n +,I=(mp, n, k-1).

For part (c’), we sum (7)-(10) to obtain

(llc) I(m,n,k)<=(m+n-1)+F(m)+n[log(m+l)q-,(F(mo)+no[log(mo+l)])

+,I(mp, no, k-1).

As outlined for part (a’), the upper bounds (b) and (c’) follow from these inequalities by
simple calculations which are left to the reader. [3

3.3. Lower bounds for general k. Lower bounds on the (m, n, k)-intersection
problem are stated in the following theorem. Comparing parts (a) and (b) of Theorems
3.2 and 3.3 one sees that, when counting {<, >}-comparisons and {=}-comparisons
separately, the upper and lower bounds are tight to within O(m + n). When counting
the total number of comparisons in part (c), the disparity between upper and lower
bounds is at most a factor of two in the limit of large m.

THEOREM 3.3. Let m, n, k >- 1 with m <-n.
(a) WI<,> (m, n, k) >- (m + n). log m 2.9m.
(b) Wl=(m,n,k)>-(m+n-1)(k-1)+l.
(c) WI(m,n,k)>-max((m+n) logm-2.9m, (m+n-1)k).
Proof. Without loss of generality we assume that comparison trees contain neither

intercolumn comparisons nor redundant comparisons.
(a) This lower bound is immediate from Theorem 3.1(a) once it is noted that

WI<.>r (m, n, k) >= WI<,> (m, n, 1).

Any comparison tree Tk which solves the weak (m, n, k)- intersection problem can be
modified to a tree T1 which solves the weak (m, n, 1)-intersection problem by fixing the
outcomes of all comparisons in Tk that involve elements not in the first column; any
such comparison is fixed to be =. Clearly C<,> (T1)-< C<,> (Tk).

(b) The proof is by induction on m + n. However, it is necessary for the proof to use
an induction hypothesis which is stronger than the mere statement of the inequality (b)
to be proved. In the stronger hypothesis, equality constraints are known between
certain elements, and the comparison tree need perform correctly only for inputs which
satisfy the equalities. It is convenient to view the equalities as being specified by a forest,
i.e., a collection of trees; in this context, "tree" is the usual graph-theoretic notion of
"connected undirected acyclic graph." The nodes of the forest correspond to elements
of A and B, and the presence of an edge between two nodes specifies an equality
constraint between the corresponding elements. We let the symbol aij (bii) denote, the
node which corresponds to element aij (bij) relying on context to resolve any ambiguity.
An edge is a set of two distinct nodes which correspond to two elements from the same
column. A forest is a (possibly empty) set of edges with no cycles. An element aii (bii) is
constrained in the forest F iff aii (bi) belongs to some edge in F. A pair of inputs (A, B)
satisfies the forest F provided that {xj, yti} F implies that the two elements xii and Yli
are equal in A and B, where here (and subsequently) the symbols x and y denote either
a or b. For example, the forest depicted in Fig. 2 specifies that at1 blx, a21 a31, and
a 13 a23 a33 b23. These eight elements are constrained. A row a (hi) is f-critical in F
iff m > 1 (n > 1), ai (bi) is unconstrained in F, and az (bi) is constrained in F for all z

INTERSECTION OF TWO RELATIONS 397

Ol

02

bl

2 3

0

b2
FIG. 2. A good forest of equality constraints.

with 1 _<- z _-< k and z # j. For example, al, a2, and a3 are 2-critical in the forest of Fig. 2,
while bl and bE are not/’-critical for any j. Row ai (hi) is good in F if either m 1 (n 1)
or there exists a j, 1 <-_j <- k, such that aij (bij) is unconstrained in F. (If m 1 (n 1), the
single row of A (B) can be fully constrained and still be good.) F is good iff all its rows
are good. The size of F is the number of edges in F. The forest in Fig. 2 is of size 5.

If the only comparisons that an algorithm "knows" are equalities specified by a
good forest, then the algorithm cannot yet make a decision as to whether or not
D(A, B)- Q. This fact is formalized as follows.

FACT 1. Let m / n > 2 and let F be a good forest.
(i) There is an admissible (A, B) such that (A, B) satisfies F and D(A, B)= (.

(ii) There is an admissible (A, B) such that (A, B) satisfies F and D(A, B)
Proof. (i) Say that n > 1, the case m > 1 being analogous. Since each row bi

contains an unconstrained element bi, the value of that element can be chosen unequal
to the values of all other elements of A and B in the jth column.

(ii) Choose A and B such that al bl and use the unconstrained elements in rows
i> 1 of A and B to ensure that A and B are admissible.

The comparison tree T solves the weak (m, n, k)-intersection problem under
constraintF if, for each admissible (A, B) which satisfies F, the leaf h T, A, B) is labeled
"empty" iff D(A, B)= .

FACT 2. Let F be a good forest and let s be the size of F. Let T be a comparison
tree which solves the weak (m, n, k)-intersection problem under constraint F. Then

(12) C=(T) -> (m + n 1)(k- 1)+ 1-s.

Note that Theorem 3.3(b) follows immediately by taking F empty and s 0.
Proof ofFact 2. The proof is by induction on m + n.
Basis. m n l.
In this case, (12) reduces to C=(T) -> k s. From F it is known that al and bl are

equal in s coordinates. Let A= denote the leaf of T reached by following equality-
branches starting at the root. Each comparison on the path to A_- is of the form alj: bi
for some . If fewer than k-s such comparisons are performed, it is impossible to tell
whether or not al b.

Induction. m + n > 2.

398 L. J. STOCKMEYER AND C. K. WONG

First, we describe a procedure (an "adversary") which follows a path in the tree T.
A1. Set u0 the root of T, F0 F, and d 0.
A2. Let xii:yti be the comparison at node Ud.
A3. If either xi or Yt is]-critical in Fa, then halt.
A4. Let Fa/I be the forest Fd with the edge {xii, Y/t} inserted,

let ’a+l be the =-successor of
set dd+l,
and return to step A2.

Note that at the start of each execution of step A2, Fa is a good forest; therefore, by
Fact 1, Ud is not a leaf. Since T is finite, this procedure eventually halts in step A3 while
examining some nonleaf node ua. For the sake of argument, say that m > 1, that a0" Yi is
the comparison at node ua, and that ai is j-critical. In order to invoke the induction
hypothesis, we "eliminate" row ai from the problem. This is done as follows.

let u be the >-successor of Pd (that is, at node u it is known that agi > Y,i). Let Td be
the comparison subtree rooted at u. For each z with 1 <-z =< k and z j, perform the
following modifications to Td and Fd. Let F’z denote the largest connected component
of Fd which contains a, and let N be the set of nodes (i.e., elements) in F’z other than
az; by the definition of j-critical, Nz contains at least one node. In Fd, remove the edges
of F’ and insert the edges of some spanning tree of N note that this decreases the size
of Fd by exactly one. Let ce denote some member of Nz. In Td, replace ag by ce wherever
az is mentioned in a comparison. After this has been done for all z j, further modify
Td by fixing the outcomes of all comparisons that mention a so that aii is the larger. Let
T’ and F’ denote Td and Fd, respectively, after these modifications. For example, if the
initial forest F is the one shown in Fig. 2 and if T first compares b12"ba and, upon
discovering that b12 b2, next compares al2" a, then the adversary procedure halts
with d 1 since al is 2-critical. After a has been eliminated, F’ might be as shown in
Fig. 3. Furthermore, all is replaced by bll in Td, a3 could be replaced by a23, and a2 is
declared the larger in all comparisons which involve a2.

2 3

(:l

2 I "

Cl 3

b

FIG. 3. The forest of Fig. 2 after comparisons b12 b22 and a 12 a22, and subsequent elimination of row al.

Now by construction, T’ solves the weak (m 1, n, k)-intersection problem under
constraint F’. Note that the size of F’ is s + d k + 1 since d edges are added to F during
the adversary procedure and k 1 edges are deleted during the elimination procedure.

INTERSECTION OF TWO RELATIONS 399

By induction,

But

SO

as was to be shown.

C{=}(T’)>-(m + n -2)(k- 1)+ 1-(s + d-k + 1).

C{=}(T) >= C{=}(T’) + d,

C=(T)>=(m + n 1)(k- 1)+ 1 -s

(c) Fact 2 is true if (12) is replaced by

(13) C(T)>-_(m+n-1)k-s.

The only difference in the proof is that now

C(T)>-C(T’)+d+I;

that is, the {<, >}-comparison performed in going from Ud to u is also counted. Now
part (c) of Theorem 3.3 is immediate from part (a) and Fact 2 with (13) replacing
(12). El

One of the gaps between Theorems 3.2 and 3.3 can be closed by considering just
the weak problem:

WI=i(m, n, k) (m + n 1)(k 1)+ 1.

The algorithm described in the proof of Theorem 3.2 shows that

WIl=}(m, n, k) <- m + n 1 + Y. WIl=}(mv, nv, k 1)
p=l

(cf. (llb)), and, together with WI=i(m, n, 1)= 1, this shows that WI=(m, n, k) <-

(m+n-1)(k-1)+l.
More bothersome than the O(m +n) gaps in parts (a) and (b), though, is the

factor-of-two gap when counting all comparisons in part (c). We have made no
substantial progress in closing this gap. However, by considering a restricted class of
comparison trees, it is possible to close the gap by improving the lower bound.
Informally, a comparison tree belongs to the restricted class of column-sequential trees
if the columns are inspected in increasing order 1, 2,..., k, and after column k has
been inspected the answer is given. For a node v of a comparison tree which compares
Xij: Yl], define col (u)=]. A comparison tree T is column-sequential iff, for all nodes v

and u’, if u is an ancestor of u’ in the tree then col (u)<_-col (u’). The comparison tree
implicit in the algorithm of Theorem 3,2 is not column-sequential due to the recursive
description of the algorithm. However, it is a simple matter to rearrange the
comparisons so that the resulting tree is column-sequential and the upper bounds of
Theorem 3.2 still hold. The following shows that, among the class of column-sequential
comparison trees, this tree is optimal to within O(m + n).

THEOREM 3.4. Let m <-- n, and let T be a column-sequential comparison tree which
solves the weak (m, n, k)-intersection problem. Then

C(T)>-(m+n) logm+(m+n-1)(k-1)-2.9m.

Proof. The proof is by induction on k with Theorem 3.1(a) providing the basis
k 1. Say then that k > 1. Starting at the root of T, follow equality-branches until a

400 L. J. STOCKMEYER AND C. K. WONG

node , with col (,) : 1 is reached. If at least m + n 1 comparisons are performed on
the path from the root to ,, then the proof by induction is complete. On the other hand,
if fewer than m + n- 1 are performed, then it is easy to derive a contradiction by
showing that T can be led to give an incorrect answer. The key fact is that, since there
are m + n elements in the first column of A and B, the forest of equalities that is
"known" at , must be disconnected, and, therefore, there is an and such that ail and
btl belong to different components. Therefore, both ail= bt and a : b are possible.
Since the subtree rooted at , contains no comparison involving elements from the first
column, this confusion cannot be resolved in the subtree. The actual details of the
adversary that leads T to an incorrect answer are left to the reader. I"1

Theorem 3.4 isolates one of the difficulties in improving the known bounds on
l(m, n, k). Any substantial improvement in the upper bound can be attained only by a
comparison tree which is not column-sequential. One avenue for improving the lower
bound would be to combine the "information theoretic" argument used to prove
Theorem 3.1 (a) with the "adversary" argument used to prove Theorem 3.3(b) in such a
way that the combined lower bound is the sum (rather than the maximum) of the two
separate lower bounds. The fact that comparison trees are, in general, not column-
sequential has been one stumbling block in our attempts to combine the two arguments
and has motivated the inclusion of Theorem 3.4.

3.4. Equal-unequal comparisons. In the case that the elements of a relation are
drawn from a set with no natural total order, the only information obtained from a
comparison is whether the values of the two elements being compared are equal or
unequal. In this situation, each nonleaf node of a comparison tree has only two branches
labeled and :; we refer to such trees as equal-unequal comparison trees. We adopt
here the same definitions and notation as in 2.1 but we affix an asterisk to these
notations to indicate the restriction to equal-unequal trees. For example I*(m, n, k) is
the minimum of C(T) taken over all equal-unequal comparison trees that solve the
(m, n, k)- intersection problem. For simplicity we here consider only the total number
of comparisons, although by counting -comparisons and -comparisons separately, a
development parallel to that of 3.2 and 3.3 can be carried out.

Again, the case k 1 has been studied previously.
THEOREM 3.5 (Reingold 11]).

WI*(m, n, 1)= I*(m, n, 1)= mn.

Proof. For the upper bound I*(m, n, 1) <_- mn, perform all comparisons ail bil for
l<-_i<-m and l<-]<=n. To prove the lower bound WI*(m,n, 1)>-mn, let T be an
equal-unequal comparison tree which solves the weak (m, n, 1)-intersection problem.
Let h be the leaf of T reached by following - -branches starting at the root. Of course,
h is labeled "empty". If fewer than mn comparisons are performed on the path to h ,
there must be an and] such that ail is not compared with bix on this path. Therefore,
there is an input (A, B) with ail bil and h (T, A, B) h.

THEOREM 3.6. (a) I*(m,n,k)<-mn+(m+n-1)(k-1).
(b) WI*(m,n,k)>-max(mn, (m+n-1)k).
Proof. (a) The proof is by induction on k. Theorem 3.5 gives the basis k 1. For

k > 1, as in Theorem 3.2(a), the strategy is to identify rows of A and B that agree in their
first coordinate. For] 1, , n, perform a linear search for bil in the first column {al}
of A. When (and if) bil is found equal to some az 1, see if az is flagged. If so, increment]
and continue to the next bil. If azl is not flagged, then flag az and continue the search
through {ail} to identify other elements of {al} that are equal to azx. The search need

INTERSECTION OF TWO RELATIONS 401

continue only if this is the first time that az is found equal to some bjl; this is the purpose
of the flag.

Say that there are distinct values in the sequence {ail} and that these values occur
withmultiplicities m1,""", mr. For 1 <-p-<_ t, say that no elements of {bjl} are found
equal, to an element of multiplicity mo in {ail}. Among each group of no, the searching
cost for one of these elements (the one found equal to an unflagged azl) is at most m
comparisons; the searching cost for the remaining no 1 is at most m -mo + 1. Let no be
the number of elements in {bil} that are not found in {ail}; the searching cost for each of
these is m. Therefore, the total searching cost is at most

(no-1)(m-mp+l)+tm+nom<=mn mono+(m+n-1).
p=l p=l

This gives the inequality

I*(m,n,k)<-_mn mono+(m+n-l)+
, I*(mo, no, k-1)

p=l p=l

and the proof by induction follows easily.
(b) Theorem 3.5 implies that

WI*(m, n, k) >- ran,

and Theorem 3.3(c) implies that

WI*(m, n, k) >= (m + n 1)k.

As before, the comparison tree implicit in the proof of part (a) can be made
column-sequential while preserving the upper bound of Theorem 3.6(a). The following
shows that this upper bound is optimal among the class of column-sequential equal-
unequal comparison trees.

THEOREM 3.7. Let Tbe a column-sequential equal-unequal comparison tree which
solves the weak (m, n, k)-intersection problem. Then

C(T)>-mn +(m + n 1)(k- 1).

The proof of this theorem is virtually identical to that of Theorem 3.4 and is omitted.

4. Finding duplicate rows in a relation. In the (m, k)-duplication problem, the
input is a single m x k relation A which might contain duplicate rows, and the objective
is to identify all duplications, or, more precisely, to find disjoint sets of integers
P1, , Pz such that tA iPi {1," , m}, and if e Po and/" Pq then a a. if and only if
p q. As described in the Introduction, this problem is related to the projection
operation in the relational algebra. In the weak (m, k)-duplication problem the objec-
tive is only to determine whether or not the rows of A are all distinct. Given a
comparison tree T (with three-branch comparisons <, =, >) which solves the (m, k)-
duplication problem, let C(T, A) be the number of comparisons performed by T on
input A. Define

P(m, k) min max C(T, A).
T A

WP(m, k) is defined similarly except that the minimum is over trees which solve the
weak problem.

It is implicit in [9, Thm. 3.4] that

P(m, 1)= WP(m, 1)= S(m)

402 L. J. STOCKMEYER AND C. K. WONG

where, in the notation of Knuth [8], $(rn) is the number of comparisons required in the
worst case to sort a sequence of m elements. Clearly P(m, 1)<=S(rn). To argue that
WP(rn, 1)=> S(m), consider the case that the m input elements have distinct values. In
the process of concluding that the rn inputs are indeed distinct, the comparison tree
must discover the entire total order of the elements; for if the order of two elements is
unknown, we can make them equal and force the tree into an error. From known upper
and lower bounds on S(m), we have

(14) m log m 1.45m _-< WP(m, 1) P(m, 1) _-< rn log m.

For general k, techniques very similar to those of 3 can be applied.
THEOREM 4.1. (a) P(m, k)<-_m log m +(m- 1)(k- 1).
(b) WP(m, k)_->max (rn log m 1.45m, (m -.1)k).
Proof. (a) The (m, k)- duplication problem can be solved by performing stage 1

(sort) and stage 3 (recurse) of the algorithm described in the proof of Theorem 3.2(a).
Letting (ml," , m,) be the multiplicity vector of the first column of A, this gives

P(m, k)<-F(rn) Y’. F(mt,)+(m 1)+ P(m,, k 1)
p=l p=l

and the upper bound (a) follows easily.
(b) The method used in the proof of Theorem 3.3(b) and (c) can be adapted very

easily to show that

(15) WP(rn, k) >-_ (m 1)k.

Together with (14), this proves the desired lower bound, l-I
Note that the algorithm of part (a) discovers the entire lexicographic order of the m

rows. The lower bound of part (b) is a lower bound for this problem as well. That
log (m !) is a lower bound follows from the standard "information theoretic" argument;
the lower bound (m 1)k is, again, a straightforward adaptation of the argument used
to prove Theorem 3.3(b) and (c).

Turning now to equal-unequal comparison trees, we again affix an asterisk to the
notation P(m, k) and WP(m, k) to indicate the restriction to equal-unequal trees. First,
an argument very similar to that of Theorem 3.5 shows that

(16) WP*(m, 1)= P*(m, 1)=
2

THEOREM 4.2 (a) P*(m,k) < +(m-1)(k-1)
2

(b) WP*(m, k)>-max ((r), (m-1)k).
Pro@ (a) The strategy is the same as before. It is sufficient to note that the first

stage of the algorithm, identifying rows of A that agree in their first coordinate, can be
realized by an equal-unequal comparison tree using at most

(m)_ (no)+(rn_l)2 19=1

comparisons.
(b) This lower bound is immediate from (15) and (16).

INTERSECTION OF TWO RELATIONS 403

5. Related questions. One naturally motivated variation of the intersection and
duplication problems is to require that the values of elements in the flh column
(1 =< j -< k) of a relation be drawn from a finite set Sj of known cardinality cj. Of course,
all of the previous upper bounds apply without modification when this restriction to
finite sets is imposed. Unfortunately, all of the arguments which establish lower bounds
(such as Theorems 3.1(a), 3.3(b), and 3.4) use the liberty of assigning an unlimited
number of distinct values to elements; therefore, these arguments are no longer valid
under the restriction. For the (m, k)-duplication problem, the upper bound (with
three-branch comparisons) can be improved to

m log (rain (m, C)) + (m 1)k

where C ClC2’’’Ck. Also, the upper bound for the (m, n, k)-intersection problem
can be improved to

(m + n). log (rain (rn, n, C))+ (rn + n 1)k

if duplicate rows are allowed in either of the two relations. However, if relations must be
admissible, there is actually no improvement because then m <= C and n <-C. It is an
open question whether the restriction to finite Si can be exploited to improve the known
upper bound for the intersection problem with admissible inputs. On the other hand, it
is possible that new lower bounding techniques can be found to show that no improve-
ment is possible.

Another question which we have not pursued is the average number of
comparisons required to solve the intersection and duplication problems. One possible
definition of the average number of comparisons performed by a comparison treb is to
assume that all orderings of elements are equally likely, where "ordering" is general-
ized to allow equalities between elements. Another formulation, suggested by the
restriction to finite Si, would define a "random" relation to be one in which each
element in the flh column (1-<_j-<k) is chosen independently from the uniform
distribution on Si. For either of these formulations, the restriction to admissible
relations might have to be abandoned for the sake of mathematical tractability.

Acknowledgment. We thank Chee K: Yap for several helpful conversations.

REFERENCES

M. BLUM, R. W. FLOYD, V. R. PRATT, R. L. RIVEST, AND R. E. TARJAN, Time bounds for selection,
J. Comput. System. Sci., 7 (1972), pp. 448-461.

[2] E. F. CODD, A relational model of data for large shared data banks, Comm. ACM, 13 (1970), pp.
377-387.

[3] E.F. CODD, Relational completeness ofdata base sublanguages, Courant Computer Science Symposium
6, Data Base Systems, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, 1972, pp. 65-98.

[4] L. R. FORD AND S. M. JOHNSON, A tournament problem, Amer. Math. Monthly, 66 (1959), pp.
387-389.

[5] A. HADIAN AND M. SOBEL, Selecting the t-th largest using binary errorless comparisons, Tech. Report
121, Department of Statistics, University of Minnesota, Minneapolis, 1969.

[6] F. K. HWANG AND S. LIN, A simple algorithm for merging two disjoint linearly ordered sets, this Journal,
(1972), pp. 31-39.

[7] L. HYAFIL, Bounds for selection, this Journal, 5 (1976), pp. 109-114.
[8] D. E. KNUTH, The Art of Computer Programming, Vol 3-Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[9] I. MUNRO AND P. M. SPIRA, Sorting and searching in multisets, this Journal, 5 (1976), pp. 1-8.

[10] V. R. PRATT AND F. F. YAO, On lower bounds for computing the i-th largest element, 14th IEEE
Symposium on Switching and Automata Theory, 1973, pp. 70-81.

404 L.J. STOCKMEYER AND C. K. WONG

[11] E. M. REINGOLD, On the optimality of some set algorithms, J. Assoc. Comput. Mach., 19 (1972), pp.
649-659.

[12] S. J. P. TODD, The Peterlee relational test vehiclea system overview, IBM Systems Journal, 15 (1976),
pp. 285-308.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0011501.00/0

SCHEDULING INTERVAL-ORDERED TASKS*

C. H. PAPADIMITRIOU? AND M. YANNAKAKIS:t:

Abstract. We show that unit execution time jobs subject to a precedence constraint whose complement
is chordal can be scheduled in linear time on m processors. Generalizations to arbitrary execution times are

NP-complete.

Key words, scheduling, chordal graphs, interval orders, NP-complete problems

1. Introduction. The problem of scheduling unit execution time tasks on a
number of processors under arbitrary precedence constraints has been studied exten-
sively in the past. The problem is known to be NP-complete when the number of
processors is unbounded 10]. On the other hand, efficient algorithms are known for the
2-processor case [3], [2] even if release-times and deadlines are added to the problem
[4]. The corresponding problems for fixed (and greater than two) numbers of processors
are open. There are also results studying especially structured precedence constraints.
For example, if the precedence constraints form a tree--or even forest or reverse
forest--an efficient algorithm is known that works for any number of processors [8], 1].
In this note we give an efficient algorithm for a rich class of partial orders other than
trees: those whose incomparability graphs are chordal. Definitions follow.

The incomparability graph of a partial order P (V, A) is a graph G (V, E),
where [v,u]E iff (v, u), (u v) c! A. The complements of incomparability graphs
obviously must have a transitive orientation, that is, an assignment of direction to their
edges such that the resulting digraph is a partial order.
A chordal graph is one in which any circuit [Vl, , Vk], k _-> 4, possesses a chord, that

is, an edge [Vi, Vii with j + 1 (mod k). An interval graph G (V, E) is one whose
nodes are closed intervals in the real line, and Iv, u] E iff v f’) u # . It is well-known
that interval graphs are chordal [7]. Finally, an interval order is a partial order
P=(V,A) where V is again a set of intervals in the real line, and (u,v)6A iff
x u, yv=>x <y.

Chordal graphs are known to possess many positive algorithmic properties and
efficient algorithms exist for finding the maximum clique, independent set, minimum
coloring, and clique cover of a chordal graph [6]. Here we shall describe an algorithm
for scheduling tasks on any number of processors, subject to precedence constraints
whose incomparability graphs are chordal; we will show (Lemma 3) that this class of
partial orders contain exactly the interval orders. This class is incomparable to trees:
Figs. l a and lb contain counterexamples to both inclusions (partial orders are, as
usual, represented with transitive edges omitted).

It is not hard to see that the following is another interpretation of the problem
described above: given a set of n unit-time tasks, each with a release time and deadline,
find a feasible schedule--one in which a task never starts before its release time or
finishes after its deadline--minimizing the total number of steps during which at least
one processor is operating. An easy modification of our algorithm solves this problem in
O(n2) time.

* Received by the editors September 14, 1978. This work was supported by NSF Grant MCS 77-1193.
5" Aiken Computation Laboratory, Harvard University, Harvard, Massachusetts. Now at Department of

Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720.
Department of Electrical Engineering and Computer Science, Princeton University, Princeton, New

Jersey. Now at Bell Laboratories, Murray Hill, New Jersey 07974.

405

406 C. H. PAPADIMITRIOU AND M. YANNAKAKIS

FIG. la FIG. lb

2. The Algorithm. We start by some graph-theoretic lemmas. The first para-
phrases a lemma of [7]"

LEMMA 1. An incomparability graph is chordal iff all circuits of length 4 have a
chord.

Proof. The only if direction is obvious from the definition of chordal graphs. For the
if direction, consider an incomparability graph G in which all circuits of length 4 have
chords, and yet G has a chordless circuit c Ivy, , Vk], k > 4. Consider the subgraph
G of G induced by c. G has by hypothesis a transitive orientation, since it is the
subgraph of the complement of an incomparability graph. This orientation must assign
to both edges Ivy, vii, Ivy, v./a] either the direction towards v, or the direction leaving v
because, otherwise, one of the arcs (vi, Vi/l) would be added by transitivity, contrary to
our assumption that [v, V/+I] G, and hence [vi,/.)/+1] G. Hence, for all vertices vg of
the circuit either all edges {Ivy, vii" j # i, + 1 mod k} are directed to enter vi (in which
case v is said to be an in-vertex), or to leave vg (v is an out-vertex). Now, this means that
G is bipartite, since there are only edges joining in-vertices with out-vertices. But this is
impossible when k -> 5, since for k 5G is an odd circuit by itself, and for k _-> 6 G
always contains the triangle Iv1, v3, Vk-1]. [

For a partial order (V,A) let A(v)={u" (v, u)A}.
LEMMA 2. If the incomparability graph of (V, A) is chordal then for all v, u V,

eitherA(v)A(u) orA(u)_A(v).
Proof. Consider any two nodes v, u V. If either of A(u) or A(v) is empty, the

lemma holds. Hence we can assume that (u, u’), (v, v’)A for v’, u’ V (Fig. 2a). If no
other arc involving nodes in {u, u’, v, v’} is in A, we have in the complement of (V, A) a
4-circuit Iv, u, v’, u’] (Fig. 2b), a contradiction by Lemma 1. So, at least one of the
remaining 8 arcsexcluding (v’, v) and (u’, u) since (V, A) is acyclicmust be in A. If

uv v

FIG. 2a FIG. 2b.

INTERVAL-ORDERED TASKS 407

any of (v, u), (v’, u’), (v’, u) A, then the arc (v, u’) is in A by transitivity; similarly, if
any of (u, v), (u’, v’), (u’, v) A then so is (u, v’). Hence either (u, v’) A, or (v, u’) A.
Since this is true for arbitrary u’ A(u), v’ A(v), we have that either A(u)_ A(v) or
A(v)_A(u).]

LEMMA 3. A partial order is an interval order iff its incomparability graph is chordal.
Proof. An interval order is the complement of a interval graph, and hence certainly

of a chordal graph.
For the other direction, let (V, A) be a partial order with chordal complement.

We shall construct a set of intervals on the real line (one for each node in V) whose
interval order is (V, A). An interval v in V will be represented by its left and right
end, L(v) and R(v), respectively. We examine elements of V in order of decreasing
IA(v)l. For each veV we let L(v)=max{R(u):(u,v)eA}+l, and R(v)=
max {R(u):A(v)A(u)}+2; by convention, max =0. An illustration appears in
Fig. 3. To complete the proof, we have to show that R(u)<.L(v) iff (u, v)eA. If
(u, v)eA, then certainly R(u)<L(v)=max{R(w):(w, v)eA}+ 1. Conversely, if

2 5 2 5

4

4

3 6 3 6

A(v)

{4,5,6}

{5, 6}

16}

16}

(c)

4

(d)

FIG. 3a-d

408 C. H. PAPADIMITRIOU AND M. YANNAKAKIS

R (u) < L(v) then R (u) _-< max {R (w) (w, v) A} R (w). Since R (u) _-< R (w), it follows
that it is not the case that A(u) A(w); by Lemma 2 this means that A(u)_ A(w).
Hence (w, v) A implies (u, v) 6 A.

Our scheduling algorithm consists of the following list-scheduling [1] scheme:
1. Sort the tasks in V in nonincreasing degrees in (V, A)-equivalently, increasing

right endpoints in its interval model.
2. Schedule the tasks by always scheduling next the first (in the sorted order)

available task.
THEOREM 1. The above algorithm correctly solves the unit execution time scheduling

problem for interval orders (V,A) in O(]VI+IAI) time.

Proof. The degrees of elements of V can be computed in O(IAI) time, and sorting
can be done in O([V[) time by bucket sort. Implementing the list-scheduling in step 2
can be done in O(I VI) time.

To prove correctness, assume that for some partial order (V, A) our algorithm is
suboptimal, with V being as small as possible. Let $(i) be the set of jobs scheduled at
time by our algorithm, and S’(i) those executed at time by the optimal schedule. By
the minimality of V, S(1)S’(1)otherwise the tasks V-S(1) would constitute a
smaller counterexample to our algorithm. So, let v S’(1)-S(1). v is maximal in
(V, A), so it could be scheduled at time 1 by our algorithm. So, IS(l)[m, and hence
there is a job v’ S(1) S’(1). The schedule S" constructed by swapping v and v’ in S’ is
also feasible (since A(v ’) A (v)) and is also optimal. Repeating this IS’(1 S 1)[times,
we end up with an optimal schedule S(k with s(k(1) S(1), and this is a contradiction to
the minimality of (V, A). [3

3. Discussion. We shall finally consider the question of whether more general
problems can be solved by similar techniques in polynomial time. One direction of
generalization would be to consider partial orders whose complements are graphs less
restricted than chordal. It is not clear whether there are such "natural" classes of
precedence constraints. Another possible question is, what happens if execution times
different from one are allowed. Here, a polynomial algorithm becomes unlikely, since
for any fixed number of processors the scheduling problem without precedence
constraints becomes essentially Karp’s partition problem [9]. Notice that the empty
order is an interval order--to put it another way, the complete graph is chordal.
However, what still remains a possibility is the existence of a pseudopolynomial
algorithm for the problem with arbitrary execution times; an algorithm, that is, which
runs in time polynomial in the number of tasks and the largest execution time. We show
below that the problem of scheduling tasks with arbitrary execution times is strongly
NP-complete--i.e., NP-complete even if the size of execution times is restricted to be at
most polynomial of the number of tasks, see also [5]. This suggests that the existence of
pseudopolynomial algorithm is extremely unlikely, exactly as NP-completeness makes
the existence of polynomial algorithms improbable.

THEOREM 2. Scheduling interval-ordered tasks on 2 processors is strongly NP-
complete.

Proof. We shall reduce the three-way matching with integers (3MI) problem to it.
The 3MI problem is the following: Given 3n integers {al, a2,’’’, an, b1,"" b2n}
summing to nB can the b’s be partitioned into n pairs {bil, bjl},..., {bin, bjn}, such that
ak q-bi + bi B? It is known to be strongly NP-complete [5].

Given an instance of 3MI we shall construct an interval order (V, A) and integer
execution times t(v) for each v V and an integer T such that the tasks in V can be
scheduled in 2 processors within T iff the original 3MI instance has a solution. The

INTERVAL-ORDERED TASKS 409

construction is illustrated in Fig. 4, where elements of V are represented by intervals
with the corresponding execution times written near them. The straightforward details
of the proof are omitted.

at a2 a3 an
B B B B

be,,

T=n .B+n-1

FIG. 4

Acknowledgment. We wish to thank Paris Kanellakis for helpful discussions.

REFERENCES

[1] E. G. COFFMAN, JR., ED., Computer and Jobshop Scheduling Theory, Wiley, New York, 1978.
[2] E. G. COFFMAN, JR. AND R. L. GRAHAM, Optimal scheduling for two-processor systems, Acta

Informatica, 1, 3, pp. 200-213, 1973.
[3] M. Fuji, KASAMI, AND K. NINOMIYA, Optimal sequencing on two equivalent processors, SIAM J.

Appl. Math, 17, 3, pp. 784-789, 1969. Erratum, 20, 1, p. 141, 1971.
[4] M. R. GAREY AND D. S. JOHNSON, Two-processor scheduling with start-times and deadlines, Bell Labs

Memorandum, 1975.
[5] Computers & Intractability: A Guide to the Theory of NP-Completeness, Freeman, San

Francisco, 1978.
[6] F. GAVRIL, Algorithms for minimum coloring, maximum clique, minimum covering by cliques and

maximum independent set of a chordal graph, this Journal, 1, pp. 180-187, 1972.
[7] P.C. GILMORE AND A. J. HOFFMAN, A characterization ofcomparability graphs and ofinterval graphs,

Canad. J. Math., 16, pp. 539-548, 1964.
[8] T. C. Hu, Parallel sequencing and assembly line problems, Operations Res., 9, 6, pp. 841-848,

1961.
[9] R. M. KARP, Reducibilities among combinationatorial problems, in Complexity of Computer Compu-

tations, R. E. Miller & J. W. Thatcher, eds., Plenum, New York, 1972.
10] J. D. ULLMAN, Polynomial complete scheduling problems, Operating Systems Review, 7, 4, pp. 96-101,

1973.

SIAM J. COMPUT.
Vol. 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0012501.00/0

THE COMPLEXITY OF ENUMERATION AND
RELIABILITY PROBLEMS*

LESLIE G. VALIANT

Abstract. The class of #P-complete problems is a class of computationally eqivalent counting problems
(defined by the author in a previous paper) that are at least as difficult as the NP-complete problems. Here we
show, for a large number of natural counting problems for which there was no previous indication of
intractability, that they belong to this class. The technique used is that of polynomial time reduction with
oracles via translations that are of algebraic or arithmetic nature.

Key words, counting, enumeration, reliability, computational complexity, NP-completeness,
permanent, matchings

1. Introduction. It is an empirical fact that for numerous combinatorial problems
the detection of the existence of a solution is easy, yet no computationally efficient
method is known for counting their number. The purpose of this paper is to show that
for a variety of well-known problems this phenomenon can be explained. We define the
class of #P-complete functions as in [20]. Typical members of this class are the
problems of counting the number of solutions of NP-complete problems. We show that
for many natural structures that are apparently unrelated to any NP-complete struc-
ture, the problem of counting them is nevertheless #P-complete. The notion of
reducibility used is that of polynomial time transduction with oracles. The reductions
themselves are characterized by being of an algebraic or arithmetic, rather than
combinatorial nature.

The more significant problems that are shown to be #P-complete are" counting
perfect matchings in bipartite graphs [20]; counting trees in a directed graph; counting
satisfying assignments to monotone Boolean formulae in 2-conjunctive normal form;
counting maximal cliques (i.e. nonextendable complete subgraphs); and evaluating the
probability that two given nodes in a probabilistic network are connected.

Many apparently difficult counting problems are probably not candidates for being
#P-complete. Among these are questions of the form: how many graphs of size n are
there that have property X? Since for each n there is just one input, these problems
correspond to NP computations over a single-letter input alphabet. We call this class
#P1 and exhibit a natural problem that is complete in it. A variant of the problem has
the additional curious property that while it is provably as complex as any #P1-
complete problem, it is not necessarily complete itself.

The completeness results have a direct bearing on the classical study of enumera-
tions. Note, however, that the notion of "effectively counting" that we use here is that of
polynomial time computability. Since discrete probabilistic problems can usually be
reformulated as counting problems, our techniques can also be applied to reliability
problems, of which connectedness is a typical example. A third field of application is to
"branch and bound" or search algorithms. Some simple examples of these essentially
enumerate some easily detectable structure (e.g. maximal cliques). Our results suggest
potential techniques for proving for such algorithms that the problem of predicting from
an input the runtime of the algorithm on that input is #P-complete.

2. Preliminaries. In the main we use the definitions introduced in [20]. A more
general schema of definitions and some discussion of them can be found there. For
background on NP-completeness see [1], [5], [10].

* Received by the editors November 18, 1977.

" Department of Computer Science, University of Edinburgh, Edinburgh, Scotland.

410

ENUMERATION AND RELIABILITY PROBLEMS 411

DEFINITION. A counting Turing machine is a standard nondeterministic TM with
an auxiliary output device that (magically) prints in binary notation on a special tape the
number of accepting computations induced by the input. It has (worst-case) time-
complexity f(n) if the longest accepting computation induced by the set of all inputs of
size n takes f(n) steps (when the TM is regarded as a standard nondeterministic
machine with no auxiliary device).

DEFINITION. #P is the class of functions that can be computed by counting TMs of
polynomial time complexity. #P1 is defined similarly for TMs with a unary input
alphabet.

We denote the class of functions computed by deterministic polynomial time TMs
by FP, and the class of predicates by P. For convenience we shall often identify a class of
machines with the class of functions it computes. It will be assumed that objects are
represented in some standard economical manner as words over an alphabet Z (say
{0, 1}). Ix[will denote the size of x if x is a set, and its leng[h if x is a string. A function

f: Y_,* Y,* (or a relation R
_
Z* x Z*) is polynomial bounded iff there is a polynomial p

such that for all x, [f(x)]<p(]x]) (or such that R(x, y) =:),ly[<p(lxl)).
The notion of reduction used is one by oracles, in a similar sense to Cook [5] except

that the oracles cannot only be predicates but also arbitrary polynomial bounded
functions. An oracle TM is a TM with a query tape, an answer tape, and some working
tapes. To consult the oracle the TM prints a word on the query tape, it goes into a special
query state and returns an answer in unit time on the answer tape, and it enters a special
answer state. An oracle TM is said to be in P (or FP, or NP, or #P, etc.) iff for all
polynomial bounded oracles it behaves like a machine in P (or FP, or NP or #P, etc.).

If a is a class of oracle-TMs and x an appropriate function for it (i.e. polynomial
bounded in the present context) then we denote the class of functions that can be
computed by oracle-TMs from a with oracles for x by a x. The class of functions that can
be computed by just a single call of the oracle for any input is denoted by a ’. A problem
y is #P-hard iff #P

_
FPy. It is #P-complete iff #P FP and y #P. In expressing

reductions between two problems it is useful to abbreviate x FP by x <- y and x FP
by x -<! y. Notice that both binary relations are transitive.

A relation R is P-enumerable iff there is a polynomial p such that for all x the set
{ylg(x, y)} can be enumerated in time [{ylR(x, y)}[" p(lx[).

3. Lemmas. Let SAT be the problem of counting the number of satisfying
assignments of a Boolean formula F in conjunctive normal form, and let 3-SAT be the
same problem for formulae with at most three disjuncts in each conjunct. Let TM-
COMP be the problem of counting the number of accepting computations given an
arbitrary polynomial time nondeterministic TM and an input for it. HAMILTONIAN
CIRCUITS is the problem of counting the number of such circuits in a graph. (N.B.
Here as elsewhere in the paper, graphs can be interpreted either as being directed or as
being undirected, unless otherwise indicated.)

FACT 1. TM-COMP_-<!SAT.

Proof. The transformation of Cook as given in [5] or [1] establishes this.
FACT 2. SAT<=!3SAT.
Proof. Suppose F has a clause with => 4 literals. If we replace in the clause any two

of these literals (e.g. xi,) by a new variable (say y) and conjoin F with the CNF
formula for (x. v)= y (which has clearly at most 3 literals per clause) then the new
formula will have the same number of solutions as F. The result follows by
induction.

FACT. 3. SAT-<!HAMILTONIAN CIRCUITS.

412 LESLIE G. VALIANT

Proof. A direct reduction that preserves the number of solutions is given in 19] for
both the directed and undirected cases. 71

FACT 4. Given an n x n integer matrix with each entry bounded in magnitude by
the determinant and inverse can be computed in time polynomial in n and m.

Proof. Perform Gaussian elimination with arithmetic modulo 2, the smallest
power of 2 greater than 2 n !. As pivot always choose a number that has the fewest
factors of 2 in its prime decomposition. This ensures that eliminating with respect to that
row will multiply the matrix by various numbers coprime with 2. When an upper
diagonal matrix is achieved the value of the determinant can be computed by dividing
the products of the diagonal elements by the product of the multipliers.

The inverse can be computed as a rational number by the determinental rule for
example. El

In the remaining two facts the size of a rational number will be the sum of the
lengths of its numerator and denominator (assumed coprime).

FACT 5. (i) Ifp(x) is an n-th degree polynomial and its value is known ateach ofthe
rational points xa, , x,+, all ofsize at most m, then the coefficients ofp can be deduced
in time polynomial in n, rn and the size of the largest value.

(ii) If the value of

p(x, y)= piixiy
i= /=1

is known for all pairs ofpoints x Xh, y y for 1 <-- h <- q + 1 and 1 <- k <- r + 1 (all points
being ofsize bounded by m) then the value ofeach pii can be deduced in time polynomial in

q, r, rn and the size of the largest value.
i-1Proof. (i) Let X be the (n + 1) x (n + 1) matrix with Xii xi Then X is Vander-

monde and has an inverse, which, by Fact 4, can be computed fast. But if p is the vector

of coefficients of p and p(x) the vector of values at the n + 1 points then p(x) Xp and
hence p X-p(x).

(ii) For each value Xh use (i) to compute the value of piix h for each/’. Then use (i)
again to deduce each P0. 71

FACT 6. Let {ai} and {bi.} be sets ofpositive integers bounded byA > 2. Ifthe value of
any one ofthe followingfunctions is known ata suitable point Xo, or (Xo, yo), then the value
ofeach ai, or each bq can be deduced in time polynomial in n, m and in the sizes ofXo, yo
and the value.

(i) aix
o

if xo >- A2 or 0<Xo-<A-2,

(ii) aixi(1-x)n-i if O<xo <_-A -2,
0

=A- A-3n(iii) Y’. biixi(1-x)-iyi(1-y)m-i ifxo and O<yo<
i=0 /=0

Proof. (i) If Xo -> A2 then for each j

j--1

J0--1 -2 A-4aixo <A(x (1 +A + +...))
i=0

< 3A xo-a/2.

Hence Xo > o aixo. It follows that an, an-,, ", ao can be computed in succession.

ENUMERATION AND RELIABILITY PROBLEMS 413

The alternative case follows similarly by examining the reciprocal of x0.
(ii) Let l/x0, so that >A2. Then

aixo =t- ai(t-1)n-i

/+1 /+1

< 3t A(t- 1)-/2.

Hence (t- 1)"-i > i+1 ai(t- 1)n-i and ao, al, an can be computed in succession
(iii) The substitution for Xo gives the value, E b,i(A2 1)n-iyi(1 y)"-i.

Applying the argument of (ii) to the outer summation gives bii(A2-1)"-i. Applying it
again gives the coefficients.

FACT 7. Suppose R(x, y) is a polynomial bounded relation and the sets R
{(x, y)lR (x, y)} and R {(X, Ce)I3 {0, 1 }* s.t. R (x, a/3)} are both polynomial time
recognizable. Then R is P-enumerable.

Proof. A call, Enumerate (x,), of the following recursive procedure clearly
suffices"

procedure Enumerate (x, a).
begin if R (x, a) then output a;

if Rl(x, a) then Enumerate (x, a0) and Enumerate (x, a 1);
end. i--!

4. Some #P-complete problems. Unless otherwise stated we shall denote a
graph, whether directed or undirected, by G =(V,E) where V =(Ul,’", u,) and
E (V V). O1--(Vl, El) is a subgraph of G if V1 V and E1

_
E. By F we shall

denote a Boolean formula in conjunctive normal form, with clauses Cl,’", Cr and
variables X {x 1, , xn}. F is monotone if no variable is negated. It is in k-form if each
conjunct has at most k disjuncts, x will denote an n-tuple from {0, 1}". F(x) denotes the
truth value of F when the ith component of x is substituted as the truth value of xi.

We shall first specify a list of counting problems (2-14). As can be verified easily
each one is in #P. Also, most of them are P-enumerable by virtue of Fact 7.

1. PERMANENT
Input: Integer matrix A.
Output" FIi--1 Ai,r(i) summed over all permutations r on {1,. ., n}.

2. PERFECT MATCHINGS
Input" Bipartite graph G with 2n nodes.
Output" Number of perfect matchings (i.e. sets of n edges such that no pair of edges

has a common node).
3. MONOTONE PRIME IMPLICANTS

Input: Monotone F in 2-form.
Output" [{Y

_
X[(/kxzX F) holds for Z Y but not for any Z Y}I.

4. MINIMAL VERTEX COVER
Input: G.
Output:l{V’ Vl"(u, v)cE
any A V’}].

5. MAXIMAL CLIQUES
Input: G
Output:
A V’}].

uA or v A" holds for A V’ but not for

(u, v) E" holds for A V’ but not for any

414 LESLIE G. VALIANT

6. IMPERFECT MATCHINGS
Input" Bipartite graph with 2n nodes.
Output" Number of matchings of any size.

7. MONOTONE 2-SAT
Input" F=ca JkC, 2Jk JkC, where Ci-=(Yil V Yi2) and yiiGX.
Output: I{xlF(x)true}l.

8. SAT’
Input: As for 7.
Output: I{(x, t)lt= (t,..., tn){1, 2}n; for 1 -<_i <-r, x makes

Yi, k true for k
9. SAT"

Input: As in 7.
Output" I{(x, t)[t= (t,..., t,)6 {{1}, {2}, {1, 2}}; for 1

x makes yi, true for each k
10. S-SET CONNECTEDNESS (directed and undirected)

Input" G;s6V; V’cV.
Output" Number of subgraphs of G in which for each u V’ there is a (directed)

path from s to u.
11. S-T CONNECTEDNESS (directed or undirected)

Input: G; s, V.
Output: Number of subgraphs of G in which there is a (directed) path from s to t.

12. $-T NODE CONNECTEDNESS (directed or undirected)
Input: G; s, 6 V.
Output" Number of subsets of V whose removal leaves a (directed) path from s to t.

13. DIRECTED TREES
Input" Directed graph G.
Output" Number of sets of edges that form a rooted tree, with each edge directed

away from the root.
14. S-T PATHS (i.e. SELF-AVOIDING WALKS) (directed or undirected)

Input: G; s, .V.
Output" Number of (directed) paths from s to that visit every node at most once.
We note that several of these problems have been widely studied. Because of the

close resemblance between the permanent and the determinant the apparent compu-
tational discrepancy has been observed with surprise for a long time [16]. Despite
considerable efforts no general translation from the former to the latter has been found
[17], [14]. In special cases, however, such transformations do exist and lead to fast
algorithms (G. Borchardt (1855), see [3]), [11], [13], [15], [18]. The maximal cliques
problem arises in connection with the numerous algorithms that have been proposed for
enumerating them [4], [9]. $-T paths are discussed in [2], [12]. Problems 10-12 are
classical examples of reliability problems concerning networks, in the special case that
the probability associated with each node or edge is a half. It will be clear, however, that
the completeness results follow also for other fixed values (and of course for arbitrary
values). Such problems are discussed in [6], [7]. The directed trees problem is to be
contrasted with the directed spanning tree problem which can be counted fast via
determinants, in analogy with Kirchhott’s matrix-tree theorem [8], [22].

THEOREM 1. Problems 2-14 above are all #P-complete.
Proof. The result follows by transitivity from the following reductions.
1. 3-SAT _-<!PERMANENT. Proved in [20].
2. PERMANENT<-PERFECT MATCHINGS. Proved in [20].
3. PERFECT MATCHINGS_-<!PRIME IMPLICANTS.Given G with V=

ENUMERATION AND RELIABILITY PROBLEMS 415

{u,..., U,, Vx," ", v}, E {(us, vi)ll i,/" <- n}, we construct G’= (V’, E’) with

V’={u ,,vll<=i<-n; l<=j<=k=2n},

and

E’= {(u /.))](u/, ;up) (E" 1 < j, q < k}i,

We represent each edge of G’ by a separate Boolean variable in which truth will
denote the absence of the edge. The simultaneous presence of any pair of edges can then
be prohibited by the disjunction of the corresponding variables. We can therefore write
a polynomial length monotone formula F in 2-form that has the effect of prohibiting the
presence of any pair of edges in G’ that either arise from distinct edges of G that share a
node or themselves share a node in G’. Thus to each matching of size in G we intend
there to correspond (k !)i allowed matchings in G’. Note that any prime implicant of F
has IE’[- ik literals for some i.

Now if F(x) is true then at least IE’I-nk of the IE’I variables must be true (i.e.
representing at most nk edges). If exactly IE’I- nk are true then their conjunction must
be a prime implicant, and corresponds to some perfect matching in G’. If Ii is the
number of prime implicants of F with exactly IE’[-ik literals and Mi the number of
maximal matchings with edges in G, then

//= M(k !)’.

Hence if Ii is known then, by Fact 6(i), since k!=(2n)!>M2i, the value of M,, the

number of perfect matchings in G can be deduced.
4. PRIME IMPLICANTS-<_! MINIMAL VERTEX COVER. Given F construct

a G=(V,E) with V={ul,..., u,} and E={(ui, uj)l(xi vxj) is a clause of F}. Any
vertex cover of G is an implicant of F, and any minimal vertex cover is a prime
implicant.

5. MINIMAL VERTEX COVER_-<! MAXIMAL CLIQUES. A minimal vertex
cover in G corresponds to a maximal clique in the complement of G, in analogy with
[10].

6. PERFECT MATCHINGS <- IMPERFECT MATCHINGS. Given G V, E)
as in 3 we construct for each k (1-<_ k =< n + 1) a graph Gk that consists of G with
additional nodes {uii[1 <- <- n; 1 <=] <= k} and additional edges {(uii, v,)ll -<_ <- n 1 <-]
k}. If Ar is the number of matchings in G of size exactly n-r then these will be
contained in exactly Ar" (k + 1) imperfect matchings obtainable by adding only new
edges. Hence the number of matchings in Gk is Y"r=oAr (k + 1) r. If this could be
evaluated for k 1,. , n + 1, then, by Fact 5, we could compute A0, the number of
perfect matchings.

7. IMPERFECT MATCHINGS_-<!MONOTONE 2-SAT. For G as defined in 3
above represent (the abence of) each edge by a separate variable. Let F be the formula
that prohibits the presence of any pair of edges incident to the same node.

8. MONOTONE 2-SAT <-!SAT’. Given F, denote F ^ F ^. ^ F, k times, by Fk.
If x satisfies exactly f clauses of F twice and the rest once, then it contributes 2t to SAT’
for F and 2kt for Fk. If At is the number of assignments that satisfy exactly f clauses of F
twice and the rest once, then the value of SAT’ for Fk is t=0 At(2k)" By choosing k
suitably large it follows from Fact 6(i) that At can be deduced.

9. MONOTONE 2-SAT <-! SAT". This is similar to 8.
10. SAT’<=!S-SET CONNECTEDNESS. Given F construct a graph G=

416 LESLIE G. VALIANT

(V, E1 LI E2) where

E1 {(xi, cj)lxi appears in clause c. in F} LI {(Xn, Cr+l), (n, Cr+l)},

E2 {(x,, Xi+x), (5,, i+1), (xi, g,+l), (g,, x+1)[1 -<_i -<_ n} {(s, Xa), (s, 1)}.

Suppose each edge in E1 is given probability p and each one in E2 probability q. Let Ai
be the number of distinct subsets of E11.3 E2 with exactly edges from E1 and/" from E2,
such that s is connected to each of c l, c2,-’-, Cr/I. Then the probability that s is
connected to each of Cl,. , Cr/l is

EE Aipi(1-p)2+2-iqi(1 q)4-2-i.

By Fact 6(iii), if we can evaluate this for sufficiently small p and q (e.g. p 2-2",
q 2-3m2 where m 4n + 2r) then we can compute {Ai}. Such probabilities as 2-2" can
be simulated simply by replacing the edge by a chain of 2m edges of probability 1/2.
The result follows since A+I, is the required solution to SAT’ for F. (N.B. The fact that
SAT’ is defined for monotone 2-form, rather than general 3-form, is inessential to this
proof.)

11. S-SET CONNECTEDNESS-<_ S-T CONNECTEDNESS. Given G (V, E)
and V’= {nl," , rig} construct G’ by adding to G a node and edges {(n, t)ll <_- _-< k}.
Suppose A is the number of subgraphs of G in which s is connected to exactly nodes
from V’. If each edge incident to is given probability 1-p and all the others
probability a half then the probability that s is connected to is 2-Izl. A(1- pi). It
follows from Fact 5 that by evaluating this at k + 1 points the value of Ak can be
deduced. The points can be taken as 1-p- 2-i for 1,..., k + 1 since chains of
suitable length can simulate these probabilities.

12. SAT’-<_S-T NODE CONNECTEDNESS.This is similar to 10 and 11
combined.

13. SAT’ _-< DIRECTED TREES. Given F we construct exactly the same G as in
11, with edges directed in the sense indicated by their definitions. Suppose Gpo is
obtained from G by giving each edge in E1 multiplicity p, and each in E2 multiplicity q.
Let A0 be the number of trees of G rooted as s with edges from E1 and f edges from
E2. Then the number of trees in Go rooted as s is

2r+2 4n--2

E , Aijp’q’.

Hence by Fact 5(ii), if this is evaluated for all pairs (p, q) with 1-<p-<2r+3 and
1 -< q _-< 4n 1 then the value of any mii can be deduced, including A/I., which is the
desired result for SAT’. Now note that Go can indeed be simulated by an ordinary
graph G’. G’ consists of G augmented by chains of length p starting from each ci, and
chains of length q starting at each xi and each i. Finally observe that if we could count
trees rooted arbitrarily, then by doing this for G’ and again for G’ with s removed, we
could count the number of trees rooted as s.

14. HAMILTONIAN CIRCUITS-< S-T PATHS. Given G for k 1,. , n + 1,
we generate a graph Gk by replacing each edge (ui, ui) by the graph with nodes
{ui, ui}U{u]i, "’, u} and edges {(Ui, U), (UI" ui)[q 1,.’., k}. Then each s-t paths of
length p in G corresponds to k p s-t paths in Gk. Hence if there are Aps-t paths of length
p in G then the number of s-t paths in Gk Y’-=0 Aok. From Fact 5 it follows that A,
can be deduced, which is the number of Hamiltonian paths from s to t. The cor-
respondence between Hamiltonian paths and cycles is immediate. (N.B. There is also a

ENUMERATION AND RELIABILITY PROBLEMS 17

natural <=! reduction consisting of replacing each edge in G by a graph with exponen-
tially many paths through it. Note also that the case of s corresponds to enumerating
elementary cycles [22], [23].) [3

The reductions used above can be classified according to whether (a) there is
just one oracle call, or (b) there are several, but all the questions for it are
generated without calling the oracle. Note that reductions of the latter iype can always
be replaced by one for the former if the problem to which reduction is being exhibited is
appropriate: e.g. SAT, MONOTONE 2-SAT, SAT’, S-T CONNECTEDNESS, S-T
PATHS. These problems can all exploit Fact 6 by being able to simulate the necessary
arithmetic. We illustrate this for MONOTONE 2-SAT: Given F, to multiply its
solutions by a large constant 3 k, we simply introduce 2k new variables and k new
clauses containing two each. To multiply F1 and F2 we ensure that they have disjoint
alphabets and simply write F1 ^ F2. For addition of F and F2 consider F the con-
junction of F and F2 with

(xi v z)’’" (x,, v z)(z v t)(y v t)’’’ (Ym V t)

where the x’s and y’s are the variables of F and F2 respectively. Then s(F) the number
of solutions will equal s(F)+ s(F2)+ s(F)s(F2). Hence to add we first multiply by a
constant larger than the addends and perform this construction.

A further problem that can be shown to be #P-hard is that of counting the number
of Hamiltonian subgraphs of an arbitrary directed graph. This problem, however,
appears not to belong to #P. Corresponding problems for other NP-complete struc-
tures can also be formulated. Some of them appear surprisingly difficult to analyze.

For certain counting problems in #P for which no polynomial time algorithm is
known, it is possible to prove that they can be computed in polynomial time given an
oracle for some predicate in the Meyer-Stockmeyer hierarchy. An example is the
problem of counting graph isomorphisms. Such a result can be interpreted as circum-
stantial evidence that the problem is not #P-complete [21].

5. A. problem complete in #P1. Given a complete graph on n nodes and arbitrary
probabilities assigned to each edge, the probability that the graph has a Hamiltonian
circuit (or some other NP-complete substructure) is easily seen to be #P-complete. If,
however, we insist on all the probabilities being equal to a half then the corresponding
problems (i.e. of counting the number of Hamiltonian graphs, etc., of a given size) are all
open. Many of the classical graph enumeration problems are of this form [8]. Here we
shall give an illustrative example to show that some such problem is provably P1-
complete. We note that the arithmetic reduction needed here takes the form of the
"inclusion-exclusion" principle.

We assume a fixed collection of colours each associated with a number. By a
graph we shall here mean a "connected directed graph in which each edge and node is
assigned a colour, with the restriction that the number of edges meeting at a node has to
equal the number associated with the colour of the node". A pattern is such a graph
without the latter degree restriction. A pattern G, can be embedded in graph G2 iff there
is an injective mapping of the nodes of G into those of G2 such that all nodes and edges
map to corresponding colours, and edges preserve direction.

Let A {A,..., Ak} be an arbitrary collection of patterns, and consider the
following problem schemes:

A-PATTERNS
Input" Integer n in unary.

418 LESLIE O. VALIANT

Output: Number of labelled graphs with n nodes into which Ai can be embedded
for all (1 =< _<- k).
A-SUBSET-PATTERNS
Input: Integer n in unary; X

_
{1, , k}.

Output: Solution for A’-PATTERNS where A’ is the subset of A indexed by X.
THEOREM 2. There is a fixed collection B offixed patterns such that B-SUBSET-

PATTERNS is #Pa-complete.
COROLLARY. There is a fixed collection A of fixed patterns such that A-

PATTERNS FP: #P1 FP.
Proof. Set B must have a subset A (although we may not be able to identify it). 71

Proof of Theorem 2. The problem is obviously in #Px. To show that it is complete
we show how an arbitrary counting multi-tape TM, M, over a single letter input
alphabet can be simulated by it.

We first modify M so that all accepting computations on the input of size n run for
exactly S(n) steps where S is an easily computed polynomial. We do this by simulating
on an extra tape a binary counter that counts up to some simple polynomial that exceeds
the complexity of M. The runtime of such a counter (whatever the implementation
details) will clearly have some fixed value S(n) that is easily computed from n. In all
computation branches the modified machine M’ simply runs the counter and simulates
M in parallel until the former terminates. M’ accepts if and only if it has simulated an
accepting state of M at some time in the computation. It will be convenient to assume
from now on that M and M’ work on semi-infinite tapes.

We next modify M’ to M" so that M" has just one tape but retains the property that
all accepting computations have the same easily predetermined runtime. M" treats its
tape as a multiple-track tape.’It initially checks that the input is of the form lbS()--$
(where b and $ are special new symbols) and rejects otherwise. These S(n) squares are
designated as work-space. In each step of the simulation of M’ the workspace is scanned
in both directions so as to take a fixed amount of time.

Let M" have time complexity T(n) and space complexity S(n). We now claim that
there is a set C {C1,’’’, C} of compulsory graphs, and a set F-{F1,’’’, F} of
forbidden graphs such that the number of accepting computations of M" on input n is
just the number of (T(n)+ 1)(S(n)+ 1)-node graphs in which all the compulsory graphs
can be embedded but none of the forbidden ones. If we denote the number of graphs of
this size that contain all of C’ c__ C U F and none of F’

_
F as embedded subgraphs by

X(C’, F’), then clearly

X({Ca,..., C}, {F1,..., F}) X({Ca,..., C}, {F2,..., F.})
-X({C,, , C, F1}, {F2, ", F.}).

It follows by induction that if we can compute X({A},) for all A C LI F then we can
compute X(C, F). The theorem therefore follows.

To prove the claim we represent computations by connected rectangular grids as
shown in Fig. 1. Each horizontal line encodes a tape symbol and information about
whether the head is there and, if so, the state of the machine. We ensure that only
rectangular grids are counted by means of the following:

(i) Horizontal and vertical lines have disjoint colour sets H and V.
(ii) Nine distinct colours are used to distinguish from each other nodes that are

on the four corners, on the four sides and internal, respectively. They are each assigned
the number 2, 3 or 4 as appropriate.

(iii) We forbid internal nodes from having incident edges in any way other than

ENUMERATION AND RELIABILITY PROBLEMS 419

the following"

Similar prohibitions are made for the other eight categories of nodes.
(iv) We ensure a grid structure by insisting that all appropriate chains of four

edges close. Thus the following scheme is forbidden:

(v) In any subgraph:

if a, b, c are internal we forbid d to be anything other than internal. Similar provisions
are made for the other cases.

(vi) A bottom left corner node is compulsory.
We further ensure that the grid represents a correct computation by:
(vii) insisting that the bottom left corner represents a head position and start state,

and forbidding anything else on the bottom boundary from representing a head
position;

(viii) forbidding illegal transitions;
(ix) insisting on an accepting state in the top right corner.

Finally it remains to observe that the theorem holds even for a fixed collection B
because it is sufficient to simulate just the following fixed TM, M, which is clearly
complete for PI: on unary input n, M first verifies that n 2pq (or 4pq) where p _-< q
and p and q are the ith and jth prime numbers respectively, and then simulates the ith
machine in #TIME(n) on input j (or vice versa), i-1

The corollary above is a natural example of a problem that is provably as hard as
any complete problem for the class containing it but not necessarily complete itself.
Note, however, that it proves only the existence of such a problem in the sense that we
cannot show A-PATTERNS to be in this category for any explicitly given A. It also
remains open to determine whether Theorem 2 or the corollary holds when A or B is a
singleton set.

420 LESLIE G. VALIANT

FIG.

6. Conclusion. We have shown that the notions of #P-completeness and of
algebraic or arithmetic polynomial time reducibilities are useful tools for classifying the
relative complexities of counting problems. The completeness class for #P appears to
be rivalled only by that for NP in relevance to naturally occurring computational
problems. Because of the richness of potential reductions it is reasonable to suppose
that many further ideas will be required before the classification of new counting
problems becomes a routine task.

Some possible next steps are the obvious omissions from this paper (e.g. maximal
matchings, undirected trees, connectivity of all points in a graph). A more general
question is that of tackling the large number of classical enumeration problems for
which there is just one input for each size. For example, we have as yet no evidence that
it is difficult to determine the number of Hamiltonian graphs of each size.

Acknowledgment. I am grateful to Dana Angluin for several helpful discussions.
The proof given for imperfect matchings is a simplification of one found by her earlier.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] M. N. BARBER AND B, W. NINHAM, Random and Restricted Walks, Gordon and Breach, New York,
1970.

[3] M. MARCUS AND H. MINC, Permanents, Amer. Math. Monthly, 72 (1965), pp. 577-591.
[4] C. BRON AND J. KERBOSCH, Algorithm 457: Finding all cliques in an undirected graph, Comm. ACM,

16 (1973), pp. 575-577.
[5] S. A. COOK, The complexity of theorem proving procedures, Proc. 3rd ACM Symp. on Theory of

Computing, 1971, pp. 151-158.

ENUMERATION AND RELIABILITY PROBLEMS 421

[6] D. W. DAVIES AND D. L. A. BARBER, Communication Networks for Computers, John Wiley, London,
1973.

[7] H. FRANK AND I. T. FRISCH, Communication, Transmission and Transportation Networks, Addison-
Wesley, Reading, MA, 1971.

[8] F. HARARY AND E. M. PALMER, Graphical Enumeration, Academic Press, New York, 1973.
[9] H. C. JOHNSTON, Cliques ofa graph--Variations on the Bron-Kerbosch algorithm, Internat. J. Comput.

Information Sci., 5 (1976), pp. 209-238.
10] R.M. KARP, Reducibility amongcombinatorial problems, Complexity of Computer Computations, R. E.

Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972.
[11] P. W. KASTELEYN, Dimer statistics and phase transitions, J. Mathematical Phys., 4 (1963), pp.

287-293.
[12], Graph theory and crystal physics, Graph Theory and Theoretical Physics, F. Harary, ed.,

Academic Press, New York, 1967.
[13] C. H. C. LITTLE, A characterization o" convertible (0, 1)-matrices, J. Combinatorial Theory Ser. B, 18

(1975), pp. 187-208.
[14] M. MARCUS AND H. MINC, On the relation between the determinantand the permanent, Illinois J. Math.,

5 (1961), pp. 376-381.
15] E.W. MONTROLL, Lattice Statistics, Applied Combinatorial Mathematics, E. F. Beckenbach, ed., John

Wiley, New York, 1964.
[16] T. MUIR, On a class o] permanent symmetric functions, Proc. Roy. Soc., Edinburgh, 11 (1882), pp.

409-418.
[17] G. P6LYA, Aulgabe 424, Arch. Math. Phys., 20 (1913), p. 271.
[18] H. N. V. TEMPERLEY AND M. E. FISHER, Dimer problems in statistical mechanics--An exact result,

Philos. Mag., 6 (1961), pp. 1061-1063.
[19] L. G. VALIANT, A polynomial reduction from satisfiability to Hamiltonian circuits that preserves the

number of solutions, Manuscript, University of Leeds, 1974.
[20], The complexity o]" computing the permanent, CSR-14-77 Univ. of Edinburgh, 1977; Theor.

Comput. Sci., to appear.
[21] D. ANGLUIN, On counting problems and the polynomial time hierarchy, Theoret. Comput. Sci., to

appear.
[22] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[23] R. E. TARJAN, Enumeration of the elementary circuits of a directed graph, this Journal, 2 (1973), pp.

211-216.

SIAM J. COMPUT.
Volume 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0013501.00/0

MULTI-TERMINAL 0-1 FLOW

YOSSI SHILOACH

Abstract. Given an undirected 0-1 flow network with n vertices and rn edges, we present an O(n2(m /

(n) maximal flows between all the pairs of vertices. Since O(n2(rn + n))isn)) algorithm which generates all
2

also the size of the output, this algorithm is optimal up to a constant factor.

Keywords. Algorithm, multiterminal flow, 0-1 integer flow

1. Introduction. A 0-1 undirected flow network is essentially an undirected graph
G (V, E) since all the edges have one unit capacity, and the flow assumes only integer
values, namely 0 or 1. G is assumed to have n vertices and m edges. The edges will be
denoted as two element sets such as {u, v}.

Given s, s V, and s-> 0-1 integer flow (s-> flow in short) is a function

f: V V -> {0, 1} such that:
(a) f(u, v)-0 if {u, v}E.
(b) f(u, v)-O or 1 if {u, v}E.
(c) If f(u, v)= 1, then f(v, u)= O.
(d) IN(f, v) OUT(f, v) for all v V-{s, t}, where IN(f, v) Yuvf(u, v) is the

total amount of flow entering v and OUT(f, v)=Y.wvf(v, w) is the total
amount of flow emanating from v.

The value of f denoted by Ill is OUT(f, s)-IN(f, s). An s-> flow f is maximal if

Ill -> If’l for any other s --> flow f’.
The 0-1 integer flow problems are usually associated with finding a maximal

number of edge-disjoint or vertex-disjoint paths between two vertices in a graph. They
often represent problems in transportation, electricity, layout and any other kind of
problems in real-life flow-networks. Such an individual maximal flow problem can be
solved in O(n2/3(m + n)) time, as shown in [1].

In this paper we present an algorithm which generates the maximal flows between
all the pairs of vertices within O(n2(m + n)) time which seems to be optimal regarding

(n) maximal flow values can be done in O(nS/3(m +the output size. Finding all
2

)) time,n

if we use Gomory and Hu’s algorithm, (see [2]). (Computing all the maximal flow values
is an easy O(n 2) extension of the original algorithm presented in [2].)

2. The muititerminal flow algorithm (MULTEF). MULTEF consists of two
routines. The first routine computes a cut-tree for G. A cut-tree T (Vr, Er) is a
weighted tree (i.e., a nonnegative weight w(e) is associated with each e Er) with the
following properties:

(a) VT-= V.
(b) For all s, V, the value of a maximal s -> flow equals minePT<s,t) w(e).

PT-(s, t) is the unique path connecting s and in T. (In the following we will use dT-(s, t) to
denote the length of PT(s, t), and Fs(t) to denote the neighbor of on PT(s, t).) The
existence of such a cut-tree is proved in [2]. They also provide an algorithm which
computes the tree by solving only n 1 individual max-flow problems.

* Received by the editors March 9, 1978, and in revised form August, 1978.

" Computer Science Department, Stanford University, Stanford, California 94305. This research was
supported in part by a Chaim Weizmann Postdoctoral Fellowship and in part by the National Science
Foundation under Grant MCS 75-22870.

422

MULTI-TERMINAL 0-1 FLOW 423

The second routine is MIN(u, v, w). Given a u v flow fur and a v w flow fvw,
MIN(u, v, w) computes a u w flow fuw such that

If,wl=min(Iful, lfwl).
The existence of a u-+ w flow having this value can be easily proved by using the
max-flow min-cut theorem. MIN(u, v, w) will be described in full in the next section.
MULTEF:

1. Initialization. Compute the cut tree T (Vr, Er) of G and n 1 maximal s +
flows for all s, such that {s, t} Er.

2. For each vertex s V do
Begin For d 2, , n-1 do

Begin For all 6 V such that dr(s, t) d, compute a maximal s flow by
using MIN (s, Fs(t), t).

End
End.

It can be easily verified that no more than 2(n 1) maximal flows have to be stored at the
same time, and thus MULTEF has an O(n(m + n)) space bound.

The validity of MULTEF can be easily derived from the properties of the cut-tree
(using induction on d). The complexity of MULTEF is O(nS/3(m+n))+
O(n2. complexity of MIN). In 3 we will describe a linear time algorithm for MIN
which yields an O(n2(m + n)) time bound for MULTEF.

3. MIN(u, v, w). Let u, v, w e V. Given a u -+ v flow f and a v w flow fow,
MIN(u, v, w) provides a u - w flow f.w such that [f,,wl min(If.,], [f,wl). Henceforth we
assume that:

(3.1) If,[- ILwl.
(3.2) Both fu and fvw are acyclic flows.

Ie IAI>ILI, we reduce A by IAI-IA.I units of flow so that (3.1) holds. The
second assumption is justified by a linear time algorithm which eliminates cycles of flow
and described in detail in 5.

The most straightforward way to produce a u -+ w flow out of f, and fw is to add
them up. So let bw fuw @low be defined by:

(3.3) 4,w(vl, v2)=max(O,[,v(Vl, v2) +fw(vl, v2)-/u(v2, v)-fvw(v2, v)).

It is easy to see that uw is nonnegative and if b,w(Vl, v2)>0 then 4,w(V2, vx)=0.
Moreover, b, satisfies the conservation rule, i.e., IN(4,w, z)= OUT(,w, z) for all
z V-{u, w.}. (Equation (3.1) implies the conservation of flow at v too.) However,
edges may become overflowed as shown in Fig. 1 where b,,(x, y)= 2.

FIG.

fuv ’

424 YOSSI SHILOACH

The basic idea to resolve this problem (speaking in terms of Fig. 1) is to reduce [u
from x to v and reduce fw from x back to v by one unit. The pseudo-flow of Fig. 1 turns
out to be the flow of Fig. 2.

..._O u

The process of reducing [uo from x to v propagates in the same direction as

fur itself and will be denoted as "reducing the flow forward" or "redford" in short.
Reducing low from x to v has the opposite direction to that of low and is called "reducing
backward" or "redback". Thus, in principle, we redford]’,v and redback [ow towards v.

Trying to implement the redford-redback idea, we might face a problem which is
demonstrated in Fig. 3. After reducing , forward and [ow backward from X to v, we
obtain the pseudo-flow of Fig. 3(b). Now, we can no longer redford from x2. We are
going to resolve this difficulty partially by using the acyclic orientation of

/ /

Ow
(a) (b)

FIG. 3

DEFINITION. Given a flow f in an undirected flow network G (V, E), G(f) is
defined by:

G(f)=(V, E(f)) where E(f)={(vl, v2)’f(vl, v2)>0}.

Note that G(f) is a directed graph. Let E {{xi, Yi}" 1, , k} denote the set of
all the overflowed edges (i.e., Ckuw(Xi, yi)= 2 for 1,.. , k and Ck,w(e)< 2 if e ; E).
Let X {xl, , Xk}. For any xi and x. in X, we say that xi precedes xj (xj follows x) if
there exists a directed path in G(fuv) from xi to xi. Due to the acyclity of G(f,), this
relation is irreflexive. If we start reducing forward from x’s which do not follow other
vertices in X, we eliminate the problem which is sketched in Fig. 3. Figure 4 shows what
happens if we start to redford-redback from x2 which precedes xl in G(f). Note that
after reducing forward and backward from x2, no redford-redback is needed at x since
{xl, Y l} is not overflowed anymore.

MULTI-TERMINAL 0-1 FLOW 425

(a) (b)

FIG. 4

This is only a partial solution. Since we must redford and redback from the same
vertex (otherwise conservation is violated), we might face the same problem in reducing
backward. The problem occurs when a redback path enters a vertex xi from which a
previous redback took place and now no fvw flow enters xi (see Fig. 5).

0 .0
Xi Yi

FIG. 5. If another redford-redback process starts at xi, the redback path will be stuck at xi.

The solution to this problem can be outlined as follows"
Step 1. We redford along the u --> v flow until no overflowed edges are left.

We now have to rebalance the vertices in which the redford paths start.
Step 2. We redback starting from the unbalanced vertices. If we get stuck we go to

Step 3.
Step 3. We modify the appropriate redford path by increasing the flow along a

certain prefix of it.
The algorithm is designed so that Step 3 does not yield to further modifications of

the redback paths.

3.1. Detailed implementation.
Step 1. The redford paths, say P1, et, are a set of edge-disjoint paths in G(fuv)

which cover all the overflowed edges. Each of the Pi’s begins at an overflowed edge and
terminates at v. We may assume that Pg begins at (xi, y), 1,. ., t. The Pg’s can be
produced by ACYC(fuv) which is described in full in 5. As soon as the Pg’s are
produced, we redford the flow by one unit along each of them.

In the same way we produce a set {Ol," , Os} of edge-disjoint redback paths in
G(fvw). Each of them starts in an overflowed edge and proceeds "backward" towards v
and their union contains E. The only difference is that we use the Oi’s to redback only if
necessary as specified in the implementation of Step 2. The edges at which the current
redford paths start are stored in a stack which contains initially (x l, y 1),""", (xt, yt).

426 YOSSI SHILOACH

Step 2. Let (Xi, Yi) be the first edge in the stack. We start to redback at Xi, following
two rules.

RI: If (xi, yi) Qi then the redback starts at the edge which follows (xi, yi) on Qi
(see Fig. 6).

R2: If we start to redback at an edge which belongs to Qi, we containue to redback
along Qi until we reach v or get stuck. If we get stuck we go to Step 3. If we reach v, we
deplete (xi, yi) from the stack. If the stack is not empty, we go back to Step 2, otherwise
the algorithm terminates.

FIG. 6. By R1, redback starts at (r, xi).

DEFINITION. A redback trail, (trail in short), is a subpath of a redback path, along
which we redback the v w flow as described in Step 2.

LEMMA 3.1. A redback trail can get stuck at a vertex z only if ::ii such that: z xi,

(xi, yi) is an overflowed edge, the first on its redford path and (xi, yi) belong to this redback
trail or a previous one.

The proof of Lelnma 3.1 is given after Step 3.
Remark. Due to the following Step 3, redford paths may shorten. Saying that

(xi, yi) is the first overflowed edge on its redford path, means that this is the situation
when the redback trail gets stuck.

Step 3. Assume that our redback trail get stuck at x and (xi, Yi) is the overflowed
edge discussed in Lemma 3.1. Since we cannot redback anymore, we shall balance xi by
increasing the u v flow forward ("inford") along the old redford path which starts at
(xi, y). The idea is that since the flow on (xi, y) has been reduced before (Lemma 3.1),
we no longer have to include this edge in our redford program. Thus, we inford along
the redford path containing (x, y) until we reach v or encounter another overflowed
edge (xi, yi) in which no redback has taken place so far. In both cases, (x, y) is deleted
from the stack and in the latter, (xi, yi) is inserted. If the stack is not empty we go back to
Step 2, otherwise, the algorithm terminates.

Remark. Since (x, yi) is the first edge on its redford path (Lemma 3.1), the net
effect of the inford is to shorten the redford path to the minimum necessary.

Proof ofLemma 3.1. Let us consider two cases.
Case 1. The trail starts at z (i.e., the trail consists of a single vertex). Step 2 implies

the ::ii such that z xi and an overflowed edge (xi, yi) which is the first in its redford
path. (In fact, (x, y) is the top edge in the stack.) Thus (x, yi) belongs to a redback path,
say Qi, and the first edge in our redback trail should have been that which follows (xi, y)
on Qi, (RI). Since this edge has already been used in a previous redback trail (otherwise
we are not stuck), (xi, y) has also been used in the same trail, (RE).

Case 2. The trail did not start at z. The only reason that RE cannot be used to
continue the trail is that a previous redback trail started at z before. This again means
that when the previous trail got stuck, we had an overflowed edge (xi, y) such that z x
and at that time (x, Yi) was the first edge on its redford path. It also implies that our

Recall that Qi proceeds backward.

MULTI-TERMINAL 0-1 FLOW 427

redback trail enters Xi through Yi, (R1). Applications of Step 3 which took place before
our redback trail got stuck, could not change the fact that (xi, Yi) was the first edge on its
redford path, since we start to inford from (xi, yi) only after our redback trail got stuck
there. Moreover, since (xi, y) is the first on its redford path, it could not belong to any
inford trail which did not start at it. I-1

Both cases are illustrated in Fig. 7.

Case 1.

Case 2.

Second redback trail (xi) A redford path

O- 0-- --Io---O---
yi- First redback trail ’-

0-- 0- 3- .
yi

First redback trail starts at xi -" -- Second redback trail --FIG. 7

3.2. A detailed example. In Fig. 8 we illustrate the composition of a u v flow
and a v w flow fvw. Both are acyclic and have the same value, 2. The overflowed edges

2

,v.__ :zl5 \\

w

FIG. 8

are (1, 2), (3, 4) and (5, 6). Let the redford paths be:

P1 (1, 2, v), P2 (3, 4, 5, 6, v).

The redback paths are:

O1=(2,1,4,3, v) and O2=(6,5, v).

The stack contains ((1, 2), (3, 4)).
Figure 9 illustrates the situation after redford has been completed. Redback trails

should start at 1 and 3 (one at each).

First redback trail (1, 4, 3, v); stack ((3, 4))

Second redback trail (3), got stuck at 3.

428 YOSSI SHILOACH

FIG. 9

Figure 10 shows the situation at this moment.

(vO----

3

FIG. 10

Now inford takes place, starting at 3.

Inford trail (3, 4, 5), got stuck at 5; stack ((5, 6)).

The current situation is shown in Fig. 11.

FIG. 11

Finally we redback from 5.
The redback trail (5, v); stack b and the final u w flow is shown in Fig. 12.

FIG. 12

MULTI-TERMINAL 0-1 FLOW 429

4. Validity and complexity of MIN(u, v, w).
Validity. We have to show that:
1) MIN(u, , w) terminates.
2) The output, f, of MIN(u, v, w) is a legal u -> w flow and
1) The termination is quite clear. Step 1 obviously terminates. Stp 2 terminates

since reducing back is done only on the v -> w flow and this flow is never increased. Step
3 is finite since the u -> v flow along an edge can be increased at most once.

2) Let’s first prove the following equation.

(4.1) OUT(fuw, z)-IN(fuw, z)= OUT(cw, z)-IN(dw, z) for all z v,

Proof of Equation (4.1). Equation (4.1) is violated during the execution, in two
cases. The first occurs when a redford path starts at an edge incident with z, say (z, y). In
this case (z, y) is inserted to the stack and when it reaches its top, z will be rebalaneed by
the redback routine. The second case occurs when a redback trail gets stuck at z. In this
case the inford routine rebalances z.

All the vertices u, v, w are balanced in [,. This assertion follows immediately
from (4.1) and the fact that they are balanced in

The vertex v is also balanced. By (3.1) we have

OUT(b,, u)-IN(c, u)= IN(bu, w)-OUT(ch,w, w)

and (4.1) then implies that

OUT(fw, u)-IN(f,w, u)= IN(fw, w)-OUT(fw, w).

This, combined with the fact that all the other vertices are balanced, implies that v is
also balanced.

I/w]-]f.l. By the definition of &uw, [&w]]fuji and (4.1) (with z u)implies that
[Cuw[[fuw[and thus [f.wl [fo[.

No edge is overflowed, We have taken care of all the overflowed edges at Step 1. We
increase the flow again only in Step 3. However, as explained there, this increase does
not overflow any edge again.

This completes the validity proof of MIN(u, v, w).
Complexity. Producing 4, is obviously linear. An edge of G(f,) is treated at

most twice (Steps i and 3) and an edge of G(f) is treated at most once (Step 2). Thus,
MIN u, v, w) is linear.

5. ACC(f). Given a u v 0-1 flow f, ACYC(f) produces an acyclic u - v 0-1
flow f’ of the same value.

Starting from u, we grow a directed path in G(f), proceeding in a depth-first
manner. Each vertex z is labeled when encountered and the label is removed when we
backtrack through it. The label consists of the name of the (unique) vertex through
which we entered z. The edges are labeled by the letter F when encountered. This label
is permanent. We proceed only along unlabeled edges until one of the two cases occur:

(a) We reach a labeled vertex z. This means that we have discovered a flow cycle C
through z. We backtrack along C and remove its edges. The labels of the vertices of
C-{z} are also removed and we continue to grow the path from z.

(b) We reach v. This means that we have just found a u v flow path. We
backtrack along the path and remove the labels from the vertices (not from the edges). If
there are unlabeled edges incident with u, we start growing a new uv path.
Otherwise--we stop.

430 vossx SHILOACH

It is easy to see that the edges which are labeled by F form an acyclic 0-1 flow, f’,
from u to v and If’l Ifl. It is also easy to verify that ACYC(f) has an O(rn + n) time
bound and it provides Ifl edge-disjoint u- v paths in G(f). Thus, ACYC(f) can be
employed in Step 1 of MIN, to produce the redford paths.

6. Related open problems. The most natural open problem is that of generalizing
MULTEF to undirected networks with arbitrary capacities. It is easy to see that if MIN
can be generalized, so can MULTEF. Thus, the main question is whether MIN can be
generalized to general undirected networks with a reasonable time bound. This
question also involves the problem of generalizingACYC to arbitrary capacities, which
is an interesting open question by itself.

REFERENCES

[1] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.
507-518.

[2] R. E. GOMORY AND T. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math., 9 (1961), pp.
551-570.

SIAM J. COMPUT.
Volume 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics
0097-5397/79/0803-0014501.00/0

A NOTE ON SPARSE COMPLETE SETS*

STEVEN FORTUNE’t

Abstract. Hartmanis and Berman have conjectured that all NP-complete sets are polynomial time
isomorphic. A consequence of the conjecture is that there are no sparse NP-complete sets. We show that the
existence of an NP-complete set whose complement is sparse implies P NP. We also show that if there is a
polynomial time reduction with sparse range to a PTAPE-complete set, then P PTAPE.

Key words, reduction, polynomial time, nondeterministic polynomial time, complete sets, sparsity

1. Introduction. Hartmanis and L. Berman in [4] conjecture that all the NP-
complete sets are isomorphic via polynomial time mappings. Of course, proving the
conjecture would prove P # NP and hence is likely to be hard to do. One consequence
of the conjecture that they point out is that there could be no sparse NP-complete set,
that is, there could be no NP-complete set having fewer than p(n) elements of length n,
where p is a polynomial. A proof of this consequence could be viewed as evidence for
the conjecture, but currently seems to be unobtainable, even under the assumption
P NP.

In [2], P. Berman does obtain the following result. He shows that if there is a
polynomial time reduction with sparse range mapping one NP-complete set to another,
then P NP. As a corollary, he shows that if there is an NP-complete set over 1", then
P NP. In this note we extend this result to show that if there is a sparse set complete for
coNP, then P NP. Thus, for example, if the set of tautologies can be reduced to a
sparse set, then P NP. We also show that if there is a, polynomial time reduction
with sparse range to a PTAPE-complete set then P PTAPE.

The general idea of the proof is the following. We will give an algorithm to decide if
a Boolean formula F written in conjunctive normal form is satisfiable. The running time
will be polynomial under the assumption that there is a NP-complete set with sparse
complement. The algorithm constructs a binary tree where the nodes are labeled with
formulas obtained by assigning values to some of the variables in F. In general, a node
labeled by formula G will have two sons, one labeled with the formula obtained by
setting one of the variables in G to 1, the other labeled with the formula obtained by
setting the variable to 0. Of course, if such a tree were completely constructed, it would
have exponential size. However, by using information gathered from a mapping to the
cosparse complete set, the tree can be pruned to only a polynomial in size.

2. Sparsity ot complete sets. In the proof of Theorem 1 we use the fact that SAT,
the set of satisfiable formulas written in conjective normal form, is NP-complete. This
was originally shown in [3]; the textbook 1 also contains a proof along with additional
information on complete problems.

THEOREM 1. Suppose there is an NP-complete setL which is cosparse, that is, there is
at most a polynomial in n 0]’ words of length n not in L. Then P NP.

Proof. Since L is NP-complete, there is a polynomial time computable function
such that F is in SAT if and only if t(F) is in L. The following algorithm will decide if a
formula F is satisfiable.

* Received by the editors June 12, 1978, and in revised form October 9, 1978.
5" Department of Computer Science, Cornell University, Ithaca, New York 14853. This research was

supported in part by the Office of Naval Research under Grant N0014-76-C-0018.

431

432 STEVEN FORTUNE

Create the root node and label it with F.
while the root is not marked "unsatisfiable" do

Pick the lowest node n in the tree not marked "unsatisfiable".
Let the label of n be G.
Choose a variable x .appearing in G and create two sons of n. Label one with

the formula obtained by setting x 0 in G (and doing trivial simplifications:
y+0=y, y+l=l, (y+z).l=y+z, (y+z).0=0),labeltheotherwith
the formula obtained by setting x = 1.

If there is a node corresponding to a satisfying assignment (i.e. a node labeled
with the formula 1) then output ("satisfiable"); stop.

while there is an unmarked node K with formula H satisfying either
(a) both sone of k are marked "unsatisfiable"
(b) H is trivially unsatisfiable (i.e. has a conjunct which is 0)
(c) there is some node k’ with formula H’ marked "unsatisfiable", and

t(H) t(H’)
or (d) some ancestor of k is marked unsatisfiable

dO mark k "unsatisfiable" end
end

output ("unsatisfiable")

The correctness of the algorithm follows from the assertion that a node is marked
"unsatisfiable" only if in fact the formula of the node is unsatisfiable. This in turn
follows by examining the four cases in which a node is marked "unsatisfiable".

To see that the algorithm runs in polynomial time, first note that there are only
polynomially many different values of t(H) not in L, as H varies over the formulas
obtained by assigning values to some of the variables in F. We will show that after at
most v iterations of the outer loop, where v is the number of variables in F, either a
satisfying assignment is found or a new value of the range of is discovered to be not
in L. Hence the whole algorithm runs in polynomial time.

Consider a node n labeled with formula G chosen at the start of some iteration of
the outer loop. Note that t(G) is not known not to be in L as n is unmarked. Suppose G
has k variables. We will show by induction that after at most k iterations of the outer
loop either a new value of the range of is discovered to be not in L or a satisfying
assignment is found. If k 1 then the two formulas assigned to the sons of n are variable
free. Hence either at least one is the formula "1" and a satisfying assignment is found, or
both are "0" and t(G) is discovered to be not in L. The inductive step, k > 1, breaks into
two caSes. Either both formulas assigned to the sons of n are immediately marked
"unsatisfiable" or at least one of them is not. In the former case node n will also be
marked "unsatisfible" and t(G) will be discovered to be not in L. In the latter case one
of the unmarked sons will be chosen at the next iteration of the outer loop, as the son
must be the lowest unmarked node in the tree. The induction hypothesis now applies
since the formula of the chosen son has at most v- 1 variables. Hence after at most
another v 1 iterations either a new element of the range of is discoved not to be in
L, or a satisfying assignment is found. U

As another application of this technique, we have the following theorem. QBF
here is the Set of valid quantified Boolean formulas; it was shown to be PTAPE-
complete in [5].

THEOREM 2. Suppose there is a polynomial time computable function and a set L
such that

(a) F is in OBF if and only if t(F) is in L;
(b) I{t(w): w is of length n}l<p(n) for some polynomial p. Then P PTAPE.

SPARSE COMPLETE SETS 433

COROLLARY. If there is a PTAPE-complete set over 1", then P PTAPE.
Proof of Theorem 2. The following algorithm will decide whether a Boolean

formula F Vxl:lx2, ., OxoH(xl, ", xv) is valid.

Create the root mode and label it with F
while the root is unmarked do

Pick the lowest unmarked node, n, in the tree.
Let the formula labeling node n be G, and y the variable of the outermost

quantifier.
Create two sons of n. Label one with the formula obtained from G by setting

y -0, the other with the formula obtained by setting y 1.
while there is an unmarked node n with formula G satisfying one of

(a) The leading quantifier of G is :1 and n has a son marked "valid"
(b) The leading quantifier of G is ’ and n has a son marked "invalid"
(c) G is the formula 1
(d) G is the formula 0

or (e) There is some marked node n’ labeled with a formula G’, and t(G)=
t(G’).

do
In cases (a) or (c) mark n "valid".
In cases (b) or (d) mark n "invalid".
In case (e) mark n the same as n’.
end

end
Output the label of the root.

The proof of correctness is similar to that of Theorem 1. The running time analysis
depends on the fact that the range of is sparse and is otherwise analogous to that of
Theorem 1.

REFERENCES,

A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA, 1974.

[2] P. BERMAN, Relationships between density and deterministic complexity ofNP-complete languages, Fifth
International Colloquium on Automata, Languages and Programming (1978), Springer-Verlag,
Berlin-Heidelberg-New York, pp. 63-71.

[3] S. COOK, The complexity of theorem-proving procedures, Proceedings of the Third Annual ACM
Symposium on Theory of Computation (1971), Association for Computing Machinery, New York,
pp. 151-158.

[4] J. HARTMANIS AND L. BERMAN, On isomorphisms and density of NP and other complete sets,
Proceedings of the Eighth Annual ACM Symposium on Theory of Computing (1976), Association
for Computing Machinery, New York, pp. 30-40; also this Journal, 6 (1977), pp. 305-322.

[5] A. R. MEYER AND L. J. STOCKMEYER, Word problems requiring exponential time, Proceedings of the
Fifth Annual ACM Symposium on Theory of Computing (1973), Association for Computing
Machinery, New York, pp. 1-9.

SIAM J. COMPUT.
Volume 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0015501.00/0

POLYNOMIAL SPACE AND TRANSITIVE CLOSURE*

RONALD V. BOOK

Abstract. A characterization of PSPACE in terms of the regular sets and certain algebraic closure
operations is developed. It is shown that NP PSPACE if and only if NP is closed under a form of the
transitive closure operation.

Key words. PSPACE, regular sets, homomorphic replication, intersection, transitive closure

Introduction. In [1] it is shown that a number of different classes of languages
arising in the study of complexity theory and computability theory can be characterized
in terms of the class of regular sets, either intersection or both intersection and
complementation, and certain restrictions on the operation of homomorphic repli-
cation. These characterizations are simple and uniform and reveal that the various
classes have extremely similar structures. Here we consider classes of languages
specified by space-bounded machines.

The class NP of languages accepted in polynomial time by nondeterministic Turing
machines can be characterized by beginning with the class of regular sets and requiring
closure under the operations of intersection and polynomial-erasing homomorphic
replication [1]. Here it is shown (Theorem 2) that the class PSPACE of languages
accepted by deterministic Turing machines using polynomial space is characterized by
beginning with the class of regular sets, requiring closure under intersection and
polynomial-erasing homomorphic replication, and, additionally, requiring that the
transitive closure of certain relations should remain in the class when the relations are
encoded as languages. As a result of Theorem 2, we see that NP and PSPACE differ by
at most the requirement of "weak transitive closure."

Our first result (Theorem 1) is a characterization of the class of context-sensitive
languages. This characterization is related to the characterization of the class of
predicates recognized by nondeterministic linear-bounded automata in terms of tran-
sitive closure given by Jones [4], [5]. In his characterization Jones uses the class of
strictly rudimentary predicates as a "sub-basis," while here we use the class BNP of
languages accepted in linear time by nondeterministic reversal-bounded Turing
machines.

In 1 the basic notation and preliminary notions are outlined. The characterization
of the class of context-sensitive languages is the central idea in 2. In 3 the
characterization of PSPACE and its comparison to NP are established.

1. Basic concepts. It is assumed that the reader is familiar with the basic concepts
from the theories of automata, computability, and formal languages. Some of the
concepts that are most important for this paper are reviewed here and notation is
established.

For a string w, [wl denotes the length of w" if e is the empty string, then [el- 0; if a is
a symbol and y is a string, then lay[-- 1 + lyl.

The reversal wR of a string w is the string obtained by writing w in reverse order:
R R Re e; for any symbol a, a a; if a is a symbol and y is a string, then (ay)R y a. For

a string w, w 1= w.

* Received by the editors June 23, 1978 and in revised form October 9, 1978.

" Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California
93106. This research was supported in part by the National Science Foundation under Grant MCS77-11360.
Some of these results were reported at the Tagung fiber Formale Sprachen, Mathematisches Forschungsin-
stitut, Oberwolfach, West Germany, August 1978.

434

POLYNOMIAL SPACE 435

For an acceptor M, the language accepted by M is denoted by L(M).
Recall that a homomorphism (between free monoids) is a function h: E* - A* such

that for all x, y eE*, h(xy)= h(x)h(y). A homomorphism h: E* A* is nonerasing if
Iwl>0 implies [h(w)l>0 and is length-preserving if for all we;.*, Ih(w)l=lw[. A
homomorphism h" E*--> A* is linear-erasing on language L

_
* if there is a constant

k >0 such that for all w eL with Iwl_->k, Iwl<-klh(w)[, and is polynomial-erasing on
language L* if there is a constant k >0 such that for all w eL with Iwl>-k,
Iwl<-lh(w)l. m cass of languages is dosed under (nonerasing, linear-erasing,
polynomial-erasing) homomorphism if for every language L e and any homomor-
phism h (that is nonerasing, linear-erasing on L, polynomial-erasing on L), h(L)=
{h(w) w eL} is in .

Let n be a positive integer and let p be a function from {1,..., n} to {1, R}.
Let L be a language and let hl,"’,hn be homomorphisms. The language
(/9; hi," h,)(L) {hi(w)(1)" h,(w)p") w e L} is a homomorphic replication oftype
p on L. Let be a class of languages. If for every n > 0, every function p: {1, , n} -->

{1, R }, every language L e, and every n homomorphisms h 1, , h,,, each of which is
nonerasing (linear-erasing on L, polynomial-erasing on L), the language
(O; hi,"’, h,)(L) is in , then is closed under nonerasing (respectively, linear-
erasing, polynomial-erasing) homomorphic replication.

Clearly a class of langiages closed under (nonerasing, linear-erasing, polynomial-
crating) homomorphic replication is closed under (nonerasing, linear-erasing, poly-
nomial-erasing) homomorphism.

Recall that a semi-AFL is a nonempty class of languages closed under union,
inverse homomorphism, nonerasing homomorphism, and intersection with regular sets.

Let f be an integer-valued function. Let NTIME(f)= {L(M)IM is a nondeter-
ministic Turing machine that operates within time/(n), where n is the length of the
input string} and let NP= LIk__>l NTIME(nk), so that NP is the class of languages
accepted in polynomial time by nondeterministic Turing machines. Let DSPACE(f)
{L(M) M is a deterministic Turing machine that uses at most f(n) work space, where n
is the length of the input string}, let NSPACE(f)= {L(M)IM is a nondeterministic
Turing machine that uses at most f(n) work space}, and let PSPACE=
LIk_>_ DSPACE(n k) so that PSPACE is the class of languages accepted by Turing
machines that use at most polynomial work space.

There is one class of languages that is particularly useful in this study. Let BNP be
the class of languages accepted in linear time by nondeterministic Turing machines
whose work tapes are reversal-bounded (i.e., there is a fixed constant that bounds the
number of times a read-write head can change directions during any computation). It is
known [3] that a language L is in BNP if and only if there are three linear context-free
languages L1, L2, L3 and a nonerasing homomorphism h such that L h (L fq L2 f’l L3),
and that -BNP is the smallest intersection-closed semi-AFL containing {wcwR[w e
{a, b}*}.

2. A representation theorem. In this section we develop the first result, a
representation theorem showing how to obtain the class of context-sensitive languages
from the class of regular sets by using algebraic closure operations. To accomplish this it
is necessary to discuss relations on strings and their encodings as languages.

Consider n-ary relations on strings. If R is a binary relation on strings over the
alphabet Y_., then the transitive closure of R is R* {(x, y)lx, y e .E* and either x y or
there exist n _-> 1 and Zo" zn e Y_.* such that z0 x, z, y, and for each 1,. , n,
R (zi-, zi) holds}. A binary relation R is length-preserving if for all x, y, when R (x, y)
holds, then Ixl lYl.

436 RONALD V. BOOK

Let R be an n-ary relation on strings over the alphabet 2,. Let # be a symbol not in
Y_,. The language SE#(R)={wl#... #wnlfor i=l,...,n, wiE*; R(Wl,’.’, wn)
holds} is the sequential #-encoding of R.

By using sequential encodings, relations can be interpreted as languages. For
example, the concatenation relation over an alphabet gives rise to the language
{x#y#z Ix, y, z Y_,* and xy z}, where # is a symbol not in .

We are interested in interpreting a language as an encoding of a binary relation. Let
L be a language and let Y_, be a finite alphabet such that L

__
Y_,*. For any a , the binary

relation a-encoded by L is Ra(L)={(x, y)[x, y (E-{a})* and xay
Notice that SEa(R(L))-(E-{a})*{a}(,-{a})*VIL and that if T is a binary

relation on strings over E and # ;, then Re(SEe(T))= T.
To say that a relation R is transitively closed is to say that R* R. Here we develop

the notion of "a class of languages being transitively closed" by considering the
relations encoded by the languages in the class.

Let be a class of languages. From a language L in 9, we consider the relation
R(L) a-encoded by L. Then we take the transitive closure R*(L) of Ra(L) and
consider the language SE(R* (L)), that is, the sequential a-encoding of the relation
R* (L). For our purposes it is sufficient to restrict attention to the cases where R(L) is
length-preserving and in that case to demand that the language SEa(R* (L)) is in
More formally, we have the next definition.

A class of languages is weakly transitively closed if the following condition holds:
Let L be any language in , let Y,, be the smallest finite alphabet such that L c__ v2*, and let
a be a symbol in Y_,. If Ra(L) is length-preserving, then SE(R* (L)) is in

Now the representation of the class of context-sensitive languages can be
established.

THEOREM 1. The class of context-sensitive languages (NSPACE(n)) is the smallest
class of languages that contains all of the regular sets, is closed under intersection and
linear-erasing homomorphic replication, and is weakly transitively closed. It is the
smallest semi-AFL that is closed under intersection and nonerasing homomorphic
replication and is weakly transitively closed.

Proof. Let be the smallest class of languages that contains all of the regular sets,
is closed under intersection and linear-erasing homomorphic replication, and is weakly
transitively closed. It is clear that the class of context-sensitive languages contains all of
the regular sets and is closed under intersection and linear-erasing homomorphic
replication. From the work of Jones [4], [5] and of McCloskey [6], it is clear that the
class of context-sensitive languages is weakly transitively closed. Since is taken to be
the smallest class with these properties, every language in ’ is a context-sensitive
language.

To show that every context-sensitive language is in , we use the fact that a
language is context-sensitive if and only if it is accepted by a nondeterministic linear
bounded automaton (LBA), a one-head one-tape Turing machine that uses only those
tape squares where the input initially appears. We will show that if M is a nondeter-
ministic LBA, then the set L(M) of strings accepted byM is in. It will be useful to note
that BNP is the smallest class of languages that contains all of the regular sets and is
closed under intersection and linear-erasing homomorphic replication [1], so that
’BNP ’.

LetM be a nondeterministic LBA. Let 0 be the set of internal states of M, let be
M’s input alphabet, and let A be the set of symbols that M writes on its tape during a
computation. Without loss of generality, assume that when M’s read-write head leaves
a tape square it has already written a symbol from A in that tape square and assume that
A . With these assumptions an instantaneous description in a computation ofM

POLYNOMIAL SPACE 437

can be viewed as a string in A*QA*E* and the set of initial instantaneous descriptions is
(q0)E* where q0 is the initial state. Assuming that M must read its entire input before
accepting, the set of accepting instantaneous descriptions is A*FA* where F

_
Q-(qo)

is the set of accepting states.
Lett be the "yield" relation on strings induced by M’s transition function, that is,

t(a,/3) holds if and only if c and/3 are potentially instantaneous descriptions in some
computation of M and a yields/3 according to M’s transition function. Since M is an
LBA, t is a length-preserving relation.

Let F A (.J Y_, I..J Q and let # be a new symbol not in F. It is clear that the language
SE#(8t)={a#lce, fl 6A*QA*Y_,* and tM(O,fl) holds} can be recognized in linear
time by a nondeterministic Turing machine with work tapes that are reversal-bounded,
and so SE#(6lVt) is in ,BNP. Since ,BNP .- we see that SE#(61vt) is in .

Let 6t be the transitive closure of 6t. Since 6t is a length-preserving binary
relation and SE#(61vt) is in , the language SE#(6) is in 5 because is weakly
transitively closed. Clearly the language Lo={a#fl a is an initial instantaneous
description of M and fl is an accepting instantaneous description of M} is accepted in
linear time by a nondeterministic Turing machine with reversal-bounded work tapes, so
that Lo -BNP... Since Lt’ is closed under intersection, L1 LoCI SE#(6) is in
Clearly a string a #/3 is in LI if and only if a is an initial instantaneous description ofM
and fl is an accepting instantaneous description of M that occurs in some computation
of M that begins with a.

Let h (F {#})* E* be the homomorphism determined by defining h(a) a for
a eY_, and h(a)= e for a (F t_J {#})-E. By the assumptions made above, if c#/3
then h(c#/3) is an input string accepted by M, Ih(c#t3)l--Icl-1, and <

3[h(a#/3)[. Also, if w is any string accepted by M, then there exists z F* such that
qow#z 6L1 and h(qow#z)= w. Thus h is linear-erasing on L1 and h(La) is the set
L(M) of strings accepted by M.

Since is closed under linear-erasing homomorphic replication and L
L(M) h (L1) is in .

Thus every context-sensitive language is in
The second characterization follows from the first by using the techniques

employed in 1].
Professor Jonathan Goldstine (personal communication) has made the following

observation. In the proof of Theorem 1, the operations of homomorphic replication and
intersection were used to show that SE#(61vt) is in BNP and aNP -- 5f. Closure under
linear-erasing homomorphic replication was used to show that h (L 1) is in and closure
under intersection was used to show that L is in . If we let Lz
{tr#fl R a#fl 6SE#(6M)} then L2 is a linear context-free language. Consider the
relation R#(LE)={(x, y)[x#y L2}. Clearly, the transitive closure (R#(L2))* of the
relation R#(L2) is only a minor variation of 6t. Also, Lo={Ce#/3Rla is an initial
instantaneous description ofM and/3 is an accepting instantaneous description of M} is
a regular set. Normalizing M so that an accepting computation must have an odd
number of steps, we see that h(Lof3 SE#(R (L2)))= L(M). This yields the following
characterization on NSPACE(n).

PROPOSITION. The class of context-sensitive languages (NSPACE(n)) is the
smallest class of languages that contains all of the linear context-free languages, is
closed under intersection with regular sets and under linear-erasing homomorphism,
and is weakly transitively closed.

Professor Peter Deussen (personal communication) has pointed out that it is not
necessary to restrict attention to length-preserving relations but only to relations that
are nonincreasing, e.g., if R(x, y) holds, then

438 RONALD V. BOOK

Consider the following classes of languages:
(i) MULTI-RESET is the smallest class of languages containing {wcwlw

{a, b}*} and closed under intersection and linear-erasing homomorphic duplication
(where homomorphic duplication is the restriction of homomorphic replication
obtained by specifying o(i)= 1 for every i) [3];

(ii) BSP has been discussed previously;
(iii) NTIME(n) is the class of languages accepted in linear time by nondeter-

ministic multitape Turing machines;
(iv) RUD is the class of rudimentary languages, the smallest class of languages

containing {xcyczlx, y, z {a, b}* and xy z} and closed under the Boolean opera-
tions, nonerasing homomorphism, inverse homomorphism, and intersection with
regular sets [9].

Now it is known [2], [9] that MULTI-RESETc__aNpC__NTIME(n)RUD_
DSPACE(n)

_
NSPACE(n). From the proof of Theorem 1 and the properties of these

classes we see that if is any one of the classes MULTI-RESET, BNP, NTIME(n),
RUD, or DSPACE(n), then NSPACE(n) if and only if is weakly transitively
closed.

In the proof of Theorem 1, consider the case ofM being a deterministic LBA. Then
for each possible instantaneous description a, there is at most one instantaneous
description fl such that 8(a, fl) holds. Jones [4], [5] discusses "transitive closure of
deterministic relations" and it is easy to characterize the class DSPACE(n) in a manner
similar to Theorem 1 by restricting attention to "deterministic relations" that are
length-preserving. This leads to the formal definition of a property 0 sch that
MULTI-RESET orBNP or NTIME(n) or RUD has 0 if and only if that class is equal to
DSPACE(n).

3. Characterizing PSPACE.
THEOREM 2. The class PSPACE of languages accepted in polynomial space by

Turing machines is the smallest class of languages that contains all of the regular sets, is
closed under intersection andpolynomial-erasing homomorphic replication, and is weakly
transitively closed. It is the smallest semi-AFL that is closed under intersection and
polynomial-erasing homomorphic replication and that is weakly transitively closed.

Proof. It is clear that PSPACE is closed under these operations. If L1E PSPACE,
then there is a language L2 E NSPACE(n), and a homomorphism h such that h (L2) L
and h is polynomial-erasing on L2. Thus the closure of NSPACE(n) under polynomial-
erasing homomorphism or under polynomial-erasing homomorphic replication is
PSPACE. The result now follows from Theorem 1. 71

Recall that the class NP of languages accepted in polynomial time by nondeter-
ministic Turing machines is the smallest class containing all of the regular sets and
closed under intersection and polynomial-erasing homomorphic replication [1]. Thus
we have the following result.

THEOREM 3. The class NP is weakly transitively closed if and only if NP=
PSPACE.

One of the referees has observed that the language SE#(81vt) used in the proof of
Theorem I is in the class P of languages accepted in polynomial time by deterministic
Turing machines, and thus P is weakly transitively closed if and only if P PSPACE.

The class EXRUD of extended rudimentary languages is the smallest class of
languages containing {xcycz Ix, y, z {a, b}* and xy z} and closed under the Boolean
operations, polynomial-erasing homomorphism, inverse homomorphism, and inter-
section with regular sets [8]. It is also the union of the classes in the polynomial-time
hierarchy [7], [8]. It is known that NP

_
EXRUD

_
PSPACE. From Theorem 2 and the

POLYNOMIAL SPACE 439

characterization ot EXRUD given in [1], we see that EXRUD is weakly transitively
closed if and only if EXRUD PSPACE.

For the characterizations given in Theorems 1 and 2, it is sufficient to use the
operation of homomorphic duplication (the restriction of homomorphic replication to
the case of to(i)= 1 for all i) instead of homomorphic replication [2]. We have used
homomorphic replication in order to be consistent with [1] and to avoid the con-
struction of more machinery.

It is clear that Theorem 1 can be used to characterize any class of languages
specified by space-bounded Turing machines if the class of bounding functions is closed
under composition and if each bounding tunction grows at least as fast as a linear
function. In this case the amount of erasing allowed by the homomorphism must be
bounded by the space bounds.

REFERENCES

[1] R. BOOK, Simple representations ofcertain classes of languages, J. Assoc. Comput. Mach., 25 (1978), pp.
23-31.

[2] R. BOOK, S. GREIBACH AND C. WRATHALL, Reset machines, submitted for publication.
[3] R. BOOK, M. NIVAT AND M. PATERSON, Reversal-bounded acceptors and intersections of linear

languages, this Journal, 3 (1974), pp. 283-295.
[4] N. JONES, Formal languages and rudimentary attributes, Ph.D. dissertation, University of Western

Ontario, London, Ontario, 1967.
[5] Classes of automata and transitive closure, Information and Control, 13 (1968), pp. 207-229.
[6] T. MCCLOSKEY, Abstractfamilies of length-preserving processors, J. Comput. System Sci., 10 (1975), pp.

394-427.
[7] L. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp. 1-22.
[8] C. WRATHALL, Subrecursive predicates and automata, Ph.D. dissertation, Harvard University,

Cambridge, MA, 1975.
[9], Rudimentary predicates and relative computation, this Journal, 7 (1978), pp. 194-209.

SIAM J. COMPUT.
Volume 8, No. 3, August 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0016501.00/0

ON THE EXPECTED VALUE
OF A RANDOM ASSIGNMENT PROBLEM*

DAVID W. WALKUP"

Abstract. Given an n by n matrix X, the assignment problem asks for a set of n entries, one from each
column and row, with the minimum sum. It is shown that the expected value of this minimum sum is less than
3, independent of n, if X consists of independent random variables uniformly distributed from 0 to 1.

Key words, assignment problem, average value, probabilistic method, sparse graphs, minimum weight
matching

Given any n x n matrix X {Xii}, the so called assignment problem asks for the
permutation tr*" {1, , n} {1, , n} such that

o(X)= Xi*(i) min E Xicr(i).
i=1 i=1

Obviously the assignment problem can be formulated as a problem on a complete
bipartite graph Kn, with n nodes in each class. The number X0 becomes a weight on the
edge from node of the first class to node of the second, an assignment tr becomes a
matching (a set of n disjoint edges spanning the 2n nodes of Kn,), and a(X) is the value
of a minimum weight matching. The object of this note will be to prove the following.

THEOREM. If {Xii} are independent uniform [0, 1] random variables, then
E{a(X)}<=3.

Surprisingly little seems to have been published about this aspect of the assignment
problem. Kurtzberg [2] gives some simple arguments to show n/(n+l)<-_
E{a (X)} -<_ In n. Donath 1] gives experimental evidence that E{a (X)} is increasing with
n, approaching a limit of about 1.6. He also describes an algorithm for producing good,
but nonoptimal, solutions to the assignment problem and analyses its average behavior
to derive the bound E{a(X)} <_-2.37 However, there are some subtle difficulties
with the description of the algorithm and the accompanying analysis. (Specifically, the
operation of earlier steps tend to condition the probabilities of events at later steps of
the algorithm.) The proof of the Theorem given here avoids these difficulties, but at the
expense of replacing Donath’s practical algorithmic approach with the following result
on sparse graphs proved in [3] using nonconstructive probabilistic methods.

LEMMA 1. Let P(n, d) be the probability ofa matching in a graph selected uniformly
from the class G(n, d) of directed bipartite digraphs with n nodes in each class and
outward degree d at each node. Then

1-P(n, 2)<-(Sn)-1,

X-P(n, d)<-(122)-1 () (d+l)(d-2) for d ->_ 3.

To begin the proof of the Theorem, let Y { Yii} and Z {Zgi} be n x n matrices of
independent identically distributed random variables with common distribution
function

F(h)=Pr{Yq<-h}=l-(1-h)1/z for 0-<_h <- 1.

Received by the editors January 3, 1978 and in revised form September 20, 1978.
f Department of Computer Science, Washington University, St. Louis, Missouri. Now at Department of

Applied Physics and Information Science, University of California at San Diego, La Jolla, California 92093.
This research was supported in part by the Office of Naval Research under Contract NR 044-437.

440

RANDOM ASSIGNMENT PROBLEM 441

Then Xij =min (Yij, Zi) are independent and uniformly distributed on [0, 1], and it
suffices to prove the Theorem for this particular set of random variables. Observe that
F(A) >=H(A)=-A, where H is the distribution function for a random variable uniform
on [0, 2]. If Y.(k) and U(k) denote respectively the kth smallest element in the ith row of
Y and the kth smallest of n uniform variables on [0, 1] then

(1) <=2
2k
n+l"

(Note that there is a small technical difficulty here. There is no trouble with the
definition of Yi.(), but the location of this value in row of Y is clearly ambiguous when
ties occur. This difficulty is overcome easily in all that follows either by understanding all
statements as holding almost surely or by deleting the tie set initially from the
underlying probability space.)

For 1 =<d-< n, let Gd be the random directed bipartite graph on S {sx,..., s,}
and T ={tl,. , t,} where

(&, ti) isan arcof Gd if andonlyif Yq isoneofthe d smallest elements in row of Y.
(ti, si) is an arc of Gd if and only if Zij is one of the d smallest elements in column/’

of Z.
For each d, Gd is a member of G(n, d) and takes on values in G(n, d) with equal
probability, so that Lemma 1 applies. Moreover, these random graphs satisfy

G1 c G2 Gn K’

where K, is the complete directed bipartite graph on $ and T.
Let M denote the set of all subgraphs of K’,, containing at least one matching. For

each d let Me be a partial function over G(n, d) such that Me(G) is an (arbitrary)
matching in G if one exist, and let aa be the (random) sum of weights of the (random)
matching Ma(Ga).
Elementary reasoning shows

E{a (X)} <=E{a2[a2 6M}. Pr{G2 M}

+ E{c3IG3 M, Oz M}. Pr {G M}

+ E{a.IG3 M}" Pr IG3 M}.

(Note that the conditioning events avoid any difficulty with the domain of the partial
function aa.) Substitution of estimates from Lemmas 1 and 2 yields the required
inequality of the Theorem"

3n 6n 1 n(n +4) 34
E{a(X)}=<. 1 + t- --------z

n+l n+l 5n n+l 122n

-<_3 if n_>-2.

LEMMA 2. For 1 <-- d’ <- d <- n,

Pr {Gd M} P(n, d) > O, E{aalGa e M} <- (d + 1)n/(n + 1),

E{adlOdeM, Ga,M}<-(d+d’+l)n/(n+l) ifP(n,d’)<l.

Pro@ The first equation is elementary. (It shows incidentally that the conditional
expectation in the second equation is well defined. However, if d’ is sufficiently close to
n, the third equation can be vacuous.) The validity of the second equation hinges on the

442 DAVID W. WALKUP

fact that Md(Gd) depends only on Gd and not upon Y or Z directly. If some arc (si, ti)
(respectively (tj, si)) is in Md(Gd), then Yij (respectively Zi) has equal probability of
being any of Yi, (1, , Y,(d (respectively Z(I, j, ,Z(d,). The expected value of the
rank will be (d + 1)/2. This, combined with (1) yields the second equation of the lemma.
The proof of the third equation is similar, but for each arc (si, ti) of Md(Gd) which is not
in Gd, the expected rank of Yg in Y, 1, , Yi, (d will be (d + d’ + 1)/2.

REFERENCES

1] W. E. DONATH. Algorithm and average-value bounds for assignmentproblems. IBM J. Res. Develop., 13
(1969), pp. 380-386.

[2] J. M. KURTZBERG. On approximation methods for the assignment problem, J. Assoc. Comput. Mach.,
9(1962) pp. 419-439.

[3] D. W. WALKUP. Matchings in random regular bipartite digraphs, submitted.

SIAM J. COMPUT.
Volume 8, No. 3, August 1979

979 Society for Industrial and Applied Mathematics

0097-5397/79/0803-0017501.00/0

OPTIMAL EVALUATION OF PAIRS OF BILINEAR FORMS*

JOSEPH JA’ JA’t

Abstract. A large class of multiplication problems in arithmetic complexity can be viewed as the
simultaneous evaluation of a set of bilinear forms. This class includes the multiplication of matrices,
polynomials, quaternions, Cayley and complex numbers. Considering bilinear algorithms, the optimal
number of nonscalar multiplications can be described as the rank of a three-tensor or as the smallest member
of rank one matrices necessary to include a given set of matrices in their span.

In this paper, we attack a rather large subclass of three-tensors, namely that of (p, q, 2)-tensors, for
arbitrary p and q, and solve it completely in the case where the field of constants contains the roots of a
polynomial associated with the given tensor. In all other cases, we prove that, in general, our bounds cannot be
improved. The complexity of a general pair of bilinear forms is determined explicitly in terms of parameters
related to Kronecker’s theory of pencils and to the theory of invariant polynomials. This reveals unexpected
results and shows explicitly the dependence on the algebraic structure of the constants; we display, for
example, a pair of 3 3 bilinear forms whose complexity is 3 over the field Z7 and which, however, requires
exactly 4 nonscalar multiplications over the fields Z5 or Z11. Corresponding optimal algorithms are described
and several applications are considered.

Key words, algebraic complexity, bilinear forms, tensor rank

1. Introduction. Computational complexity is concerned with the analysis of the
intrinsic time and space requirements of computational problems. Given a class of
problems, one starts by determining computational models and complexity measures
suitable for this class. The complexities of specific problems of interest belonging to this
class are then studied, coupled with the search for optimal algorithms. In most cases,
this is a very difficult task and only very few cases have been solved completely.

In arithmetic complexity, we consider algebraic problems, typically function
evaluation, and try to find the number of arithmetic operations needed by any algorithm
and algorithms which achieve these bounds. We ordinarily consider the straight-line
arithmetic programs which consist of a sequence of instructions of the form

flalObl,
f2-a2ob2,

/l <’- at bl,

where is an arithmetic operation from {+,-, , /}, ai, bi either belong to K LI
{indeterminates}, K a given "set of constants", or are previously computed/j’s; this
program computes P if there exists i, 1 =< =< l, such that P fi.

A large class of multiplication problems, like the multiplication of matrices,
polynomials, quaternions, Cayley and complex numbers, can be viewed as the simul-
taneous evaluation of a set of bilinear forms; consider, for example, the 2 2 matrix
multiplication p’oblem"

[all a12][b11 b12] =[allbll+a12b21 axlb12+a12b22]
a21 a22-1 b21 bEEJ I-aElbll q- aEEb21 aElb12 + aEEbEEJ’

and the problem can be thought of as the simultaneous evaluation of the four bilinear

* Received by the editors November 8, 1977, and in final revised form November 10, 1978.
t Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania

16802. This work was supported by the U.S. Office of Naval Research under the Joint Services Electronics
Program by Contract N00014-75-C-0648, Division of Engineering and Applied Physics, Harvard Uni-
versity, Cambridge, MA 02138.

443

444 JOSEPH JA’ JA’

forms" B1 alibi1+ a12b21, B2-- a11b12q- a12b22, B3 a21b11+ a22b21 and B4--
aE1b12-t-aEEbE2 with indeterminates-{a11, a12, a21, a2}l-J{bll, b12, b21, b22}.

In general, the problem can be defined as follows- let K be a commutative ring and
let x (xl, x2, , xp)T and y (yl, Y2," yq)T be two column vectors of indeter-
minates; we have to compute m bilinear forms"

p q

Bi . ’. "YiikXiyk xTGiy, 1, 2, m, Yijk K,
j=l k=l

where Gi is a p q matrix with elements in K. In the case when the indeterminates do
not commute, one can prove [26], [27] that it is no loss of generality to restrict the
straight-line programs to, what is called in the literature [7], [14], noncommutative
bilinear programs, where {+,-, } and each instruction fi ai b is either

(i) an addition or subtraction or
(ii) a scalar multiplication, i.e., either a or bi K or
(iii) a multiplication of a linear form in x by a linear form in y over K (nonscalar

multiplication).
The multiplicative complexity of a bilinear program is defined to be the number of
nonscalar multiplications used in step (iii); the reason we ignore the scalar multi-
plications is that (i) K can be chosen so that multiplications by elements of K are
particularly easy, (ii) since the algorithms are noncommutative, we can replace xi’s and
yj’s by matrices in the same way Strassen’s algorithm to multiply 22 matrices is
generalized to arbitrary n n matrix multiplication. Therefore our goal is reduced to
finding a bilinear algorithm using the fewest number of nonscalar multiplications for a
given problem. It is apparent from above that if 6 is the optimal number of (nonscalar)
multiplications needed to evaluate the bilinear forms {Bi}im-_ 1, denoted by 6I,:{G}, then 6
is the smallest number such that

Bi aikrk (x)r’ (y) where aik K,
k=l

rk(X) is a linear form in x, say rk(x)--(b, x), and r,(y) is a linear form in y, say
r(y) {c, y}; hence the above expression can be rewritten as

Bi xTGiy ’. aik(bk, X)(Ck, y)
k=l

aikX Tbky X
T aikbkC y,

k=l k=l
i=1,2,...,m.

Gi aikbkCk, 1, 2," ", m.
k=l

Since a matrix is of rank one if, and only if, it can be written as the outer product of two
vectors, we see that the optimal number 6 is equal to the smallest number of rank one
matrices necessary to include the Gg’s in their span [4], [6], [7], [20]. Another
interesting formulation given in [4], [6] is to introduce a set of indeterminates {si}7’_-
and to consider the trilinear form, called thie defining function,

p q

h(s, x, y)= E siBi Z Z Y TiikSiXiYk.
i=1 i=1 j=l k=l

Since the above equality must hold for all values of the indeterminates x and y over K,
we conclude that

PAIRS OF BILINEAR FORMS 445

It is easy to see that 6 is the smallest number such that

h(s, x, y)= , (a, s)(b, x}(cl, y)
/=1

and we now have a completely symmetric problem with respect to s, x and y; for
example, the above problem is equivalent to the evaluation of the p bilinear forms
associated with the m q matrices

Gi (Yqk), j 1, 2," ", p.

Because of this triality, we can talk about the (m, p, q) problem without any ambiguity.
A partial aspect of this property, called duality, was discovered by Hopcroft and
Musinski [14] and Probert [24] independently. As an immediate corollary, the
complexity of multiplying an m n matrix by an n p matrix is the same as that of
multiplying an m p matrix by a p n matrix for example, and we talk about the
(m, n, p) matrix multiplication problem.

Strassen in [26] observed that the optimal number 6 can be defined as the rank or
length of the (m, p, q) tensor (Yik) i.e., the smallest number such that

(Yiik) Y. al (R) bl (R) Cl, al 6 K", hicK", Cl K, /=1,2,...,6.
/=1

Another interesting observation made in ([4], [6]), and which we will find it often
useful, is that of the characteristic matrix G(s)= i=1 sGi, where {si}?=l, as before, is a
set of indeterminates. Note that the defining function h (s, x, y) is given by: h (s, x, y)
(x, G(s)y) from which we can get two equivalent characteristic matrices (y) and t(x)
defined as follows:

h(s, x, y) (x, G(s)y)= (s, ((y)x)= (y, (x)s).

We use 6K {G(s)}, the degree of G(s), to mean the complexity of the associated set of
bilinear forms over K.

Throughout this paper, we assume that we are dealing with K-nondegenerate
multiplication problems, i.e., no nontrivial K-linear combinations of the type k gk]/iJk

or Yq jYijk or Yi 7"iYijk vanish.
This problem has been studied by several authors ([4], [6], [7], [12], 1-13], [14], [15],

[20]) and only few results are available about the general case. The special cases of
multiplication of matrices, polynomials, quaternions and complex-numbers have
received particular attention [5], [7], [10], [14], [16], [19], [25], [28] and we have
several interesting results concerning these specific cases although the matrix multi-
plication problem, which has motivated this type of research, remains wide open.

In this paper, we attack a rather large subclass of bilinear forms, namely those
corresponding to (p, q, 2)-tensors for arbitrary p and q. There is a mathematical theory
which dates back to 1890 and which has made this particular subclass tractable, namely
Kronecker’s theory of pencils. This theory deals with developing canonical forms for an
arbitrary pencil of matrices G1 +,.G2, A a parameter, under the action of the standard
equivalence group [9]. We now recall quickly some basic definitions and facts about
Kronecker’s canonical forms [9].

A pencil of matrices GI+ AG2 is called regular if (i) both G1 and G2 are square
matrices and (ii) the determinant of Gx 4-AG)_ does not vanish identically in 3,; in all
other cases, the pencil is called singular.

446 JOSEPH JA’ JA’

If {G1, G2} form a nondegenerate singular pencil, then there exist two nonsingular
matrices P and O such that

P(GI+AG2)O--
Lek

where

Z

e+l

e and G1 + AG2 is regular.

The sequences {ei}/= and {’}’/j}7= are called the minimal indices of the pencil G1 + AG2.
Note that if G1 + AG2 is regular, then k r 0. If G1 + AG2 is square, then k r

and vice versa.
We start in 2 by determining the complexity of a singular pair of bilinear forms;

the remaining case of regular pairs is handled in 3, where the dependence on the
underlying algebraic structure is explicit and reveals unexpected results. Several
interesting results concerning the special cases of fields with small cardinalities and of
the integers are discussed in [17] and [18].

It is worth mentioning that there are two prior works concerning this subclass [6],
[12], neither of which has ever mentioned Kronecker’s theory of pencils or the related
theory of invariant polynomials; however, it would be fair to admit that [12] has
originally motivated the interest in this problem.

2. The complexity of a singular pair of bilinear forms. Let B1 =XrGly and
B2 x rG2y be a pair of bilinear forms over a field F; the pair (B1, B2) will be called
singular (regular) if the corresponding pencil G1 +AG2 is singular (regular). In this
section, we will determine explicitly the complexity of a singular pair of bilinear forms.

It is easy to see from Kronecker’s canonical form that the nondegenerate charac-
teristic matrix G(s) corresponding to the above pair of bilinear forms is equivalent to
the following "canonical" characteristic matrix (because the complexity is invariant
under the action of the "equivalence group" [4])

-L(s)

"(sl
Lr (s)

"r(sl

FAIRS OF BILINEAR FORMS 447

where 0 < e E2" Er, 0 < 7Q "02 " "k minimal indices

$2 S1

L(s)= s2 sl. e

$2 S1

e+l
and ((s) is regular.

These minimal indices together with the elementary divisors of GI+AGz
completely characterize, to within an equivalence, the pencil G1 + AG2.

Now we will compute the degree of a block L(s):

-1 0 0 0 0 1 0 0

0 1 0 0 ? sl
0 0 1 0 0..L(s)=s2 + =Sz[/0]+slJ.

0 0 1 0 0

Consider the following rank one matrix

0 0 0 0

D=
0 0 0 0

e, ci-, i=0,1,...,e-1.

0 1 e-1 1

e+l

We now assume that Card => e. Note that

0 1 0

J-D= =[C 0],
1

0 (I

where C is an e e companion matrix whose characteristic (and minimal) polynomial is
p(t) o+ axt +. + a_lt-1 + . Since Card o% >- e, we can pick the ai’s in so that
p(t) has e distinct roots in in which case there exists P Gl(, e) such that

pcp-l= 12. ,i i.e., C Aip-1EiP
i=1

A
where Ei is the e e matrix with 1 on the position (i, i) and 0 elsewhere. Thus

J-D Ai[P-1EiPO]
i=1

and we now have the following decomposition

J Ai[p-1EiPO]+D,
i=1

[/0]= [p-1EiPO].
i=1

448 JOSEPH JA’ JA’

Therefore 6{L(s)} <= e + 1; but since column rank {L(s)} e + 1, 6{L(s)} >- e + 1
and therefore

6{L(s)}= e + 1 if Card _-> e.

Another way to get the same result is to notice that L(s) is equivalent to the
characteristic matrix corresponding to multiplying a linear polynomial by an (e- 1)
degree polynomial. However, in this case, the optimal algorithms are "nonequivalent"
to the above ones [17].

Now it is easy to see that if a characteristic matrix G(s) is made up of k chains
L.(s), i= 1 2,’." k on the main diagonal and zero elsewhere, then 6{G(s)}=
i=1 ei + k if Card ->maxi {ei}. The same arguments apply obviously to L(s). We
now investigate the degree of the following combination

G(s)= [L(s)]TLn(s)

$2 $1 T/

e+l sz

0 T/ "[" 1 S1 "o

$2

S1

whose size is (rt + e + 1) (r/+ e + 1), say m, m. We will prove that

6{G(s)}= m + 1 rt + e + 2 if Card off_>max {e, rt}.

From the previous results, it is clear that

T8{G(s)} <= 6{L (s)} + 8{L,(s)} <= e + 1 + rt + 1 m + 1

and because of nondegeneracy, 6{G(s)}>= m. However, G(s) cannot be of degree m
since otherwise there exists a triplet (A, B, C) such that G(s) CA(s)B, where C, A(s)
and B are m m matrices and hence det G(s) (det C)(det B) 1-Ii=1 (ai, s) with
det C :0, detB 0 and detA(s) 0 [4]; but in our case det G(s)=-O and therefore
6{G(s)} m + 1.

We collect all the previous facts in the following theorem.
THEOREM 2.1. Let be any field with large enough cardinality. Then we have the

following

6{L (s)} e + 1, 6
k

E ei+k
i=1

and

o]7- =e+r/+2.Ln(s)

Remark. From now on, "large enough cardinality" means Card _-> max {8i, 7/i}
whenever we are considering singular pencils.

PAIRS OF BILINEAR FORMS 449

COROLLARY 2.1.1. Over any field with Card => e, the minimal number of
multiplications needed to compute the pair of bilinear forms

Bx xy + x2Y2 + + xY,

B2 XlY2 + x2Y3 +" "+

is precisely e + 1 compared to 2e multiplications needed by the ordinary algorithm.
Similar statements can be made which correspond to the other parts of Theorem

2.1. An example of the actual algorithms will be presented now. Consider the
computation of the pair

B1 XlY14"" +Xnyn,

B2 xy2+x2Y3 +" +Xnyn+l

over a field with Card o%_>_ n. The corresponding characteristic matrix is given by
L.(s) s[I.O]+szJ. Recall that we used a rank one matrix of the form

0 0 0 0

D=
0 0 0

[O0 O1 On-1 1]

0 O1 On- 1

tn--1soastomakethepolynomialp(t)=t"+a._ +...+alt+aohaven distinct roots,
say h 1, h 2, , h,.

Let J-D [H0], then it is easy to check that

V-HV

where V is a Vandermonde matrix given by

1 1

V= il A2
1

Note that (- 1)ai’s are the elementary symmetric functions of the Ai’s. The
corresponding optimal algorithm is the following:

Decompose y as(37 1).Ym+
1. Compute the Vandermonde Transform of x i.e. ZI Vx.
2. Compute Z2 V-I;.
3. Compute each term of the inner product

<Zl, Z2>, say <Zl, Z2>- i)and n+l--Xn. (Oi-lYi-1-Yn+l).
i=1 i=1

31-’- i, B2- lii+n+l
i=1 i=1

450 JOSEPH JA’ JA’

The only step which involves nonscalar multiplications is Step 3 and therefore the above
’Sbilinear algorithm uses n + 1 nonscalar multiplications. Note that the choice of the Ai is

’s give rise toarbitrary as long as they are distinct. Actually, two distinct sequences of Ai
two "nonequivalent" optimal algorithms 17].

Recall that bilinear algorithms are noncommutative and hence the above
algorithm works if the indeterminates {x} and {y} represent arbitrary matrices.

Before proceeding we will need the following result true for any set of bilinear
forms.

THEOREM 2.2. Let {Gi(s) 1, 2,. ., k} be a set o]’ characteristic matrices over
any commutative ring, not necessarily of the same dimensions, with dim s m and let
’W E Sk. Then

Gl(S) Gr(1)(s)

"G(sl

Proofi The proof is straightforward.
Using this theorem we can prove the following interesting lemma.
LEMMA 2.3. Let G(s) be any characteristic matrix over a field with Card ->

max {e, r/}. Then

and

0

0
| {G(s)} + 8{L(s)}= 8{G(s)}+ rt + 1s

0
| 8{L(s)}+ 6{G(s)}-- {G(s)} + e + 1

O(s)

Proof. From the previous theorem we know that

8’L,(s) 0
0 TLn(s) L 0 G(s)

Now applying Theorem 10 of Brockett and Dobkin [4, p. 26] we get

0
| >= 6{G(s)}+ row rank {Ln(s)} 6{G(s)}+ 64{LT.(s)}

G(s)

and therefore

[LT.(s) 0] 6{LT
G(s)

.(sl}+{G(s)}.

The same argument holds for the other case.
We now state the main theorem of this section.

PAIRS OF BILINEAR FORMS 451

THEOREM 2.4 Let by any field with Card >_-max/,/{ei, */i}. Then

k,(s)

L(s)
L,(s)

TL..(s)
O(s)_

k

-i 6{L,(s)}+ Z 6{LT(s)}+6{(s)}
i=1 i=1

k

i ei+r+ Y
i=1 1=1

_Proof. Note that

-L,(s)
o

"L(s)
e 6;{LeI(S)} 4-

LnTI(S)

TLn,(s)
(s)_

-L(s)

L.(sl

LnTI(S)

TL.(s)
d(s)_

Proceeding inductively we get the results.
The regular pencil dl 4-/d2 obtained from the original pencil G1 + AG2 is called

the regular kernel of G + AGE.
COROLLARY 2.4.1. Suppose that the regular kernel of a p q pencil G1 + AG2 is of

size n n and suppose that r (respectively k) is the number of minimal indices for the
columns (resp. rows). Then

6{G(s)} q nl + k 4- :{l(s)} p nl 4- r + 6{l(s)}.

Recall that we are always considering nondegenerate characteristic matrices which
implies here that (r 0 or e > 0) and (k -0 or */1 > 0).

Let us define rank (G1 + AGE) to be the dimension of the largest minor of Gx + AGE
which is not identically zero in h. We now have an in,teresting corollary.

COROLLARY 2.4.2. Let the regular kernel 1 +AGE ofa p q pencil Ga + AGE be of
size n X n 1. Then

6{G(s)} p + q -{nx + rank (G1 + AG2)} + {G(s)}.

Proof Note that

k

ei + */i + n rank (G1 + AG2) p k q r.
i=1 /=1

452 JOSEPH JA’ JA’

Thus k p-rank (G1 + AG2), r q-rank (G1 + AG2). Therefore

8{G(s)} q nl + k + 8{0(s)} q n +{p -rank (G + AG2)} + 8{((s)},
t{G(s)} p + q -{nx + rank (GI + AG2)} + 8{G(s)}.

Let us note here that the dimension nl of the regular kernel ((s) can be determined
directly from the elementary divisors or the invariant polynomials of the original pencil
G +AG2 [9]. However, we will later see that the degree of t(s) will be expressed as
n -[- t/,, where/z will be defined later, so that the complexity of a general pair of bilinear
forms is free from nx.

COROLLARY 2.4.3. Over any field with large enough cardinality, the optimal
number of multiplications needed to compute BI xTGly and B2--xTG2y is equal to

e+r+ Y’. l+k +O,
i= i=

where the ei’S and the qi’s are the minimal indices of the pencil G1 + AG2 and where 0 is
the optimal number of multiplications needed to compute the regular kernel of the given
pair of bilinear forms.

As an example, consider the computation of

B1 XlY1-1- X2Y2 q" x3Y4 -I- X4Ys,

B2 XlY2 " X2Y3 + X4Y4 + X5Y5.

The corresponding characteristic matrix is given by

S1 S2 0 0 0

Sl S2 0 0
G(s) 0 0 s 0

0 0 S2 Sl

0 0 0 s2

whose degree is 6 over any field with Card if_-> 2.
Therefore 6 multiplications are necessary and sufficient to evaluate B and B2 over

any nontrivial field compared to 8 multiplications needed by the ordinary algorithm.
It follows from the above that the real problem comes down to evaluating the

complexity of a regular pair of bilinear forms, a topic which will be discussed in the next
section.

3. The complexity of a regular pair o bilinear torms. Let us recall that a pair of
bilinear forms B1 xTGly and B2--xTGEy is regular if both G1 and G2 are square
matrices such that det (GI+AG2) does not vanish identically in h. In this case, if
Card >_-n, we can pick a 2x2 nonsingular matrix T such that G(Ts) has one
nonsingular matrix; so, without loss of generality (because of the equivalence group
action [4]), we can restrict ourselves to the pencil I, + hG, where G is any n x n matrix
over a field .

LEMMA 3.1. Given any n x n matrix G, then &{I, G} n ifand only if, G is similar
to a diagonal matrix, i.e., G has n distinct eigenvectors.

Proof. Sufficiency is obvious.
Note that any set of n rank one matrices which include I, in their span has to be of

the form {PEEP-1 [P Gl(, n)}, E is the n x n matrix with 1 on the (i, i) position and
zero elsewhere. Now, if 8{I,, G}- n, then G }-’.i--1 l.i, PEeP- for some {h}i=l and
P Gl(, n) from which the result follows.

PAIRS OF BILINEAR FORMS 453

Let us recall from linear algebra that any n n matrix B, over a field @, is similar to
one and only one matrix which is in rational canonical form (also called, first normal
form), i.e., there exists P Gl(, n) such that

pBp-1

A1

Ai is a ki k companion matrix corresponding to the invariant polynomial p(t) of
degree k and pi+x(t)Ipi(t), 1, 2, , r 1. We can get the invariant polynomials of B
as follows"

dn-k+l(B)
pk(t)

dn-k(B)
1 <- k <- r, pr/l(t) pn(t) 1,

where dk (B) is the greatest common divisor of all minors of Int-B of order k[do(B)
1].

To comput.e the degree of the pair {In, B}, we will consider the equivalent pair
{In,/}, where B is the rational canonical form of B.

We first handle the special case where r 1, i.e.,/ is a companion matrix, say

0 1 0

0 0 1 0

B=C=

Olo Ol Ol d

with Card _-> n.

As before, consider the n x n rank one matrix

0 0 0

D=
0 0

/ie, i-O, 1,...,n-I,

it0 1 n-1
the/?’s will be specified later. Then

0 1 0

0
D-C=

0 0 1

whose characteristic (and minimal) polynomial is

p(t) (ao- o) + ()t +... + (an- fln-1)tn- + n.
It is easy to see that we can pick the/’s so that p(t) has n distinct roots in @ and thus so
that D-C is diagonalizable, i.e., there exists P Gl(, n) such that

P-I(C-D)P= , AiEi,
i=1

C AiPEP- +D.
i=1

454 JOSEPH JA’ JA’

Moreover, note that In Yi--1PEiP-1 and therefore 8{I,,, C}<-n + 1 for all a,
0, 1, , n 1 and Card o%-> n. Now from Lemma 3.1, 8{In, C} n if, and only if,

C is diagonalizable, i.e., if and only if, the polynomial q(t)=-aO-alt
an_it

n-1 + has n distinct roots in because the minimal polynomial of C is the same
as the characteristic polynomial q(t). Therefore we have the following theorem.

THEOREM 3.2. Let be any field with Card >- n and let C be an n x n companion
matrix. Then 8{In, C} n ifand only if, the characteristic polynomial ofCfactors into n
distinct linear factors over ; otherwise, 8{In, C} n + 1.

COROLLARY 3.2.1. The optimal number of multiplication needed to compute

B1 XlYl + x2Y2 +" + xny,,,

B2 xly2 + x2Y3 +" + Xn-lyn + OoXnyl + + an-lXnyn,

ai, i=0,2,...,n-1,

is less than or equal to n+l; it is equal to n if and only if q(t)=
-ao-a an_it

n-1 + factors into n distinct linear factors over .
As an application, we consider the multiplication of an n n matrix C of the

following form

X1 X2

X1 X2

X1 X2

X1

by an arbitrary vector y"

-b

1 B1X2Y2
lY2 + X2Y3 B2

Xly B
This is a dual of the problem of the above corollary, where all of the Oi’S are zero so its
complexity is n + 1 compared to 2n 1 mult. used by the ordinary algorithm. The actual
optimal algorithm goes as follows:

Let A 1, A2, , An be n distinct elements of and let (-1)iai be the ith elementary
symmetric function of the Ai’s; V will denote the following Vandermonde matrix

1 1 1

A1 A2 An

An--1 n--1 n--1

1. Compute x + hiX2, 1, 2, , n.
2. Compute r/= v-ly and T/n+l-" -’i=1 aiYi.
3. Compute the nonscalar multiplications,

f ji X rli, i=l,2,...,n

fn+l --X2 ’0n+l.

PAIRS OF BILINEAR FORMS 455

i--1 {0 ifi#n,
4. Then Bi Y’/=I/j J + infn+l, where 8,

1 if n.

The above algorithm works for any n distinct A’s in .
We can pick the A’s, depending on the field and on the particular machine, so as

to make the scalar multiplications "easy".
We now state the main theorem of this section.
THEOREM 3.3. LetG be any n x n matrix over a lieM whose invariantpolynomials

are p(t), 1, 2,. , r, pr+(t) p,(t) 1 with Card =>max {deg p(t)}. Let k be
the number of those pi(t)’s, 1, 2,. , r, which cannot be]’actored into distinct linear
[actors over . Then {I,, G} <= n + k.

Note that if pk(t) factors into distinct linear factors over , then so do all p(t), >= k.
Let’s now consider some examples.
1. Consider the computation of the following set of pairs of bilinear forms

aici + bidi, abici + (a + ,8)bidi + aidi, 1, 2,. , k,

where {a, b, ci, di}k=l are indeterminates and a s/3 are constants in .
The corresponding characteristic matrix is given by

[0 1 1G(s)=shk+s(Ik(R)L) whereL=
-/3 a+

It is clear that {G(s)} 2k since/_, is diagonalizable and therefore 2k multiplications
are necessary and sufficient to compute the above bilinear forms over any nontrivial
field .

2. Consider the computation of

Bx Xlyl + x2y2 + X3Y3,

B2 xlY2 +x2Y3 +X3Yl

over Z5, Z7 and Zll. The corresponding characteristic matrix is given by

G(s) 0 Sl $2 s113-[- s2
s2 0 Sx

This pencil has one invariant polynomial, namely

p(t)=t3-1.
Over Zs, we have p(t) (t- 1)(t2 + t + 1), where t2 + + 1 is irreducible over Z5; hence

z{G(s)}= 3 + 1 4.

Similarly, it is easy to see that z,{G(s)} 4 because p(t) does not split into a product of
distinct linear factors over Zx. However, over Z7 we have

p(t) (t- 1)(t- 2)(t- 4)

and thus p(t) factors into distinct linear factors over Z7, i.e.,

${G(s)} 3.

It follows that the optimal computation of B and B2 takes 4 multiplications over Zs or
ZI and 3 multiplications over ZT.

456 JOSEPH JA’ JA’

We will now state several corollaries to Theorem 3.3. Before, we note that a field
with "large enough cardinality" is understood here to mean Card=>
maxi.i.k {degpi(t), ej, r/k}, where {ej, r/k} are the minimal indices and p(t)’s are the
corresponding invariant polynomials.

COROLLARY 3.3.1. Let :T be a field with large enough cardinality and let B1
XTGly and B2 xrG2y be two p q bilinear forms. Then

8{B1, B2}<-p+q +k-rank (GI + AG2),

where k is as defined in Theorem 3.3 and which corresponds to the regular Kernel

Proof. From Corollary 2.4.2 we have

8{G(s)} p + q -{nl + rank (G1 + AG2)} + 8{G(s)}

and from Theorem 3.3, 6{(s)}-< n + k and therefore

${G(s)} _<-p + q + k -rank (G1 + AG2).

Let us now hasten to make the following remark: To compute k, we do not have to
transform G1 + AG2 into Kronecker’s canonical form and then put the regular kernel in
the form {/, H}; we only have to compute the invariant polynomials of the original
pencil txG1 +AG and determine the number of those which do not factor into distinct
linear factors over . This fact together with several similar facts are established in 17].

COROLLARY 3.3.2.1 Let be an algebraically closed field, then

t{/,, G} _-< n + max {number of nontrivial Jordan chains associated
with a given eigenvalue of G}.

Proof. Before giving the proof, let us recall some basic facts about Jordan
canonical forms.

Suppose that pl(t), p2(t), , p,(t) are the invariant polynomials of G as defined
above. Factor these polynomials into irreducible factors, we have

pl(t) (t-- a1)’ll(t-- ce2)"12" (t--oQ)%’

pE(t)=(t--Otl)ZE(t--a2)r22’’. (t 0I)

Ol)p.(t) (t-al)"’(t-ct2)"2" (t-

where

and

rrs -<- r,s for r <= t.

Recall that the a’s are the eigenvalues and that the nontrivial factors
constitute the elementary divisors of G. With each elementary divisor (t-c)’ is

This was suggested by Professor R. W. Brockett.

PAIRS OF BILINEAR FORMS 457

associated a Jordan block of the following form

of size

Since 6{In, G} -<_ n + k, where k is the number of pi(t)’s which do not factor into distinct
linear factors, it is easy that this is the same as the largest v such that

ri > 1 for some i.

The result follows easily from this observation.
COROLLARY 3.3.3. Let G(s) be a 2 2 nondegenerate characteristic matrix with

dim s 2. Then

where

0 if det G(s) factors into two distinct linear factors over ,
lz 1 otherwise.

Proof. Note, from Kronecker’s canonical form, that if G(s) is nondegenerate, then
it is also regular in this case. Moreover, the only nontrivial invariant polynomial of G(s)
is det G(s). The result follows if we apply Theorem 3.3.

As an application to this corollary, consider the multiplication of two complex
numbers (Xl+ x2i) and (yl + y2i). The corresponding characteristic matrix is given by

G(s)=[s1 s2].$2 --S1

Since det G(s) -s- s22 does not factor into two distinct linear factors over or 2, we
have

6{G(s)} 6{G(s)}= 3

and the optimal number of multiplications is 3 (see also [4]).
We now have a lemma which is really a corollary of Theorems 2.4 and 3.3.
LEMMA 3.4. Let B and B2 be two p q bilinear forms over a field with Card -large enough. Then the complexity of B1 and B2 satisfies

6--<_min p +-, q +

Proof. By corollary 2.4.1, 6 satisfies

=p-nl+r+6{G(s)},

where ((s) is the regular kernel, ni is its size and r is the number of minimal indices for
the rows.

We know, from Theorem 3.3 that

ni 3n18{G(s)}<-_nl+
2 2

458 JOSEPH JA’ JA’

and it is obvious that r <- (q nl)/2. Therefore

3nl +_q6<p_nl+q nl+2 -- P 2

Similarly, we have 6 <= q + p/2 and the lemma follows.
COROLLARY 3.4.1. If B1 and B2 are any two n n bilinear forms, then

i.e., no pair o] n x n bilinear lorms requires more than [3n/2] multiplications.
COROLLARY 3.4.2. ff{B} is a set ofp x q bilinearJorms over a field With large

enough cardinality, then

{B}= N min p +, q +

For p q, the above inequality implies

3ran
{B} <i=1= 4

Remarks. (a) Results similar to Lemma 3.4 and Corollary 3.4.1 have been
established in [2] and [6] in the case where the field is algebraically closed. Our results
are true over any field and, in particular, over finite fields (see also [18]).

(b) Bounds similar to those of Corollary 3.4.2 have been found by Howell [15] in
the case where the constant set is a principal ideal domain.

One may still ask whether the upper bound of Theorem 3.3 is tight or it can be
improved. We first prove that, in general, this bound cannot be improved and we later
show that it is also a lower bound in the case where the first invariant polynomial p(t)
splits over .

Consider the m x m J-matrix defined as follows:

0 1 0
0 0 1

_0

We are ready for the next theorem.
THEOREM 3.5. For each k in Theorem 3.3, we can display a regular pair ofbilinear

forms such that t{I,, G} n + k, where is any field.
Proof. We first exhibit the pair with the highest k, i.e., k [n/21,

[n/2J -1

B1 xiYi, B2 2 x2i+lY2i+2.
i=1 i=o

The corresponding characteristic matrix is generated by I,, and A, where A is the
n x n matrix with In/2] invariant polynomials all of which are equal to p(t) 2", thus,
k In/2] and 6{I,, A} <= [3n/2]. We now prove that it is also a lower bound. For the
sake of clarity, let us assume that n is even. Then we have to compute the degree of the

PAIRS OF BILINEAR FORMS 459

following characteristic matrix"

G(s)

S,2

S1

S1 $2

S1

$2

S1-

blocks.

Rearranging rows, we obtain

O(s)

S1 $2

S1 $2
$1 $2

0 s 0 0 ...0 0
0 0 0 Sl’" "0 0

0 0 0 Sl

Using Theorem 9 of Brockett and Dobkin [4] we have

n6{(s)} ->+minr 6{Gl(s)+ NGz(s)}.

But it is easy to see that GI(S)+ NG2(s) is always nondegenerate and thus t{Gl(S)+
NGI(S)}>= n and hence

n 3n
{O(s)} {d(s)} >_- =+ n

z 2

and it follows that

3n
{O(s)}=.

Similarly, one can prove, using precisely the same type of arguments, that if A is an
n x n matrix which has r Ji-blocks,/" 1, 2, , r, lj > 1, on the main diagonal and zero
elsewhere, then {I,,,A}= n +r with Card _->maxj {li}, and where r is also the
number of invariant polynomials of A which don’t factor into distinct linear factors.

We now prove that the bounds of Theorem 3.3 are always optimal in the case
where the field contains the roots of the first invariant polynomial p(t) (and hence the
roots of all pi(t), 1, 2,..., k).

THEOREM 3.6. Let G be any n x n matrix whose invariant polynomials are pi(t),
i= 1,2,..., r, pr/a(t) pn(t) 1, over a field with Card >_-maxi {degpi(t)}.
Suppose thatcontains the roots ofp(t). Then 3{1, G} >- n + k, where k is the numberof
pi(t)’s which don’t factor into distinct linear]’actors over .

Proof. Let pl(t), p2(t),’" ,pk(t) be the polynomials which don’t factor into
distinct linear factors over 0%. By the properties of invariant polynomials, we have

pk(t) IPk-a(t), Pk-l(t) IPk-2(t), p2(t)I pl(t)

460 JOSEPH JA’ JA’

and therefore pk(t) has a root A of multiplicity greater than one. Assume that

pk(t)=(t--A)’qk(t),

Pk-l(t) (t-- A)-lqk_l(t),

px(t)=(t-A)’lql(t),

where ’Tk > 1 and zi _>-zj for all -> i.
By the theory of invariant polynomials [9], G is similar to a matrix of the following

form

B1
B2

where Bi is a Jordan block of the form

Bk
C1

1

Bi zi x ri fori=l,2,...,k,
1

and Cj is a companion matrix corresponding to the polynomial qi(t), 1, 2,. ., k.
Let H(s)=sI+s2G’ be the corresponding characteristic matrix. Make the

following change of variables,

T T

Sl d-- .S2--- Sl, S2-- S2

Since this is a nonsingular transformation, the transformed H(Ts) has the same
degree. Note that, H(Ts) is given by

H(Ts)

where, as before, J,,(s) is given by

Cl(TS)

S1 $2

S1 $2

J,(s)= ziri, i=l,2,-",k.

S1 $2

S1

PAIRS OF BILINEAR FORMS 461

Using Theorem 3.5, we obtain

],(s). 18 , ri+k.

Moreover, note that the matrix diag {CI(Ts),..., Ck(TS)} is nondegenerate. Apply
now Theorem 10 of Brockett and Dobkin [4] to get

Therefore
8{H(s)} 8{H(Ts)} >-_ n + k.

t{I., G} n + k

and the proof of the theorem is complete.
COROLLARY 3.6.1. Let B1 xTGly and B2 xTG2y be a pair of p x q bilinear

Corms over a field with large enough cardinality. Let pl(t), p2(t), , pr(t), pr+l(t)
pt(t) 1 be the invariant polynomials of the pencil G1 + tG2. If contains the roots

of pl(t), then

g{B1, B2}=p+q + k-rank (G1 + AG2),

where k is the number of pi(t)’s which don’t factor into distinct linear factors over .
COROLLARY 3.6.2. Let B1 and B2 be as defined in Corollary 3.6.1 where is

algebraically closed. Then

8{B1, B2} p + q + k rank (G + G.).

Note that, in the proof of Theorem 3.6, we only used the fact that pk(t) has a
multiple root. Thus, the result is true in the case where pk(t) has a multiple root in -even if it does not split completely over . On the other hand, if pk(t) has a multiple root
in any field " containing , then

8{/, G} _-> 8,{/, G} _-> n + k,

and the result holds true in this case too.
The only case which we could not settle is when some pj(t)’s split into products of

distinct linear factors over a field extension of .
We close this section by conjecturing that our bounds are always optimal.

4. Conclusion and acknowledgments. In this paper, a general class of bilinear
problems has been solved with the aid of deep results from linear algebra. Even though
many important problems have been excluded, these results present a precise analysis
of the complexity of a general pair of bilinear forms and its dependence on the algebraic
structure of the set of constants used. Several ideas and techniques have been developed
which can be used to handle more general problems. However, the general problem
remains obscure and it seems that completely new techniques are needed; the main
issue remains to be the development of new techniques for proving nontrivial lower
bounds.

I would like to express my gratitude to Professor R. W. Brockett for his constant
help, encouragement and continual guidance during his supervision of this research
while the author was at Harvard University. Many thanks to the referees who read the
manuscript carefully and whose comments were helpful.

One of the referees has brought reference 11 to our attention where Gastinel has
obtained upper bounds similar to ours. Recently, Atkinson and one of his students [3]
have established Corollary 3.3.2 independently.

462 JOSEPH JA’ JA’

REFERENCES

[1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

i2] M. D. ATKINSON AND N. M. STEPHENS, The multiplicative complexity of two bilinear forms,
manuscript communicated by Atkinson.

[3] M. D. ATKINSON,. private communication.
[4] R. W. BROCKETT AND D. DOBKIN, On the Optimal Evaluation of a Set of Bilinear Forms, Linear

Algebra and Appl., 19 (1978), pp. 207-235.
[5] ., On the number of multiplications required for matrix multiplication, this Journal, 5 (1976), pp.

624-628.
[6] D. DOBKIN, On the arithmetic complexity of a class of arithmetic computations, Harvard University

Thesis, Cambridge, MA, September 1973.
[7] C. M. FIDUCCIA, On obtaining upper bounds on the complexity of matrix multiplication, Complexity of

Computer Computations, R. Miller and J. Thatcher, eds., Plenum Press, NY, 1972.
[8] C. M. FIDUCCIA AND Y. ZALCSTEIN, Algebras having linear multiplicative complexities, Department

of Computer Science, State University of New York at Stony Brook, Technical Report no. 46,
August 1975.

[9] F. R. GANTMACHER, The Theory ofMatrices, vols. and 2, Chelsea Publishing Company, New York,
NY, 1959.

[10] N. GASTINEL, Sur le Calcul des Produits de Matrices, Numer. Math., 17 (1971), pp. 222-229.
[11] N. GASTINEL, Le Problme De L’Extension Minimale Diagonale D’un Operateur Lindaire, no. 235,

1975, manuscript communicated by one of the referees.
[12] D. Ju GRIGOR’EV, On the algebraic complexity ofcomputing a pair of bilinear forms, Investigations on

Linear Operators, N. K. Nikol’sku, ed., Izdat. "Nauka" Leningrad Otdel., Leningrad, 1974, pp.
159-163.

[13] J. HOPCROFT AND L. KERR, On minimizing the number of multiplications necessary for matrix
multiplication, SIAM J. Appl. Math., 20 (1971), pp. 30-36.

[14] J. HOPCROFT AND J. MUSINSKI, Duality applied to the complexity of matrix multiplication and other
bilinearforms, this Journal, 2 (1973), pp. 159-173.

15] Z. D. HOWELL, Tensorrank and the complexity ofbilinearforms, Ph.D. Thesis, Cornell University, Sept.
1976.

16] T. D. HOWELLAND J. C. LAFON, The complexity ofthe quaternion product, TR 75-245, Department of
Computer Science, Cornell University, June 1975.

[17] J. JA’ JA’, On the algebraic complexity of classes of bilinear forms, Ph.D. Thesis, Harvard University,
Sept. 1977.

[18], Computation of bilinear forms over finite fields, Technical Report CS-78-03, Department of
Computer Science, Pennsylvania State University, Jan. 1978.

[19] J. LADERMAN, A noncommutative algorithm for multiplying 3 3 matrices using 23 multiplications,
Bulletin of the American Mathematical Society, vol. 82, no. 1, January 1976.

[20] J-C LAFON, Optimum Computation of p Bilinear Forms, Linear Algebra and Appl., 10 (1975), pp.
225-260.

[21] Y. MATIJASEVIC, Enumerable sets are diophantine, Dokl. Acad. Nauk, SSSR., 191 (1970), pp.
279-282. (In Russian.)

[22] I. MUNRO, Problems related to matrix multiplication, Proceedings Courant Institute Symposium on
Computational Complexity, New York, Oct. 1971.

[23] M. NEWMAN, Integral Matrices, Academic Press, New York, 1972.
[24] R. PROBERT, On the complexity ofsymmetric computations, University of Waterloo Computer Science

Technical Report CS-73-02, Waterloo, Ontario, Jan. 1973.
[25] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[26], Evaluation of rational functions, Complexity of Computer Computations, R. Miller and J.

Thatcher, eds., Plenum Press, 1972.
[27] Vermeidung yon Divisioven, J. Reine Angew. Math., 264 (1973), pp. 184-202.
[28] S. WINOGRAD, On multiplication of 2 x2 matrices, Linear Algebra Appl., 4 (1971), pp. 381-388.

EFFICIENT ORDERING OF HASH TABLES*

GASTON H. GONNET and J. IAN MUNRO,"

Abstract. We discuss the problem of hashing in a full or nearly full table using open addressing. A
scheme for,reordering the table as new elements are added is presented. Under the assumption of having a
reasonable hash function sequence, it is shown that, even with a full table, only about 2.13 probes will be
required, on the average, to access an element. This scheme has the advantage that the expected time for
adding a new element is proportional to that required to determine that an element is not in the table. At-
tention is then turned to the optimal reordering scheme and the minimax problem of ordering the table so
as to minimize the length of the longest probe sequence to find any element. Both arranging problems can
be translated to assignment problems. A unified algorithm is presented for these, together with the first
method suggested. A number of simulation results are reported, the most interesting being an indication
that the optimal reordering scheme will lead to an average of about 1.83 probes per search in a full table.

Key words, hashing; open addressing; maximum flow; table searching; assignment problem; analysis of

algorithms; asymptotic analysis; simulation

1. Introduction. Hash coding techniques are commonly used to quickly enter
and retrieve information from tables. Indeed, they provide the possibility of retriev-
ing data from an n entry table in a number of probes bounded (on the average) by a
constant, rather than log log n (all logarithms are to base 2 unless otherwise noted)
(Gonnet [4], Yao and Yao [13]) for interpolation search, or log n for binary search.
Recently, Guibas, Knuth and Szemeredi [7,8,9] performed very sophisticated analysis
of the behavior of hashing techniques. The thrust of this work has, however, not
been to provide new and better techniques, but as noted, a more sophisticated
analysis of fairly standard methods. The state of the art of hashing remains essen-
tially as follows:

(i) If chaining (i.e., the additional storage of a pointer as part of each record) is
permitted, then the search for an element which has been hashed to a full table can
be conducted in an average of 1.5 probes. The permanent retention of pointers in
the table is very often unacceptable. We will be concerned with the situation in
which no such auxiliary pointers are allowed, but extra storage may be used to deter-
mine the appropriate insertions to be made. For many applications this is precisely
what is required.

(ii) The usual technique (when chaining is not allowed) of entering an element
by rehashing until an empty location is found (simple open addressing) is quite ac-
ceptable until the table begins to fill. The average search time in a full table is, how-
ever, ln(n)+O(1), and the expected worst case is O(n) (i.e., it will probably take
O (n) probes to find some element, in particular n/2 for the last one inserted).

(iii) Brent [1] has suggested a method of reordering the table slightly as new
elements are inserted. This leads to about 2.49 probes on the average for a retrieval
from a full table, and an expected worst case of O (n /),

* Received by the editors September 6, 1977.

" Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3GI. This
research ’was supported in part by NSERC under grant A8237 and by the University of Waterloo under
operating grant 126-7029. A preliminary version of this paper was presented at the 9th Annual ACM
Symposium on the Theory of Computing (May 1977).

463

464 GASTON H. GONNET AND J. IAN MUNRO

The contribution of this paper is a new reordering scheme which is still practical
and leads to an average of roughly 2.13 probes for retrieval from a full table and,
apparently, an expected longest search of O (log n) probes. Furthermore we exam-
ine the problem of finding the arrangements to minimize the average retrieval time
and to minimize the worst probe sequence. We find a close correspondence between
organizing hashing tables and the assignment problem. For example, some results
reported by Kurtzberg [10] correspond to open addressing hashing. The improve-
ments and bounds obtained by Donath [2] correspond to Brent’s reorganizing
scheme. The Edmonds and Karp [3] algorithm for assignment problems corresponds
to our optimal hashing algorithms.

Several simulation results are presented.

2. A reordering scheme. The essence of our algorithm is that when a key to be
added to the table hashes to a location already occupied, it is essentially irrelevant
which of the two colliding keys is located there, and which is moved to its next
choice. Hence, if only one of them hashes next to a free location, it is placed there,
while the other retains the original spot. Extending this idea another step, if both of
these secondary locations are also occupied, there are (in general) 4 locations at the
next level to check. Carrying the idea to its logical conclusion, we perform a
breadth first search of the binary tree generated by these locations and subsequent
rehashes of the keys encountered until an empty location is found. In the example
of Figure 1, the element to be inserted, a, hashes to a location currently occupied by
b (b may or may not be in its primary location). The secondary location for a is oc-
cupied by c, and the next location for b by d. At the third level, however, we see
that b hashes into an empty spot, and so b is moved there and a is placed in its pri-
mary location. The effect of adding a on the average retrieval time for all the ele-
ments in the system is equivalent to that of being able to insert a in its third loca-
tion.

2nd

3rdS %xt c..

Ist

next

next b next d

FIG. 1. The search conducted in adding a to the table and the
relevant segment of the hashing function.

Note that rather than searching for an empty location by sampling without re-
placement (simply rehashing on a) at a cost of more probe per sample whenever a
search is performed for a, we are essentially sampling with replacement (note the
probing of location 9 on two paths), but at an effective cost of the logarithm of the

EFFICIENT ORDERING OF HASH TABLES 465

number of locations sampled when searches are performed. The fact that an element
hashes into a permutation of the table locations (i.e., a path from any node in the
tree of Figure which always takes the left branch has no repetitions) does not
significantly help us. We note that an elegant implementation of the search is
achieved by representing the search tree as an array with the 2i, 2i+1 heap style
technique of determining, the left and right sons of a node. The binary representa-
tion of the heap position of the first empty location indicates the way in which the
table is to be rearranged.

3. Analyses of the average number of probes required. For purposes of the fol-
lowing preliminary analysis, we assume, that the sequence of probe positions is ran-
dom and independent. Under this assumption, the number of probes, j, needed to
find the first empty position in a table with m locations containing n elements has a
geometric distribution with parameter a, that is (1-a)aJ-1, where a=n/m is the
load factor.

This gives, during the search, an expected number of probes, 1/(l-a), and an
overall average for the first n insertions of

E(accesses ot-l[Hm -Hm -n +1] -ot-lln(1-a),

where Hn is the n th harmonic number.

Counting the root of the search tree to be a depth 1, the average depth at which
the first empty slot is found is

(l--o0aj-l([lOg2jj +I) ct2k-I D(ct).
j=l k =0

There is no known closed form for D(a), although the series, being doubly ex-
ponential, converges very rapidly for a<l. Furthermore an asymptotic analysis [5]
shows.that when a-*l- then

"L_ + P(log2(-log2a))aD(ct) -log2(-log2a) +
2 In 2

+ + + + 0
,l

where P(x) is periodic with period 1, and can be disregarded for practical purposes
since

IP(x)l < 0.0000032.

This means that the last element inserted in a complete table increases the total
path length by:

D rn-I log2m + O(1).
m

D (a), then, represents the expected length of the path to locate the new ele-
ment, plus the increase in length of paths to previously located elements. From the
point of view of determining the average path length, it is the effective contribution
of adding the new element. We conclude, then, that the expected average path
length when n elements have been inserted is

466 GASTON H. GONNET AND J. IAN MUNRO

E (path length) D (k/m) < a- fD (I9) dp
k=0 0

2-kct2k-1 ’(ct) < (1) 2.
k =0

Another quantity which may be of interest is the expected number of moves re-
quired during insertion. Let v(j) denote the number of l’s in the binary representa-
tion of j. Referring back to Figut’e l, we see that the number of elements which are
moved from their previous locations, while making an insertion, is precisely v(j)--1,
where the j th location inspected is the first empty one found. An expression for the
expected number of moves may be derived as

E(moves) (v(j)-l) (1-a)aj-1.
j=l

Decomposing v(j)-l for each of its bit components we have

E(moves a-l(1-a)[(aa+as+a7+a9+...)
+ (ct6+ct7+a 10+ct 11 +ct 14+...)
+ (Ot12+ot13+Ot14+otlS+otZO+ot21+...)...]

ot-l[(ot3--a4+otS--a6+...)
+ (ot6--Ot8+otlO--otl2+...)
+ (Ot12--ot16+Ot20--ot24+...) + ...]

ct3X 2k

k =0 (1 + ot2k)
Again, we know of no closed form for M(a), but it converges rapidly for a<l.

The expected number of moves of elements already in the table per insertion to fill a
table up to a load factor of a is

-!
E(moves) M (a) , M(k /m

rtk=0

a-lfM(p) dp + O(m-l)
0

a-1 2-kin(1 "k’a 2k) + O (m -1)
k=0

< M(1) ln(4)-I 0.386294

This indicates, of course, that complicated sequences of moves happen very rare-
ly.

The approximation of the distribution of the number of probes needed to make
an insertion as geometric is rather good for a load factor of .8 or less. Indeed if it
held for a= we could expect to be able to access information from a full table in
an average of 2 probes. Unfortunately this approximation leads to an error of a few
percent as the table becomes very full. A flaw in the model is that it does not take
into account the fact that short chains of probe positions tend to grow more quickly
than at random. Following an approach similar to Brent [1], we define pi(a) to be
the probability that given that a key, K, is in hs, the s th position of its hash se-
quence, that the next probe positions, hs+l, hs+z,’’’hs+i, are occupied. This

EFFICIENT ORDERING OF HASH TABLES 467

last sequence of occupied positions will be called the chain of K. An equivalent way
of defining pi(o) (or Pi for short) is by

E (number of chains o f. length > i)pi(a)

We will now study the behavior of the quantity tpi(a which represents the pro-
bability of finding a chain of length starting at any random location.

Inserting one key and studying the growth of chains, we derive the following
system of difference equations"

(a+ 1/m)Xpi(a+ 1/m api(o0
ot

(creation of a new chain)
m

+ ;-[p()-p+ ()]m (1 -a) j =0

(extension of a chain by the random placement of the new key)

+ ,1__a
_

Qm j=0

(extension of a chain caused by the binary tree insertion).

Here Qj denotes the sum of the probabilities of all binary trees for which a
breadth first search for a free location ends in a chain of length j. For example we
have

Oo c2(1--p 1){ l+ctp l+ctp lP 2+a2P 2p 2+ct2p i2p +...}
c3(P 1--P 2)P 111 +cp IP 2+o;P 2p 2P 3+a2P P 2P 3 +...

We will now explain each of the summands of the right hand side of the
difference equations in terms of Figure 1.

The first summand comes from the creation of a new chain, in Figure 1, the
chain in positions 10, 9, 3 Note that since a is not yet in the table, the loca-
tions composing this chain are still independent.

The second summand appears from the extension of unrelated chains by the
filling of an empty table position. In the example, location 4 will be filled, and con-
sequently any previous chain (not necessarily related to the present construction) that
was terminated by location 4, will now be extended. Observe that if a chain is ex-
tended (one location) by such an insertion, it may be extended several more positions
by the random location of other keys. Note that the contributions of the first two
summands are a consequence of any open-addressing scheme.

The last summand represents the extension of a chain originating in the binary
tree search. In our example location 4 (and consequently the chain starting at b) has
a higher than random probability of being filled by belonging to the full binary tree
10, 9, 7, 3, 15. The locations in the chain following the empty position are indepen-
dent.

The crux of our use of the pi(ot) is that they carry information concerning the
expected length of a chain which, intuitively, we expect to be larger than for uniform
or random probing.

468 GASTON H. GONNET AND J. IAN MUNRO

This model is not exact; there are several approximations. The most significant
is that after insertion, some keys may be moved forward. This will reduce the length
of a particular chain, (b in the example will now be located in position 4) while it in-
creases the length of the new one (a will be guaranteed to have a chain of length 2).
The total effect on the average length of a chain cancels out exactly, but it may alter
the distribution of the pi(a) slightly.

Straightforward manipulation of the above expressions shows that the total in-
crement in the number of accesses is given by

D*(ct) +ct+ot2p l+a3p ?p 2+a4p 14p p 3+aSp 18p 24p p 4+...
and the average number of accesses is then

"*(a) a-1 fD *(t) dt
0

Taking the limit as m-0 in the above equations we derive an i.nfinite system of
differential equations. We can find the solution in terms of a power series in a, ob-
taining

*(a) +ct/2+a3/4+or4 15-a5/18+ 17ot6/105+ 53a7/720-.
This series does not provide a reasonable method of determining *(a) as a ap-

proaches to 1, but we can obtain reasonably good numerical approximations by nu-
merically integrating the system of differential equations.

A similar analysis on the expected number of moves can also be performed.
Using the pi(a), we define

M*(a) a2(1-pl)ll+ap l+2ap lP2+a2p ?p2+
+ a3pl(Pl-P2)[l+aplP2+...]+...

and

.*(a) a- fM*(t) dt.
o

Table shows *(a)and *(a)obtained by numerical integration.
We observe that the numerically computed *(a) is, in each case, slightly

smaller than M(a). This may appear inconsistent, but is explained by the fact that
long chains do not require more moves.

A number of simulations were performed in order to test the accuracy of our
analysis. These, and all our other hashing experiments, use the double hashing
scheme noted in the appendix to generate the hash probe sequences. This was done
in order to make extensive testing feasible. We claim that for all the insertion
schemes that we use, there will be no noticeable difference between this scheme and
that of random probe sequences. The appendix contains a comparison of the two
methods of probe sequence generation for fairly small tables.

Table 2 shows a typical experiment on a table of size 997 with various load fac-
tors (the 4- terms indicate 95% central confidence limits). It is tedious, but not
difficult, to rework our predictions of average behavior for the non-asymptotic case
and see that for all intents and purposes the limiting behavior is achieved with tables
of a few hundred elements. For this reason we are able to compare our experimen-
tal results with predicted asymptotic behavior. Note that in all cases our theoretical
average is well within the confidence interval of the experimental, and furthermore it

EFFICIENT ORDERING OF HASH TABLES 469

TABLE
,4 verage number ofaccesses and moves for

Binary Tree hashing

a D*(a) M*(a)

0.20 1.10209 0.01159
0.40 1.21746 0.04192
0.60 1.36362 0.09124
0.80 1.57886 0.17255
0.85 1.65554 0.20264
0.90 1.75084 0.24042
0.95 1.88038 0.29200
0.96 1.91376 0.30526
0.97 1.95143 0.32015
0.98 1.99525 0.33733
0.99 2.04938 0.35819
1.00 2.13414 0.38521

is neither consistently higher nor lower. The average p.q.o. (priority queue opera-
tions in the implementation) column is a good measure of the cumulative time re-
quired for all the insertions. Another point of interest is that our preliminary
analysis predicts an average of about 1.56 probes for a large table with ct .8. We
note this is not far off our improved and experimental results. Above this load, how-
ever, the difference becomes more significant reaching roughly .05 at 90% (the es-
timated average is roughly 1.70) and .13 at 100%, since our preliminary analysis
predicts an average of 2.

TABLE 2
Simulation of Binary tree hashing

Size of table 997 number offiles (sample size) 250

occup, number of theor, average average
factor records average accesses max. acc.

average
p.q.o.

80%
90%
95%
99%

798 1.5789 1.58061:1::0.00302 6.1844-0.114
897 1.7508 1.747784-0.00381 7.2724-0.128
947 1.8804 1.878674-0.00433 8.3164-0.152
987 2.0494 2.049914-0.00431 9.6924-0.161

2563.14-15.0
4206.34-31.6
6365.14-68.4
14250.4-242.

Table 3 indicates the behavior of our scheme on full tables.

470 GASTON H. GONNET AND J. IAN MUNRO

TABLE 3
Binary Tree hashing with a full table

file sample average average average
size files accesses max. acc. p.q.o

19 1000 1.89034-0.0138 5.0834-0.0914 106.114-2.26
41 1000 2.00534-0.0105 6.4384-0.0984 331.254-6.41
101 400 2.07584-0.0107 7.8554-0.156 1229.84-33.1
499 100 2.13584-0.0104 10.784-0.357 12612.4-462.
997 50 2.134664-0.00958 11.024-0.443 31587.4-1487.

Another interesting point is the behavior of the average of the maximum
number of probes needed to access any element in a full table. From the analyses of
the insertion scheme we see that as the table becomes full, the depth of search re-
quired for an insertion will become ~log n on the average. Based on this we can ex-
pect the length of the longest probe sequence required to access an element to be
O (log n as well. Our experimental results in Table 3 suggest that may well be very
close to log:z(n)+c (where c is roughly 1).

An efficient implementation of this algorithm, which was used to obtain the
simulation results, is described with the optimal allocation algorithm.

4. The optimal arrangement. It is not difficult to construct examples in which
our ordering scheme does not provide the best possible arrangement of a set of keys,
given their hash sequences. This is a result of the fact that a key tentatively assigned
to the th location in its probe sequence can never be moved to an earlier one, re-
gardless of the new keys added to the table. However, one might wonder how far
from the cost of the optimal arrangement the one outlined above tends to be. Before
making a comparison we briefly discuss the problem of determining the optimal ar-
rangement.

The problem of optimal allocation is, as Rivest [12] has also observed, a special
case of an assignment or minimum cost network flow problem. The solution to the
assignment problem which we outline is essentially that of Edmonds and Karp [3].
and Karp [3]). In the terminology of network flows, we can construct a directed net-
work with nodes

(i) a source, s, and terminal node

(ii) the keys K

(iii) the locations li

and arcs with cost A at a particular time

(s,Ki); A(s,Ki) 0 for all K not assigned
(li,t); A(li,t) 0 for all empty
(Ki,tj); a(g,l) p if g is not assigned to lj and g probes to

lj in its p th probe
(lj,Ki)=-p if Ki is assigned to lj in its p th probe.

EFFICIENT ORDERING OF HASH TABLES 471

The assignment of a new key is translated to an augmentation of the flow from
s to t. This is done by finding a minimum cost path from s to t.

In hashing terms this is equivalent to finding a minimum cost path (way of rear-
ranging) from an unassigned key to an empty table location. For example consider
the probe sequences for the keys K1 to K4 indicated below:

probe positions

K1-- 1, 4, 3, 2
K2- 2, 3, 4,
K3-- 2, 4, 1,3
K4- 4, 2, 1,3

After we assign K -- 1; K2 2 and K4 4 (that is an optimal partial assign-
ment) the resulting network is given by Figure 2.

FIG. 2. The network resulting from an optimal partial assignment
(some arcs are omitted for clarity).

Now if we are to insert K3, we discover that a minimum cost path is
s--K 3-12--K 2--13--t. The cost of this path is 2 and the final assignment is

K 1--1
K 2--13
K 3---/2
K 4---14

which is optimal.

To implement the optimal arrangement we use Dijkstra’s algorithm to find the
minimum cost path from s to t. Although the network contains negative arcs it can
be demonstrated that in our case, this causes no problems. With these considera-
tions, the algorithm can be coded with some redundancies in pseudo Algol 68 as fol-
lows

472 GASTON H. GONNET AND ,l. IAN MUNRO

int n; # is the number of keys to locate in the table #
int m; # is the number of table entries #
[l’m+ 1] int
key, # contains the key number in location i; 0 if not occupied #
cost, # contains number of probes used to locate key in location #
sigma; # used to find a minimum cost path #
[l:m] int path; # used to record a minimum cost path #

for to m+l do key[i] := 0; cost[i] := 0; sigma[i] := 0 od;
zero m- 1;
for p to n do

sigma[m+ 1] := zero;
key[m+l] := source key(p);
clear heap;
:= m+l; ppos := 1;

while true do
heap -- {j,ppos+ 1,sigma[j]-zero-cost[j]+ppos+ 1};
k := probe(key[j],ppos);
if sigma[j]-cost[j]+ppos < sigma[k] then

sigma[k] := sigma[j]-cost[j]+ppos;
path[k] j;
if key[k] 0 then break while fi;
heap --{k,l,sigma[k]-zero-cost[k]+ 1} fi;

{j,ppos,} heap
od;

while k < m+l do
path[k];

key[k] := key[j];
cost[k] := cost[j]+sigma[k]-sigma[j];
k:=j
ad;

zero zero-m-
od;

Program Notes"

Probe (Key,p) gives the p th probe position of Key. The vector, cost, can be
avoided if we are able to compute probe-t(Key,/) p easily. The vector, path, is
needed only to perform a simple and efficient trace-back through the minimal path.
Note that the hashing function should not be linear probing, since for that scheme
any ordering produces the same average number of accesses (Peterson [11]).

To implement a priority queue we use a heap which stores records of three com-
ponents. Each record represents a node in the network. The first component
identifies the associated key, the second, its next probe position, and the third, the
path cost up to the node in question. The third element is the ordering value for the
priority queue. The use of the variable, zero, is to avoid the initialization of the par-
tial cost vector, sigma, for each key. It is worth noting that if we change the state-
ment

heap "-Ik,l,sigma(k)-zero-cost(k)+ 1}

EFFICIENT ORDERING OF HASH TABLES 473

to
heap "-{k,cost(k)+ 1,sigma(k)-zero+ 1},

in the code above, we obtain an algorithm that only searches for an optimum by
moving keys forward in their probe sequence. This is, except for the order in which
a level of the binary tree is inspected, our .previous algorithm.

Tables 4 and 5 summarize simulation results performed with the optimal algo-
rithm.

TABLE 4
Simulation results for. Optimal Hashing

Size of table 997 Number ofsample files 75

occup, number of average average average
factor records accesses max. acc. p.q.o.

80% 798 1.489024-0.00416 4.44-0.112 7456.4-230.
90% 897 1.61039:1::0.00432 5.1467:1::0.0888 27973.::1:1431.
95% 947 1.689184-0.00586 5.684-0.118 79757.4-4052.
99% 987 1.785144-0.00583 6.773::t::0.126 223262.::1::6931.

TABLE 5
Simulation of Optimal Hashing for full tables.

file sample average average average
size files accesses max. acc. p.q.o

19 1000 1.72895-1-0.0107 4.3854-0.0710 224.134-5.46
41 500 1.78283-1-0.0111 5.296-1-0.105 888.34-26.2
101 200 1.798374-0.0105 6.34-0.175 4611.4-157.
499 50 1.82381:1:0.0110 7.92:t:0.358 89937.4-4334.
997 50 1.827944-0.0.0639 8.98:t:0.382 332365.4-12373.

5. Minimax arrangements. Another natural problem is that of arranging a set
of keys in a table such that the length of the longest probe sequence to access any
element is minimized, Among all possible minimax configurations we would, of
course, like to find the one which produces the minimum average number of
accesses. The simulations reported in Section indicate that our original scheme
produces an average worst case of about log n in a full table. Gonnet [6] has
demonstrated that for the minimax allocation the average length of the longest probe
sequence is bounded below by ln(n)+O (1).

With a small variation in the optimal algorithm of the preceeding section we
can derive a minimax allocation. The change is, simply, not to insert a record in the

474 GASTON H. GONNET AND J. IAN MUNRO

heap when its probe position exceeds the current minimax. Since, in the creation
phase, we do not know the value of the minimax, we try the procedure for minimax
values of 1, 2 until it does not fail (i.e. the heap never empties before finding an
empty table position). The bound noted above suggests that the run time will be
multiplied by ln(n). As a practical approach, we can improve this by finding the
.smallest value for the minimax such. that at least n different table locations appear in
the first minimax probes of the n keys.

The following algorithm constructs a minimax optimal hashing table based upon
the above remarks.

int n; # is the number of keys to locate in the table #
int m; # is the number of table entries #
[l’m+ l] int
key, # contains the key number in location i; 0 if not occupied #
cost, # contains number of probes used to locate key in location #
sigma; # used to find a minimum cost path #
[l:m] int path; # used to record a minimum cost path #

uniq := O;
for to m do key[i] := 0 od;
for col to m while uniq<n do

minmax col;
for p to n do

k := probe(source key[p],col);
if key[k] 0 then

key[k] := 1; uniq := uniq+l fi
od

od;
start:
for to m+l do key[i] := O; cost[i] :-- O; sigma[i] := 0 od;
zero -m- 1;
for p to n do

sigma[m+ l] := zero;
key[m+l] := source key(p);
clear heap;
j’=.m+l; ppos’= 1;
while true do

if ppos<minmax then
heap [j,ppos+ 1,sigma[j]-zero-cost[j]+ppos+ l} fi;

k := probe(key[j],ppos);
if sigma[j]-cost[j]+ppos < sigma[k] then

sigma[k] := sigma[j]-cost[j]+ppos;
path[k] j;
if key[k] 0 then break while fi;
heap -- Ik,l,sigma[k]-zero-cost[k]+ fi;

if empty heap then minmax := minmax+ 1; goto start fi;
Ij,ppos,} -- heap
od;

EFFICIENT ORDERING OF HASH TABLES 475

while k < m+l do
:= path[k];

key[k] := key[j];
cost[k] :-- cost[j]+sigma[k]-sigma[j];
k’=j
od;

zero zero-m-
od;

Tables 6 and 7 report our simulations of minimax hashing.

TABLE 6
Simulation results for Minimax Optimal Hashing

Size of table 499 Sample size 100

occup, number of average average average
factor records accesses max. acc. p.q.o.

80% 399 1.493784-0.00670 3 4-0
90% 449 1.648294-0.00785 3.054-0.0429
95% 474 1.699454-0.00704 3.994-0.0196
99% 494 1.788244-0.00774 5.124-0.0893

4464.4-198.
22120.4-1744.
41644.4-2787.
77304.4-4815.

TABLE 7
Simulation of Minimax Optimal Hashing for full tables.

file sample average average average
size files accesses max. acc. p.q.o

19 1000 1.748584-0.0111 3.9294-0.0622 241.044-7.35
41 600 1.796384-0.0102 4.6654-0.0877 938.24-31.2
101 250 1.807374-0.0102 5.5284-0.140 4851.4-231.
499 100 1.829984-0.00807 7.384-0.287 91915.4-3396.

6. Conclusion. We have examined the problem of arranging elements in a
hash table to reduce the average and also the maximum number of probes required
to access an element. The main results are summarized in Figure 3.

The thrust of our work is toward the thesis that rather full hash tables using
open addressing can still be extremely efficient structures and competitive with chain-
ing techniques. The principal method discussed has the advantages of fast retrieval
and insertion (on the average) even when the table is almost completely full. In

476 GASTON H. GONNET AND 3. IAN MUNRO

terms of both the expected number of probes to access an element and the potential
overhead in making an insertion, it lies halfway between Brent’s limited search for
an insertion route and the optimal assignment. In practice, it seems quite a reason-
able scheme. If, however, the table is more than 80% full and to be referenced an
extremely large number of times, it is probably worthwhile finding the optimal as-
signment

There are a number of interesting problems still open. Clearly the most in-
teresting would be a proof that 1.83 or so probes are required, on the average for re-
trieval from a full but optimally arranged table. Tight analyses of the expected max-
imum probe sequence for an access under our scheme or the optimal average stra-
tegy are also of interest.

Simple Double Hashing

Brent’ s Method

Our Method

Optimal Arrangement
(experimental only)

Chaining

FIG. 3.

7. Appendix. Guibas and Szemeredi [8] show that double hashing is equivalent
to uniform probing up to a certain load factor. However, all techniques discussed in
this paper tend to yield short probe sequences to access elements, even when the
table is full. Therefore we claim that for our purposes there is no significant
difference between random permutations and double hashing, except from the point

EFFICIENT ORDERING OF HASH TABLES 477

of view of overhead. In actually using a hash table, the cost of generating (and re-
taining) random probe positions is prohibitive for large tables. Hence all experi-
ments noted in the body of the paper were performed using a double hashing
scheme, suggested by Brent [1], which is very useful in practice. The table size, m, is
chosen to be prime, the table running from position 0 up to m-1. The primary
hash location of a key is obtained by taking (the binary number represented by the
bit pattern of) the key modulo m, subsequent locations are determined repeatedly by
adding (modulo m) the key modulo (m-2)+1. The table below shows the results of
simulations performed with rather small tables using double hashing (d.h.) and ran-
dom permutations (r.p.). Note that not only do the average number of probes and
average maximum number of probes agree to within their confidence limits in all
cases, but also that in some cases the average for double hashing just happened to be
lower than for random permutations.

TABLE 8
Comparison of Binary tree hashing using
double hashing vs. random permutations.

model file sample average average average
size files accesses max. acc. p.q.o

d.h. 19 1000 1.8903-1-0.0137 5.0834-0.0914 106.114-2.26
r.p. 19 1000 1.90064-0.0142 5.064-0.0904 107.24-2.26

d.h. 41 1000 2.00534-0.0105 6.4384-0.0984 331.254-6.41
r.p. 41 1000 1.99974-0.0101 6.4064-0.0942 333.214-6.23

d.h. 101 400 2.07584-0.0107 7.8554-0.156 1229.84-33.1
r.p. 101 400 2.08614-0.0108 7.9784-0.179 1292.74-36.7

Acknowledgment. The authors thank Richard Lipton and Stanley Eisenstat for
many fruitful discussions on the subject of optimal hash assignments and the referee
for his/her very precise comments on an earlier manuscript.

REFERENCES

[1] R. P. Brent, Reducing the retrieval time of scatter storage techniques, Comm. ACM, 16(1973), pp.
105-109.

[2] W. E. Donath, Algorithm and average-value bounds for assignment problems, IBM J. Res. Develop.,
13(1969), pp.380-386.

[3] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow
problems, J. Assoc. Comput. Mach., 19(1972), pp. 248-264.

[4] G. H. Gonnet, Interpolation and Interpolation Hash Searching, Doctoral Dissertation, University of
Waterloo, Computer Science Dept. Research Report 77-02, Waterloo, Ontario.

[5] Notes on the derivation of asymptotic expressions from summations, Information Processing
Letters, 7(1978), pp. 165-169.

[6] Average lower bounds for open-addressing hash coding, Proceedings of the Conference on
Theoretical Computer Science, University of Waterloo, Waterloo, Ontario, Canada, August
1977, pp. 159-162.

478 GASTON H. GONNET AND J. IAN MUNRO

[7] L. J. Guibas, The analysis of hashing techniques that exhibit k-ary clustering, J. Assoc. Comput.
Mach., 25(1978), pp. 544-555.

[8] L. J. Guibas and E. Szemeredi, The analysis of double hashing, J. Comput. System Sci., 16(1978), pp.
226-274.

[9] D. E. Knuth, The Art of Computer Programming, Vol IH, Sorting and Searching. Addison-Wesley,
Don Mills, Ont (1973).

[10] J. M. Kurtzberg, On.approximation Methods for the assignment problem, J. Assoc. Comput. Mach.,
9(1962), pp. 419-439.

[11] W. W. Peterson, Addressing for random-access storage, IBM J. Res. Develop., 1(1957), pp. 130-146.

[12] R. L. Rivest, Optimal arrangement of keys in a hash table, J. Assoc. Comput. Mach., 25(1978), pp.
200-209.

[13] A. C. Yao and F. F. Yao, The complexity of searching an ordered random table, Proc. 17th Annual
IEEE-FOCS Symp., Houston, Texas, Oct. 1976, pp. 173-177.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0001 $01.00/0

OPTIMAL AND NEAR-OPTIMAL SCHEDULING ALGORITHMS FOR
BATCHED PROCESSING IN LINEAR STORAGE*

J. R. BITNER" AND C. K. WONGt

Abstract. In this paper, we consider the accessing of batched requests in a linear storage medium. The
batch size is assumed fixed and the access probabilities of individual records known. For a given arrangement
of records in the storage, we consider the problem of read/write head scheduling to minimize the expected
access time for a batch measured in terms of the distance traveled by the head. In the first part of the paper,
several simple algorithms are proposed, analyzed and compared. The effect of different record arrangements
is also discussed. In the second part of the paper, a family of algorithms called B-optimal rules are described.
When B is, an oo-optimal rule is indeed optimal in the sense of minimizing expected distance traveled by the
head per batch when accessing an arbitrarily large number of batches. A procedure to calculate an oo-optimal
rule for any given record arrangement is described, which is based on the idea of "discrete dynamic
programming".

Key words. Batched processing, expected access time, read/write head scheduling, minimization of disk
seek time, linear storage medium, near-optimal algorithms, optimal algorithms, scheduling algorithms,
B-optimal algorithms, -optimal algorithms, organ-pipe arrangement of records, discrete dynamic pro-
gramming

1. Introduction. The problem of positioning a set of records in a linear storage
medium in such a way that the expected access time is minimized has been thoroughly
studied [1]-[4] when consecutive accesses are independent and the frequencies are all
known prior to the placement of the first record. Tape is the prototypical linear storage
medium but, when minimization of disk seek time is of interest, it is useful to view the
cylinders as forming a linear store. (See, for example, Chapter 5 of [5].) It is sufficient to
know the relative frequency of access to the individual records and the optimal solution
is obtained by placing the most frequently accessed record and then repetitively placing
the next most frequently accessed record alternating between the position immediately
to the right of those already placed and the position immediately to the left (the
so-called organ-pipe arrangement).

In [6]-[7] the 2-dimensional version of this problem is studied while in [8] the
problem of placing records when relative frequencies are not known in advance is
discussed. However, in all these works it is assumed that requests to records are
processed sequentially, i.e. one request at a time on the first-come-first-served basis.

In the present paper, we shall consider the accessing of hatched requests, i.e. we
process a fixed number (a batch) of requests at a time. The advantage of batched
processing has been discussed thoroughly in [9]. We make the same assumption as
before, namely, consecutive accesses are independent and the frequencies are known.
Our objective is to minimize expected access time for a.batch. Here access time is
measured by the distance traveled by the read/write head.

In this model, two problems arise immediately. First, for a given arrangement of
the records, what is a good scheduling algorithm (or rule for short) for the head
movement? Second, what is a good arrangement of the records?

In this paper we address ourselves primarily to the first problem since we believe
that the organ-pipe arrangement is the best arrangement for most reasonable rules. In
fact, we prove this for the two simple rules discussed in 3.

* Received by the editors March 29, 1978, and in final revised form September 15, 1.978.

" Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712. The research
of this author was supported in part by the University Research Institute at the University of Texas at Austin
and NFS Grant MCS 77-02705.

IBM T. J. Watson Research Center, Yorktown Heights, New York 19598.

479

480 J. R. BITNER AND C. K. WONG

In 4, we study a more complicated but intuitively appealing rule, which can be
regarded as a member of the family of rules called B-optimal rules studied in 5. The
case when B is the subject of 6. An o-optimal rule is in fact optimal (in the
original sense of minimizing expected access time per batch while accessing an
arbitrarily large number of batches). For general B-optimal rules (including B), a
finite number of computational steps suffices to determine them completely (for a given
record arrangement). Therefore, one can in practice compute an optimal rule and use it.

2. Formulation of the problem. Let the locations of a linear storage be labeled
1, 2,. , n from left to right. We use a row n-vector to represent the arrangement of
records, e.g. (R1," , Rn) means record R is at location for all i. Let Pi be the access
probability of record R for 1, 2,. , n. Then ’= Pi-- 1. At time t, b requests are
generated (with repetitions allowed) according to these probabilities. Let L -<_ L2 <-
Lb, 1 <= Li <: n, be the b locations where the requests are made. From now on, L1, Lb will
be referred to as the left and right extremes respectively and will be written as L and R.
Suppose the current head location is x, 1 _-< x _-< n. A rule specifies the order in which the
head goes through L, Lz,..., Lb, starting from x. The head stops when all locations
have been visited. Let the stopping location be y. The location y will be the starting
location for the next batch, i.e. for time + 1. Let d(x, y) denote the distance traveled by
the head from x to y, whose expected value is our cost. In the preent paper, we are only
interested in rules whose cost has a definite value. For example, rules whose behavior
can be modeled by a Markov chain. A more formal definition of rules will be given in
6. Our objective is to find rules with as small a cost as possible. In general,we denote

the cost by C or C(R,...,Rn) if the accord arrangement (R1,"’,Rn) needs
emphasis.

3. Two simple rules. In this section, we propose and analyze two simple rules
which are called the Leftist and Alternating rules.

Leftist rule. From the current head location x, move to the extreme L, then sweep
across to the right extreme R, and stop.

A Rightist rule can be similarly defined. That is, the head moves to the right first
and then sweep left.

Alternating rule. When the time is odd, use Leftist rule, otherwise use Rightist
rule.

Let COSTL, COSTR, COSTA be the cost functions of the Leftist, Rightist and
Alternating rules respectively. Also, define

Ai Prob (L => i)
i=i

O Prob (R _-< i)

By symmetry, COSTL =COSTR (see Corollary 1). We shall derive closed form
expressions for COSTL and COSTA.

LEMMA 1. E(RANGE) E(R -L)=’-2) (1-Ai+-Oi).
Proof. Define

1 if record Rj is at L or R, or is in between,
otherwise.

SCHEDULING ALGORITHMS 481

Then E(RANGEb) [Y’.7=l E()]- 1 [=1Prob (Ii 1)]- 1. But

Prob(Ii=l)=l- p p
i=1 i=/+1

the result follows from substitution.
THEOREM 1.

n--1 n--1

(a) COSTL=E(RANGEb)+ (l+hi+l)(1-pi)+ E hi+lPi
i=1 i=1

(b) 2.E(RANGEb)-[- 2 2 ,i+xpi
i=1

(c) 2 (1- Ai+l)(1-
i=1

Proof. Let L and R be the left and right extremes for the current batch and Ro the
right extreme for the previous batch. COSTL consists of moving from Ro to L, then from
L to R, hence

(1) COST E(RANGE) +E(IRo- LI).

Note that

(2)

(3)

(4)

E(IRo- LI) E Y. Ir- sl. Prob (R0 r, L s),
r=l s=l

Prob (Ro r) Prob (Ro _-< r) Prob (R0 _-< r 1) pr Or-1,

Prob (L s) As- As+l.

Since Ro and L are independent,

E(lgo-tl)- Ir-sl" (Or--Or-1)(ls--s+l)
r=l s=l

(5) "-E (Or--Or-l) E [r-sl(&-&+l).
r=l s=l

The inner sum Ir 11,1+Z-s=l (Ir-s-ll-lr-sl)As+l+lr-nlA+l-lr-ll-
r--1 n--1s=l As+l+ Y.s=, hs+lsince 1, hn+l 0 and

[r_s_ll_lr_sl_{-1 ifr>s,
1 if r<=s.

After substituting into (5), we further simplify the expression by splitting the sum,
changing an index and recombining. Noting that po 0 and p,, 1, we obtain the
expression for E([Ro-LI) as specified in (a). Equations (b) and (c) follow from
straightforward manipulation and Lemma 1.

COROLLARY 1. COST is symmetric, i.e. COSTc remains the same if we replace p
by On-i+1 for 1, , n. Consequently, COSTt COSTR.

Proof. Only note that pi and hi+l are now replaced by An-i+1 and p,-i respectively.
The formula in Theorem l(b) becomes 2 Y.7_21 p,-ih,-i+l. By replacing by n- and
reversing the order of summation, the original formula is obtained.

482 J.R. BITNER AND C. K. WONG

THEOREM 2.

(a)
n--1 n--1

COSTA=E(RANGEb)+ , pi(1-pi)+ 2 ,+(1-,+)
i=1 i=1

n--1

(b) 2 (1 p2 2--Ai+I)
i=l

(c) E(RANGE2b).

Proof. The cost of accessing a batch using this rule consists of" First, either going
from the left extreme of the previous batch (Lo) to the left extreme of the current batch
(L) or going from the previous right extreme (R0) to the current right extreme (R). Each
possibility has probability 1/2. Second, a sweep across the batch is needed, requiring a
move of E(RANGEb). Therefore

(6) COSTA E(RANGEb)+ 1/2(E(IL Lol) + E(IR Rol)).

Following the reasoning in Theorem 1, we have

E(IL-Lol) (As-As+) Y
s=l m=l

E([R eol) (Or- Or-I) 2 Ir-- ul(o. pu-1).
r=l u=l

These are simplified as in Theorem 1, giving

n-1 n-1

E(lL-gol)= 2 Y X+l(1-Xs+l), E(IR-Rol) 2 2 o(1-o).
s=l r=l

Substituting into (6) proves part (a). Part (b) is obtained by straightforward manipula-
tion. Part (c) is derived by noting 0

2 (Y’,7--1 pi)2b and A 2s (i%s pi)2b so (b) is exactly
the formula for E(RANGE2b). 13

Next, we shall show that COSTL (COSTR), COSTA are all minimized when the
record arrangement is the organ-pipe arrangement.

Define an interchange operation, which, given an arrangement (R1,"" ,R,),
creates a new arrangement as follows: For every i-< [n/2J, Ri and R,-i/l are inter-
changed iff pi>p,-i+. Similarly, a reverse interchange operation creates a new
arrangement by interchanging Ri+l and Rn-i+l iff Pi+l < Pn-i+l. Record R is ignored.

LEMMA 2. The organ-pipe arrangement minimizes the costfunction, C, ofa rule ifC
satisfies the following conditions for every n >= 1:

(1) C is symmetric, i.e., C(R1, , R,) C(R,, , R).
(2) If p, =0, then C(Rx,. R,_I, R,)= C(R,. R,_).
(3) Given any arrangement (R,..., R,), let (R,..., R;,) be the arrangement

created by an interchange operation. Then C(R, , R) >-_ C(R, , R;,).
Proof. We first show that a reverse interchange operation will not increase the cost

function. Consider any arrangement (R1,... ,R,) and let (R’I,...,R,)’ be the
arrangement created by a reverse interchange operation. Consider the arrangement
(Rx,. , R,, R,,_x), where R,,+ has zero probability. Using conditions (1) and (2), we
have C(Rx, , R,) C(R, , R,, R,+) C(R,+, R,,. , R1). Performing an
interchange operation on (R+, R,,,. , R1) produces (R,+, R’,,,. , R I) since R1 is

SCHEDULING ALGORITHMS 483

compared with a record of zero probability and will not be moved. Therefore

C(R,,+,, R,, R)> C(R,+, R Ri)

=C(R’1, R Rn+x)-" C(R’1, .,R),n

proving that a reverse interchange operation will not increase the cost function.
It is clear that we can "sort" any initial arrangement into the organ-pipe arrange-

ment by using a sufficiently long alternating sequence of interchange and reverse
interchange operations. Since each step will not increase the cost, the cost of the
organ-pipe arrangement must be less than or equal to any other arrangement, proving
the lemma.

LEMMA 3. If f(x) is concave (f"(x)<_--0) on an interval [a,b], then for any
a <- x <- Y <- b and e > O, f(x) + f(y) _-> f(x e) +f(y + e). (Of course, we must also have
x -e, y + e in [a, b].)

Proof. Since f"(x) <= 0, f’(x) is decreasing on [0, 1]. By the mean value theorem, for
some u such that x e _-< u _-< x,

f(x)-f(x-e)= f’(u)>-e f’(x)

and for some v such that y _-< v _-< y + e,

f(y + e)-f(y) e f’(v) <- e f’(y).

Then

f(x) f(x e -- e f’(x) -- e f’(y) -- f(y + e f(y). [-1

THEOREM 3. The organ-pipe arrangement minimizes COSTL.
Proof. We show that Lemma 2 holds. Clearly, condition (2) is satisfied. Corollary 1

verifies condition (1). To verify condition (3), let k [(n-1)/2J and rewrite the
formula in Theorem l(b) as

COSTL 2,=1 [(1-(.=1Pi)t’)(1- (i_+1Pi)’)+ (1-(i
n/2

hi2++ 2(1--.,1Pi)t)(1--(, Y.

where the last term is included only ifn is even. This last term can be written as x + x and
then is in the same form as the others with n/2.

Now consider the term for any <-n/2. Let
s sum of the probabilities of the records in {RI,. , Ri} that are not moved

by an interchange operation.
sum of the probabilities of the records in {R 1, , Ri} that are moved.

u sum of the probabilities of the records in {Rn-i+l," R,,} that are not moved.
v -sum of the probabilities of the records in {gn-i+x, Rn} that are moved.
w sum of the probabilities of the records in {Ri+l, Rn-i}.
An interchange operation interchanges the t-records with the v-records. Let T be

this term before the interchange operation and T’ be it after. Then

T= (1-(s + t)b)(1 (U +V + W)b) + (1-- (S + + W)b)(1 (U +V)b,

T’= (1-(s + v)b)(1 (u + + w)b) + (1- (s +v + w)b)(1- (u + t)b).

484 J.R. BITNER AND C. K. WONG

Since s + + u + v + w 1 these can be rewritten as:

T (1-(s + t)b) (1-- (1-- S t)b) + (1--(S + + w)b)(1- (1--S- t-- w)b),
T’= (1 -(s + v)b) (1 --(1 S --V)b) + (1 --(S + V + w)b) (1 --(1 S --V w)b).

It is easy to verify that the function f(X)=(1--xb)(1--(1--xb)) is concave over
[0,1]. Lemma 3 is used withx=s+t, y=s+t+w and e=t-v. (Note that by the
definition of the interchange operation, > v, so e > 0.) Thus, each term is decreased by
an interchange operation, therefore COSTL is decreased, verifying condition (3) of
Lemma 2 and proving the theorem. !-1

THEOREM 4. The organ-pipe arrangement minimizes COSTA.
Proof. The proof proceeds as in Theorem 3. Conditions (1) and (2) of Lemma 2 are

easily verified. To verify condition (3), the formula in Theorem 2(b) is rewritten as

2b

i=i+1

2bCOSTA=, [1-(P/ -(
2b 2b]

]= -i+1

n/2 p])
2b

n/2+

2b

where k [(n 1)/21 and the last term is included only if n is even.
Now consider any term for <- n/2 and define s, t, u, v and w as in Theorem 3. Let T

be the term before the interchange operation and T’ after. Then

T= 1-(s + t)2b--(1--s--t)2b + 1-(s + + w)2b--(1--s--t W)2b,
T’= 1-(s+v)O-(1-s-v) + l-(s +v + w)2-(1-s-v- w).

The function 1- x2 -(1- x)z is concave over [0, 1] and Lemma 3 is used with
x s + t, y s + + w and e t-v to prove the theorem. !-!

COROLLARY 2. E(RANGE) is minimized by the organ-pipe arrangement.

Proof. Theorem 4 shows E(RANGEz) is minimized by the organ-pipe arrange-
ment. The proof also works if an odd number is used instead of 2b.

Next we prove a simple result which compares COSTa, COSTL and the minimum
cost.

THEOREM 5. E(RANGE2b)_-< 2. E(RANGEb).
Proof. Using Lemma 1, we have

n--1

E(RANGEb)-2. E(RANGEb)= Y. 1-(1-h+1)E-(1-p)2.
i=1

Consider any term in the sum and let x i=+ Pi then this term equals 1-(1--xb)2-
(1- (1- x)b)2 which is nonpositive for x in [0, 1]. Since all terms are nonpositive, we
have E(RANGEEb)-2. E(RANGEb) <-_ 0.

COROLLARY 3.
(1) COSTA <_- COST COSTR

for any record arrangement.
(2) Cmin <= CA <- 2 Cmin,

where Cmin is the minimum costfor any rule and any record arrangement; CA is COSTA
when the organ-pipe arrangement is used.

Proof. FromTheorems 1 (b), 2(c), and 5,COST _-> 2. E(RANGEb) >= E(RANGE2b)
COSTA.

SCHEDULING ALGORITHMS 485

From Corollary 2, E(RANGEb) is minimized by the organ-pipe arrangement. Let
this minimum value be Eo. Then clearly, Eo =< Cmin. Therefore by Theorem 2(c) and 5,
CA 2. Eo-< 2. Cmin.]

Therefore the Alternating rule is better than the Leftist or Rightist rule and is never
more than twice larger than the minimum.

For x < y,

For x > y,

Note that

4. The nearest rule. In this section, we study a slightly more complicated rule. In
the next section, we shall see that this belongs to a family of rules, called B-optimal
rules. In fact, this rule is a 1-optimal’rule.

Nearest rule. From the current head location, move to the closer of the two
extremes, then sweep across to the other extreme and stop. In case of tie, choose either
extreme.

Analysis of this rule is harder than for previous rules because it is difficult to
calculate the probability that the head will be at a given position after accessing a batch.
For the previous rules, this was simple. It was either the probability that the given
position was the right extreme, or one-half times the probability that it was either a left
or a right extreme. In the Nearest rule, we know that the head position must be an
extreme, but which one depends on the previous head position.

The head position can be described by a Markov chain where the ith state
(i 1,. , n) corresponds to having the head at location i. Such a chain is irreducible
and aperiodic and hence approaches a unique steady state distribution, g=
(Sl,’’’, sn). This can be found by solving the equation gP g, or equivalently, g(P-
I) 0, where P is the transition matrix of the chain, I is the identity matrix and 0 is a row
vector of zeros.

Let Pxy Prob (head ends up at y head starts at x). Then the transition matrix is
P [pxy]. To compute py, recall that record Ri is at location i, and L, R are the left and
right extremes respectively. Then we have

For x y, px (Px)b. (7)

pxy Prob (R y, L >- 2x- y)-1/2Prob (R y, L= 2x y). (8)

py Prob (L= y, R <- 2x- y)-1/2Prob (L= y, R 2x y). (9)

and

b b

i=u i=u+l

b

i----u i----u

(10)

(11)

Prob(L=u,R =r)=Prob(L=u,R<-r)-Prob(L=u,R<=r-1) (12)

where we consider pi =0 if i< 1 or i> n. Substituting (10), (11), (12), into (7), (8), (9)
yields pxy and hence the transition matrix P.

Note that if L and R are equidistant from x, the rule randomly chooses L or R with
probability 1/2. This is why the second terms in (8), (9) have to be subtracted; otherwise it
is counted twice.

Although P assumes such a simple form, to solve for g symbolically appears
intractable even for simple cases, such as a uniform distribution (i.e. pi 1 In, for all i).

For definitions of terms pertaining to Markov chains, see, for example [10]. Note that g is a row vector.

486 J.R. BITNER AND C. K. WONG

However, given a distribution, n, and b, the resulting system of equations is easily solved
by computer using numerical techniques, giving g. Let COSTer be the cost of the
Nearest rule. Then

COSTer E(RANGEb)+ X s," Prob (L u, R r). min (Ix ul, Ix
i=1 u<--r

Such a calculation was done for several distributions, and the results are shown in Table
3. To simplify the computation, symmetric versions of Zipf’s distribution"

Pi Pn-i+l 1/(2((n/2)-- + 1)H),

and the exponential distribution"

pi pn-i+l r(’/2)-i/(1 r’/2)

n/2 1
where H 2 -’

i=ll

with r 0.9

were used. (Note that the records are in the organ-pipe .arrangement.)
For comparison, we did the same calculation for the Leftist and Alternating rules

(Tables 1 and 2).

TABLE
Asymptotic cost]’or the Leftist rule.

100 200 300

Uniform 133.389 266.803 400.210
Zipf 5 73.584 134.738 192.346
Expo 58.114 60.303 60.327

Uniform 163.603 327.256 490.897
Zipf 10 107.014 200.347 289.465
Expo 80.964 84.836 84.882

Uniform 174.950 349.976 524.982
Zipf 15 126.223 239.489 348.565
Expo 94.276 99.594 99.660

TABLE 2
Asymptotic cost for the Alternating rule.

100 200 300

Uniform 93.498 187.072 280.629
Zipf 15 77.139 149.290 219.704
Expo 58.156 62.615 62.677

Uniform 90.443 180.936 271.418
Zipf 10 69.393 132.831 194.279
Expo 51.784 55.093 55.136

Uniform 81.802 163.628 245.449
Zipf 5 53.507 100.174 144.733
Expo 40.482 42.418 42.441

SCHEDULING ALGORITHMS 487

TABLE 3
Asymptotic cost for the Neasrest rule.

100 200 300

Uniform 80.753 161.529 242.299
Zipf 5 52.135 97.409 140.588
Expo 39.977 41.972 41.999

Uniform 90.408 180.869 271.317
Zipf 10 68.728 131.211 191.617
Expo 51.698 55.121 55.168

Uni(orm 93.498 187.070 280.626
Zipf 15 76.870 148.515 218.327
Expo 58.136 62.726 62.795

From these results and intuition, one would expect COSTs-<COSTA for all
distributions, n, and b. Surprisingly, this is not the case. In the appendix, we show that
there exists a distribution, n, and b such that COSTs > COSTA.

Whether or not the organ-pipe arrangement minimizes COSTs is still an open
question, but we strongly believe the answer is affirmative.

5. B-optimal rules. In this section, we propose a family of rules called B-optimal
rules. When B 1, we have the Nearest rule. When B -c, we have the optimal rule.
The latter case will be discussed separately in 6 since it requires a completely different
approach.

Before proceeding further, it is worth mentioning why the Nearest rule is not
optimal and what exactly the difficulty is in determining an optimal rule. Although
successive batches are assumed to be independent, the final head position for accessing
the current batch is the initial head position for the next batch. Some positions, namely,
those near where we expect the extremes to be, are more "advantageous" as final head
positions, as the expected cost for accessing the next batch will be smaller. An optimal
rule must consider this effect in deciding how to access the current batch and must go to
the extreme that is farther from the initial head position (instead of the closer one) if the
advantage of ending at the closer extreme outweighs the additional cost of moving to
the farther extreme instead of the closer.

Consider the situation where the initial head location is x and exactly B batches of
b records are to be accessed. A B-optimal rule is a rule which minimizes the expected
total distance traveled by the head starting from x going through the B batches of
requests. We define the cost of a B-optimal rule as the expected total distance divided
byB.

Obviously, when B 1, if L and R are the left and right extremes respectively of
the batch and x is the head location, then a 1-optimal rule would be to move the head
from x to the closer of L and R and then sweep across to the other extreme if necessary.
But this is exactly the Nearest rule.

Before we can show rules to be optimal, we have to define what is meant by "rule".
The most general definition is that a rule gives a sequence of positions for the head to
pass through, given the current head position and the extremes of the current and all
previous batches. A rule may be "nondeterministic", giving probabilities that different

488 . R. BITNER AND C. K. WONG

sequences should be followed. The following lemmas restrict the form a B-optimal rule
can take to a more manageable class.

LEMMA 4. I] a rule is B-optimal, then immediately after accessing all the records in a
given batch, the head must be at an extreme.

Proof. If the last record access is not an extreme, clearly records on both sides of this
record (the two extremes) must have already been accessed and we must have already
passed through this record to get from one side to the other. The move into this position
can then be deleted, giving a rule of lower cost, a contradiction. I1

In the following lemma, the total cost for accessing the B batches is divided among
the batches: The cost for accessing a batch begins immediately after the last record in
the previous batch is accessed and ends immediately after the last record in this batch is
accessed.

LEMMA 5. If a rule is B-optimal, it must access a batch by moving directly to an
extreme then sweeping across to the other extreme (if necessary).

Proof. Since all the records are accessed, both extremes must be accessed. Call the
first extreme to be accessed the first extreme and the other the second extreme. If this
rule is B-optimal, the first extreme can be accessed only once. Otherwise, a rule which
behaves like this rule but deletes any movement between accesses to the first extreme
will still access all the records (since both extremes are accessed) and have lower cost, a
contradiction.

Thus, the rule must move to one extreme, then to the other. If it does not do so
directly, a rule which does will still access all records but have lower cost, again, a
contradiction.

LEMMA 6. For every rule whose decisions depend on previous batches, there is a rule
with equal cost whose decisions depend only on the current batch.

Proof. Since the batches are independent, a rule which ignores the previous batches
will cost the same as one that does not. I-i

Note that a rule satisfying the previous lemmas is expressible as a sequence,
dB(x; s, r), dB-l(X; s, r),..., dl(X; s, r) of decision functions, where di(x; $, r) is the
probability that the rule moves left when its head is currently at x for accessing the ith
from the last batch with extremes s and r. A rule is deterministic if for every i, x, s, and
r, di(x; s, r) is either zero or one. We now prove the nondeterministic rules are no better
than deterministic rules.

LEMMA 7. For every nondeterministic rule, there is a deterministic rule with smaller or
equal cost.

Proof. Let M be a nondeterministic rule with cost, COSTer. We show how to
eliminate one nondeterministic decision. The process is then repeated until a deter-
ministic rule is obtained. Choose any di(x;s, r) which is neither zero. nor one and let
COSTL be the expected cost assuming a left move is made at di(x; s, r) and COSTR be
that assuming a right move. Clearly,

COSTM d(x; s, r). COSTt + (1-d(x; s, r)). COSTR

and at least one of COST and COSTR must be less than or equal to COSTer.
Therefore, there is a rule, making a deterministic choice at d(x; s, r) that has cost less
than or equal to rule M. Continuing in this manner eventually results in a deterministic
rule with cost less than or equal to COSTer. l-1

Note that now all decision functions can be restricted to 0-1 function, meaning only
a finite number of rules might possibly be B-optimal.

SCHEDULING ALGORITHMS 489

A final lemma guarantees that an optimal rule is optimal no matter what the initial
head position is. This is important; conceivably one rule might be better than another
from one position but poorer from another.

LEMMA 8. An optimal rule is optimal]or every initial head position.
Proot. (The proof is by induction on B.) For B 0, the proof is trivial, so consider

any B and let rl, r2," rn be rules that are optimal from positions 1, 2,. , n. These
rules must all have the same cost if the first batch is not counted, because they must all
use a (B-1)-optimal rule to access the remaining batches, which, by induction, is
optimal for all head positions. A new rule which accesses the first batch using ri when it
starts at position i(1 <_- <- n), then uses a (B 1)-optimal rule to access the remaining
batches will have the same cost as ri when it starts at position i(1 -<_ -<_ n) and hence is
optimal for all head positions. [3

To define the class of B-optimal rules, we need a sequence of functions, CB(x) for
B =0, 1,..., defined by:

Co(x)=O]:or l<-x<-n,

CB(x) Prob(L=s,R =r). min[lx-sl+fr_a(r),

Ix-rl+f-l(S)]/ E(RANGEb) for l<=x<-n and B 1,2,.
Recursive rule. Let be the number of batches remaining to be accessed and x the

current head position. To access this batch, we have the following rule:
(1) Move to the left extreme, then sweep across to the right if Ix-LI+C-I(R)<

Ix-Rl+Ci-,(Z).
(2) Move to the right, then sweep left if Ix-LI+G-(R)>[x-RI+G-(L).
(3) Do either if Ix-t]/fi_l(g)=lx-gl/fg_(t).

The optimality of this rule and C(x) is proven in the following theorem.
THEOREM 6. Cn (x) is the optimal costfor accessingB batches, with the head starting

at x. The Recursive rule is indeed B-optimal. (Thus it has cost CB(x)/B.)
Proof. (The proof is by induction on B). For B 0, the proof is trivial. Assume then

for all x that Cn (x) is the optimal cost for accessing B batches from x and consider a rule
accessing B + 1 batches from some position y. By Lemmas 4 and 5, an optimal rule can
only access these batches by either:

(1) moving to the left extreme, sweeping across to the right, and then accessing the
remaining B batches in an optimal manner with head starting at R (total cost is
ly -LI+E(RANGEb)+ C(R)), or

(2) moving to the right initially (total cost is ly- RI+ E(RANGEb)+ Cs(L)).
Since the (B + 1)-optimal rule always chooses the option with the smallest cost it

must be optimal, and therefore Cs(x) must be the optimal cost. I-1
Several comments can be made on CB(x). First, it indicates how advantageous it is

to have the head at a given position. The B-optimal rules take this into consideration
when accessing a batch; a rule is willing to spend more than the minimum head
movement on the current batch (by moving to the further extreme first) if Cs(x)
indicates that the difference will be made up on subsequent batches. The shape of Cn (x)
is also quite interesting; at first glance one might expect the best position to be near the
center of the storage. This, of course, is not the best as is clearly shown by Cs (x) (see Fig.
1). The best locations are near the edges (if b is not too small) because that is the
probable location of the extremes.

A final note is that B-optimal rules are not necessarily good rules for accessing long
sequences of batches, especially if B is small. Such rules pay too little attention to the

490 J.R. BITNER AND C. K. WONG

90

80

77

10 20 30 40 50 60 70 80 90 100

FIG. 1. C1(x) for the uniform distribution with n 1O0 and b 5.

position of the head, concentrating only on minimizing head movement. As an example,
the Nearest rule (a 1-optimal rule) can be outperformed by even the Alternating rule
(see Appendix) if a large number of batches are to be retrieved.

6. An 0O-Oltimal rule. In this section, we define and prove correct a procedure to
calculate an c-optimal rule for any given arrangement (R1,’’’, R,). An o-optimal
rule is defined in a manner similar to the B-optimal rules of the previous section. If
COST(x) is the cost of accessing B batches starting from head position x and using rule
r, then the expected asymptotic cost of rule r (COST(r)) is defined to be
limB_,o COST(x)/B. An c-optimal rule has expected asymptotic cost which is less
than or equal to that of any other rule.

The previous section defined a rule for accessing B batches as a sequence of B
decision functions. Though we could define a rule for accessing an infinite number of
batches to be an infinite sequence of decision functions, we will restrict our attention to

uniform rules which consist of one decision function, which is used to access all batches.
It can, in fact, be proven that this restriction is not harmful; by only considering uniform
rules we do find the o-optimal rule (over all rules). However, we omit the proof since it
is long and technical. Besides, this fact is intuitively quite clear. Since the batches are
independent and (unlike the case with a finite number of batches) each batch will have

SCHEDULING ALGORITHMS 491

an infinite number following, there is no intuitive justification for using different
decision functions for accessing two different batches.

We note in passing that the sequences of head positions for a uniform rule is
described by a Markov chain which is closed and irreducible, and hence it approaches a
steady state distribution. If Pi is the steady state probability that the head is at position i,
and ci is the expected cost of accessing a batch from position i, then the expected
asymptotic cost is given by "---x pc. The fact that this is equivalent to the original
definition can be shown in a manner similar to that used in Lemma 10. Note also that an
oo-optimal rule is optimal in the original sense as described in 2.

To develop an algorithm to determine an oo-optimal rule for a given set of
probabilities, we use the idea of "discrete dynamic programming" developed by
Blackwell 11].

The situation in discrete dynamic programming is as follows: we are given a system
with T states (labeled 1,..., T). At any time, the system is in exactly one state. At
intervals of time, we are required to choose any one of a given set of A actions (labeled
1, , A) to be performed. The cost of performing action a in state t is given by c(t, a).
(We will assume all costs are nonnegative.) After an action is performed, the system
moves to a new state. The probability that action a will cause the system to move from
state to t’ is denoted by p(t t’la). A decision function, f is a function from {1, , T}
into {1,..., A} where f(t) specifies that action to be performed in state t. A policy
r (fl, f2, ,) is a sequence of decision functions where f is used to determine the ith
decision.

The correspondence between this terminology and the original problem should be
clear: a state corresponds to an ordered triple (x, l, r) where x is the current head
position and and r are the extremes of the current batch. There are only two actions:
one for moving to the left extreme first, then sweeping across to the right and another
for moving right first. (Note that when we apply an action in a given state, only the x of
the next state is determined: and r are chosen probabilistically.) The correspondence
for costs and probabilities follow directly.

The procedure for calculating the oo-optimal rule starts with an arbitrary rule (we
choose the Nearest rule) and iteratively improves it. At each iteration we assume the
current rule will be used to access all batches except the first and then calculate the best
rule for accessing the first batch. A subsequent theorem shows that the asymptotic cost
for this rule is less than or equal to that for the original rule. This new rule is then used on
the next iteration, and we continue iterating until the new rule and the current rule are
identical. The procedure for calculating the oo-optimal rule is given below.

1. Make the Nearest rule the "current" rule.
2. Calculate fB(x) (the cost of accessing B batches with the head starting at

position x) for the "current" rule. fB(x) is iteratively calculated for B
1, 2,. , using the formula

fo(X)=0

fB(x) Y. Prob (L l, R r). 8(x, l, r)
l,r

where

8(x, 1, r)= I [x-l[+(r-l)+fB_l(r)

Ix-rl+(r-l)+fS-l(l)
The calculation continues until we reach a B such that fn(x)-fn_(x) is nearly
constant with respect to x.

if the current rule goes to first with the
head at x and extremes and r,
if it goes to r first.

492 J.R. BITNER AND C. K. WONG

3. Calculate the "new" rule as follows:
For each x, and r, if

Ix rl- Ix II + lirno [fs (/)-fs (r)] < 0

the "new" rule should move to the right extreme first with head at x and
extremes and r. If this quantity is nonnegative, the rule should move left first.
(Note that limB_,oo []’B(/)-[n(r)] is closely approximated by]B(1)--]n(r) for
some large B.)

4. If the new rule is the same as the current rule, stop. This rule is the m-optimal
rule. Otherwise set the "current rule" to be the "new rule" and go to step 2.

This procedure was used to find the oo-optimal rule for several n and b. The results
are shown in Table 4. The difference between the cost of the m-optimal rule and that of
the Nearest rule is extremely small (compare Tables 3 and 4); in all cases it is less than

TABLE 4
Table ofcost]orthe m-optimalrule assuming

a uniform distribution

100 200

5 80.713 161.452

10 90.394 180.839

15 93.496 187.067

0.05%. This, however, is to be expected for such large values of b. The extremes and the
initial head position will almost always be near 1 and n, and an m-optimal rule will rarely
have a chance to make a decision differing from that of the Nearest rule (moving to the
farther extreme will rarely be "advantageous"). However, even if b is very small, the
difference between the costs of the two rules is still very small. For n 100, b 2 and
assuming a uniform distribution, the cost for the m-optimal rule is 54.971 as opposed to
55.036 for the Nearest rule, a difference of only .1%.

The correctness of this procedure is proven below. In these proofs, we need to
distinguish between rules where one initially has lower cost, but asymptotically, both
have the same cost. Therefore, we need the following definition:

If ci is the cost incurred at time i, the expected cost weighted by (for/3 < 1) is
ci.

The following notations are convenient:
DZFINTIOr 1. If f is a decision function and 7r is a policy, then
?(f) is the column vector whose ith component is c(i, f(i)).
if(t, a) is the row vector whose ith component is p(t ila).
O(f) is the matrix whose (i,/’)th entry is p(i - ill(i)) (state transition matrix).
ffo)(Tr) is a column vector whose ith component is the expected cost weighted by

for using policy 7r if the system is initially in state i. (When the dependence on/3 is not
important, the superscript will be dropped.)

if(f, rr) will denote the vector of costs for using f followed by
We denote the ith component of a vector Y by Y. We say -< 7 iff <_- 37 for every

and < 7 itt _<- and there exists an such that Y < 7i.

SCHEDULING ALGORITHMS 493

Let f(") denote the (finite) policy where f is successively applied n times andf() the
policy (f, f,). Note that in this notation, a policy rr is uniform if[rr f) for some f.

Finally, if rr (fl, f.," let shift (Tr) denote the policy (f2, f3,").
LEMMA 9. Let rr (fl, f2," ") be a policy, then (rr) 6(f) +Q(f) (shift (rr)).
Proof. The (n- 1)-step transition matrix is given by Q(f)Q(f2)"" Q(f,-1), and

multiplying by 6(f,) will give the vector of cost-for the nth decision. Hence

(r)= E ,-1. (O(f)O(f)"" O(f,-l))e(f,,).
n=l

Then

(shift(Tr))-- E "-l(Q(f2)Q(f3)"" Q(fn))-’(fn+l)
n=l

and the lemma clearly follows, l-I
THEOREM 7. Let f be a decision function and 7r a policy, then
(a) If if(f, zr) < ff(zr) then (f()) < (Tr);
(b) If if(f, 7r) > ff(Tr) then (f(o)) > (Tr),

and
(a)’ and (b)’: (a) and (b) also hold if < and > are replaced by <-_ and >-,

respectively.
Proof. We first prove by induction that
Claim" (f("+), r)< (f("), r) for all n >- 1.

For n 1, use Lemma 9 to obtain:

(f’), r) e(f) + Q(f)ff(’rr), (f), r) e(f) + O(f)(f, "n’).

By hypothesis (f, rr)< ff(Tr), and since all entries in Q(f) are nonnegative, we
conclude that Q(f)v(f, r)< Q(f)(rr) and hence if(f(2), rr)< if(f(1), 7r). The
inductive step is proved in exactly the same manner, establishing the claim.

By applying Lemma 9 n times, we obtain

(f"), rr)= ’-O’(f)e(f)+"(r).
i=1

for any n. Since i-.oi(f)(f) is nonnegative for all i, the summation is monotonically
nondecreasing with respect to n. Hence it obviously has (f(o)) i=1 i-O(f)(f) as
its limit as n->co. Since / < 1, the second term approaches zero, and therefore,
lim,_.oo if(f("), r)= ff(f(oo)). From the claim, if(f("), r) is decreasing with n. Hence
ff(f(oo))< if(f, r)< ff(r) proving (a). The proof of (b) is identical except that all
inequalities are reversed. Finally (a)’ and (b)’ are proved by noting that if ([, r) (r)
then (f(oo))= (zr) (again, a simple proof by induction).

LEMMA 10. For any two policies f(oo) and g(OO) the following holds"

If 01iml[ff)(g())-ff(t)(f())]=>0 for all t, then COST (g()) => COST (f()).

Proof. Consider any state and let ci(f) and ci(g) be respectively the cost of
applyingf(and g(OO)at time i, starting in state t. We have then lim_,x [7’= i-(c(g)-
ci(f))] >= O. Letting xr and xg be the steady state costs forf and g(, we decompose
the cost into steady state and transient parts.

ci(f) Xf-- (i(f) ci(g) xg i(g).

494 J.R. BITNER AND C. K. WONG

Using the theory of Markov chains, it can be shown that the 6i can be written in the
following form:

ti(f) px(i)h + p2(i)A 2 +" + pk(i)A ik,

where each pj is a polynomial in and each Ai is a complex number with modulus strictly
less than one. It is easily seen that Y’.--1 &(f) and Y_-x &(g) do not diverge to +00.

Therefore

lira E ’-X(ci(g)-ci(f)) E /3-l(xg-xt)-Y’. i-x(6i(g)-6i(f))
/31 i=1 i=1 i=1

We now claim that xg >- xf. Otherwise xg < xf and the first term in the above approaches
-oo, while the second is bounded, violating the assumption that the limit is nonnegative.

Now consider COST (g<OO))-COST (/oo)). By definition, this equals

lim
y’/B= ci(g) ci(f)

lim
(Y’.= xg xr) (E/= i(g) ti(f))

B--, B -, B
Since the second term is bounded, this equals xg-xr which is nonnegative. Hence
COST (g<)) _>_ COST (foo)). I

We now define an algorithm for calculating the oo-optimal rule. The strategy is one
of iterative improvement; we begin with any policy f<o) and then calculate for each state
the cost of performing a given action at the first time instant, assuming that f<o) will be
used thereafter. This defines for each state t, a set Impr (t, f) of actions that are an
improvement upon performing f(t) at the first time instant. This gives rise to a policy
(g,/oo)) which is better than f<oo). Theorem 6 guarantees that g<) is better than f<oo), and
we therefore use g<O) for our next iteration. This process continues until Impr (t, f) &
for every t. In this case, f<o) is the optimal rule.

The formula for calculating Impr (t, f) is given in the following theorem. To
determine if action a is an improvement over f(t), we calculate for every pair of states x
and y the probability that a will send the system to state x and f(t) will send it to state y,
multiplied by "advantage" of starting in state x over state y when using policy f<oo). This
is summed over pairs and c(t, a)-c(t, f(t)) is added, to reflect the difference in. cost
between performing action a and f(t). If the result is negative, a will be an improvement
over f(t).

THEOREM 8. Let Impr (t, f)= {al[c(t, a)-c(t, f(t))]+[x.y p(t x[f(t)) p(t- yla)
lim0-, [,(x (f(oo) (0 (f()]] < 0}’, then

(1) if Impr (t, f) b for all t, then f is optimal.
(2) If for some t, Impr (t, f) ok, then any g such that for all either g(t)=f(t) or

g(t) Impr (t, f) will have COST (g()) <_- COST (f(o)).
Proof. We begin by establishing the following claim: The condition in the theorem is

equivalent to

lim [)(g, f(oo)) ff0)(f(oo))] < 0.

Proof of claim. Expanding each term by Lemma 9 gives

lim O) (g, fo)) O)(fo))]

lim [c(t, a)+p(t, a)fft)(f))

-[c(t, f(t))+ tip(t, f(t))(o)(f())]]
lim [[c(t, a)-c(t, f(t))]+B[(t, a)-(t, f(t))]ff()(f())].

SCHEDULING ALGORITHMS 495

Expanding the product of/0 and gives that the above equals

I[c(t, a)-c(t,f(t))]+ p(txlf(t))" ff(f’(f(’) +/3 ,p(t yla)"lim
/3--* y

Multiplying the first summation by y p(t yla) (= 1) and the second by xp(t-
xl[(t)), then combining the two sums gives that the above equals

loim [c(t, a)-c(t, f(t))] +/3 Y. p(t xlf(t))p(t yla)" if(f)(f,o))_ if(f)

proving the claim.
To prove part (1) of the theorem, consider any decision function, g, and suppose

Impr (t, f) b for all t. This means that

lim [IZ)(g, f()- (tz)(f())]_-->0 for all t.

Hence there is a/30 such that

for all and all/ such that/0 </3 < 1.

Theorem 6 then implies that

ffo) (g(OO))_ ff0)(f(oo))>__ 0 for all and all/3 such that/30 </3 < 1.

Hence lim0_.l (g(OO))_ (f())]_-> 0 for all and Lemma 10 implies COST (g(OO))
>_-COST(f()) for any g, and hence f(oo) is optimal.

To prove part (2) of the theorem, consider the tth component of any g satisfying the
restrictions of part (2). Either (a) g(t)- f(t)in which case ff)(g, f(oo))= ffo)(f(oo)) for all
/3 < 1 and by Lemma 9, ff)(g(OO))<__ ffe)(f(oo)) or (b) g(t)e Impr (t, f) in which case
lim_, (g, f(oo))_ (f(oo))] < 0, implying in a manner like that in the proof of part
(1) that a,) (g()) __< ff) ([(oo)). In either case, Lemma 10 proves that COST (g()) __<

COST (f(oo)).
Appendix.
Claim. There exists a distribution, n, and b such that COSTer > COSTA.
Proof. We consider an arrangement of 2x records, where the only records with

nonzero probability are at positions 1, x, and 2x. In addition, we add the restrictions that
pl =px. Therefore specifying one of the three nonzero probabilities (say pl) will
determine them all. Thus, there are three parameters that can be independently varied"
x, b, and pl. Later we will choose x and b to be large, and p2, to be small.

Let us reason intuitively why the Nearest rule should have a higher cost than the
Alternating rule for this arrangement. Since pl px 1/2 and b is large, the only batches
with significant probability are {1, x} (called a nonfull batch), and {1, x, 2x} (a full
batch), with the former being much more probable. Since {1, x} is nearly always the
received batch, having the head at position 2x is significantly disadvantageous, and the
Nearest rule has a much higher probability of being at position 2x. The Alternating rule
will be at 2x iff its head is currently at 1 and the batch {1, x, 2x} is received. The Nearest
rule will also move its head to 2x in this case. In addition, it will move to 2x when its
head is currently at x and {1, x, 2x} is received. (It moves to 1 first since it is closer, then
ends at 2x. The Alternating rule is at x, a right extreme, and hence will move to 2x first,
ending at 1.) This argument is a simplification of the actual situation, but does motivate
the chosen arrangement. The following formalizes this argument.

496 J. R. BITNER AND C. K. WONG

During the initial analysis, we assume the only possible batches are {1, x} and
{1, x, 2x}. At the conclusion, we show that other batches can be made so improbable
that they can be safely ignored. Let e be the probability of a full batch. That is,

e Prob (batch is {1, x, 2x}lbatch is {1, x} or {1, x, 2x})

[1 (2pl)b (1-pl)b +pbr]/[1--p- (1-- pl)b],
where 0 <p < 1/2. For any b, e ranges continuously over (0, 1) for values of p in (0, 1/2).
We now fix e at any arbitrary value in (0, 1). Later, when b is chosen, p must also be
chosen to give the desired value for e.

Consider the two rules acting on the given arrangement, with their heads starting at
the same position. It is easy to see that their movement will be exactly the same until
both heads are at position x, the Alternating rule is at a right extreme and a full batch
appears. In this case, the Alternating rule moves right first, then left, and the Nearest
rule does exactly the opposite. We now analyze the difference in the costs of the two
rules for accessing the batches until the heads are again at the same position.

We define a Markov chain of 5 states with the following specifications"
If the heads are at the same position, the chain is in state 0. The other states are

Position for Position for
State Alternating Rule Nearest Rule
1 1 2x
2 2x 1
3 1 x
4 x 1

defined by:

Note that any other pair of head positions is impossible and that if the Alternating rule is
at x, it is known to be a right extreme (resulting from the batch {1, x}), and hence this
rule’s actions are solely determined by the current head position.

It is mechanical to calculate the transition probabilities for each state by observing
what each rule will do when its head is in a given position and a full/nonfull batch is
received. A state-diagram for this chain is shown in Fig. 2. Note each transition has
associated "cost" which gives the "advantage" of using the Alternating rule (the second
number) in addition to its probability (the first number). More specifically, the second
number gives the distance the Alternating rule moves in making the given transition,

e,O 1-e,O

|l
, -x

1,1

FIG. 2. The Markov chain describing the head position of the two rules.

SCHEDULING ALGORITHMS 497

minus that for the Nearest rule. The chain is initially in state 0 and remains there until
both heads are at x and a full batch arrives. Let ci be the expected cost incurred from the
time the chain leaves state until it first enters state 0 (meaning the heads are again
together). We, then, are interested in Co. The ci satisfy the following system of
equations:

Co 1 "- C1,
c=e "c2+(1-e)(c4-x),

c2=e c+(1-e)(c+x),

c=(1-e), c4+e(-x +1),

c4= (l-e) c3+e(Cl+X).

These equations are easily seen: for example, consider cl. With probability e, the
chain goes from c to c2. In this case, the total cost incurred in going from state i to state
0 equals c2. With probability 1 e the chain goes to state 4. Here the total cost will be -x
(the cost of the transition) plus c4.

Solving the equations gives Co -2x(1 e)2 q- 2. Since e has already been fixed, we
can now choose x large enough so that Co will be negative.

We now consider the possibility of an "improbable" batch. The first necessity is to
show that the probability of an improbable batch (PI) can be made arbitrarily small by
choosing b large enough. Since the "probable batches" are those containing records 1
and 3, or records I and 2, but not 3, an improbable batch must consist solely of record 1,
or not contain record 1 at all. Hence pi=p+(1-px)b. Since 0<e<l, we have
0 <p < 1 and hence pi

A Markov chain that considers all batches as possible can be defined. (Since we are
only concerned with the chain’s existence and obvious properties, we will not actually
specify it.) This chain would have a state for the heads being together, and one for each
ordered pair of different positions. (In fact, there must be two states for each ordered
pair where the Alternating rule is at position x" one for x being a left extreme and
another for it being a right.) Now consider b as a parameter. As b is varied, p is always
chosen so that e remains constant. Clearly this chain will be aperiodic and irreducible
for any value of b, and its "cost" can be solved for as in the case of the simplified chain in
Fig. 2, and the limit of the cost as b eo will be exactly the cost of the simplified chain
(the transition probability of all the "improbable" arcs approaches zero).

Since the cost of the simplified chain is positive, b can be chosen large enough to
make the cost of the actual chain positive, proving the claim. !1

REFERENCES

[1] P. P. BERGMANS, Minimizing expected travel time on geometrical patterns by optimal probability
rearrangements, Information and Control, 20 (1972), pp. 331-350.

[2] D. D. GROSSMAN AND n. F. SILVERMAN, Placement of records on a secondary storage device to
minimize access time, J. Assoc. Comput. Mach., 20 (1973), pp. 429-438.

[3] V. R. PRATT, An N log N algorithm to distribute N records optimally in a sequential access file,
Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New
York, 1972, pp. 111-118.

[4] P. C. YUE AND C. K. WONG; On the optimality of the probability ranking scheme in storage applications,
J. Assoc. Comput. Mach., 20 (1973), pp. 624-633.

[5] E. G. COFFMAN, JR. AND P. J. DENNING, Operating Systems Theory, Prentice-Hall, Englewood Cliffs,
NJ, 1973.

498 J.R. BITNER AND C. K. WONG

[6] R. M. KARP, A. C. MCKELLAR AND C. K. WONG, Near-optimal solutions to a 2-dimensional
placement problem, this Journal, 4 (1975), pp. 271-286.

[7] P. C. YUE AND C. K. WONG, Near-optimal heuristics for an assignment problem in mass storage,
Internat. J. Comput. Information Sci., 4 (1975), pp. 281-294.

[8] A.C. MCKELLAR AND C. K. WONG, Dynamic placement ofrecords in linear storage, J. Assoc. Comput.
Mach., 25, (1978), pp. 421-434.

[9] B. SHNEIDERMAN AND V. GOODMAN, Batched searching of sequential and tree structured files, ACM
Trans. Database Systems, (1976), pp. 268-275.

[10] P. B. HOEL, S. C. PORT AND C. J. STONE, Introduction to Stochastic Processes, Houghton Mifflin,
Boston, 1972.

[11] D. BLACKWELL, Discrete dynamic programming, Ann. Math. Statist., 33 (1962), pp. 719-726.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0002 $01.00/0

POLYNOMIAL ALGORITHMS FOR COMPUTING THE
SMITH AND HERMITE NORMAL FORMS

OF AN INTEGER MATRIX*

RAVINDRAN KANNANt AND ACHIM BACHEM:I:

Abstract. Recently, Frumkin [9] pointed out that none of the well-known algorithms that transform an
integer matrix into Smith [16] or Hermite [12] normal form is known to be polynomially bounded in its
running time. In fact, Blankinship [3] noticed--as an empirical fact--that intermediate numbers may become
quite large during standard calculations Of these canonical forms. Here we present new algorithms in which
both the number of algebraic operations and the number of (binary) digits of all intermediate numbers are
bounded by polynomials in the length of the input data (assumed to be encoded in binary). These algorithms
also find the multiplier-matrices K, U’ and K’ such that AK and U’AK’ are the Hermite and Smith normal
forms of the given matrix A. This provides the first proof that multipliers with small enough entries
exist.

Key words. Smith normal form, Hermite normal form, polynomial algorithm, Greatest Common
Divisor, matrix-triangulation, matrix diagonalization, integer matrices, computational complexity

1. Introduction. Every nonsingular integer matrix can be transformed into a lower
triangular integer matrix using elementary column operations. This was shown by
Hermite ([12], Theorem 1 below). Smith ([16], Theorem 3 below) proved that any
integer matrix can be diagonalized using elementary row and column operations. The
Smith and Hermite normal forms play an important role in the study of rational
matrices (calculating their characteristic equations), polynomial matrices (determining
the latent roots), algebraic group theory (Newman 15]), system theory (Heymann and
Thorpe [13]) and integer programming (Garfi!akel and Nemhauser [10]).

Algorithms that compute Smith and Hermite normal forms of an integer matrix are
given (among others) by Barnette and Pace [1], Bodewig [5], Bradley [7], Frumkin [9]
and Hu [14]. The methods of Hu, Bodewig and Bradley are based on the explicit
calculation of the greatest common divisor (GCD) and a set of multipliers whereas other
algorithms ([1]) perform GCD calculations implicitly.

As Frumkin [9] pointed out, none of these algorithms is known to be polynomial.
In transforming an integer matrix into Smith or Hermite normal form using known
techniques, the number of digits of intermediate numbers does not appear to be
bounded by a polynomial in the length of the input data as was pointed out by
Blankinship [3], [4-1 and Frumkin [9].

To alleviate this problem, it has been suggested (Wolsey 17], Gorry, Northup and
Shapiro [11], Hu [14], Frumkin [9]) that the Smith normal form of an integer matrix A
can be computed modulo d (where d is the determinant of A). However this is not
always valid as the following example shows. If we take

* Received by the editors April 19, 1978 and in revised form September 21, 1978. This research was
supported in part by N.S.F. Grant ENG-76-09936 and SFB 21 (DFG), Institut fiir Operations Research,
Universitit Bonn, Bonn, West Germany.

" Institute for Operations Research, University of Bonn and School of Operations Research, Cornell
University, Ithaca, New York 14850.

Institute for Operations Research, University of Bonn, Nassestrasse 2, D-5300 Bonn 1, West
Germany.

499

500 RAVINDRAN KANNAN AND ACHIM BACHEM

then det (A) d 3 and

2 2) =A (mod 3)= 2 2

Comparing the GCD of all entries of A (which is 1) with the GCD of all entries of A
(which is 2) indicates that A and have different Smith normal forms.

Here we present polynomial algorithms for computing the Smith and Hermite
normal forms. All intermediate numbers produced by these algorithms have at most a
polynomial number of digits and the number of algebraic operations (additions and
multiplications) performed is also bounded by a polynomial of the length of the input.
Moreover the algorithms calculate the left and right multipliers (see description below)
and thus prove that their entries are bounded in the number of digits by a polynomial in
the length of the input. We must stress however that no exponential lower bounds have
been proved on existing algorithms.

2. An algorithm for Hermite normal form, An integer square matrix with a
determinant of + 1 or -1 is called unimodular. Post-(pre-) multiplying an (m n)
matrix by a (n n)((m m)) unimodular matrix is equivalent to performing a series of
column (row) operations consisting of (cf. Newman [15]):

1. adding an integer multiple of one column (row) to another,
2. multiplying a column (row) by -1 and
3. interchanging two columns (rows).

These column (row) operations are termed elementary column (row) operations.
THEORZM 1. (Hermite [12]). Given a nonsingular n n integer matrix A, there exists

a n n unimodular matrix K such that AK is lower triangular with positive diagonal
elements. Further, each off-diagonal element of AK is nonpositive and strictly less in
absolute value than the diagonal element in its row. AK is called the Hermite normalform
ofA (abbreviated HNF).

We now give an algorithmic procedure for calculating the Hermite normal form
AK and the multiplier K. All currently known algorithms build up the Hermite normal
form row by row, whereas the new algorithm HNF(n,A) (see description below)
successively puts the principal minors of orders 1, , n (the submatrices consisting of
the first rows and columns 1 <- _<- n) into Hermite normal form. So at the ith step we
have the following pictures. "0" stands for a zero entry of the matrix and "," for an
entrythatmaynotbezero.
e.g.

Bradley’salgorithm[7]

00000000. 0
,0000000. 0
**000000. 0
***00000. 0

i******* ,
* * * * * * ,

ALGORITHM HNF(n, A)" returns (HNF, K).
1. Initialize the multiplier K"

K I (the n n identity matrix).

POLYNOMIAL ALGORITHMS 501

2. Permute the columns of A so that every principal minor of A is nonsingular; do
the corresponding column operations on K:

Use a standard row reduction technique (Edmonds [8]) or see Appendix. If the
matrix is found to be singular, the algorithm terminates here.

Note. This step need not be carried out, if suitable modifications are made in the
rest of the algorithm. However, in the interest of simplicity, we have inserted this step
here.

3. Initialize which denotes the size of the principal minor that is already in HNF:

i-1.

4. Put the (i + 1) x (i + 1) principal minor into HNF: (For any real matrix R, we
denote by R the jth column of R and by R,. (or R) the element in the ith row and jth
column of R).

If n then terminate
else,

for j 1 to
4.1. Calculate r GCD(Aii, Ai,(+I)) and integers p and q such that r

pAii+ qAi,(g+l using a modified Euclidean algorithm (see Appendix)
4.2. Perform elementary column operations on A so that Ai,+x becomes

zero:

D=(p -Aj,(i+l)/f)q Aj,j/r

Replace column j and (i + 1) of A by the two columns of the product

(AjAi+)D

Replace column j and (i + 1) of K by the two columns of the product

(KiKi+I)D

4.3. If j > 1 then call REDUCE OFF DIAGONAL (j, A);
end
5. Call REDUCE OFF DIAGONAL (i + 1, A)
6. Seti=i+landgoto4.

end HNF.
ALGORITHM REDUCE OFFDIAGONAL (k, A). (For any real real number y, Ly]

and [y] denote respectively the floor and ceiling of y.)
1. IfAkg<0setAg=-A andKk=-Kg.
2. For z =l to k-1

set Kz Kz [Akz/Akk Kk
set Az A [Ak/Akk Ak

end REDUCE OFF DIAGONAL.
We divide the proof that algorithm HNF is polynomial into two parts. First we

show that intermediate numbers do not grow "too big". Using this result we prove that
the number of algebraic operations (i.e. additions and multiplications) is bounded by a
polynomial. The first part of the proof proceeds in 3 stages (Lemma 1-3). The simple
fact stated below as a proposition is used many times in the proofs.

502 RAVINDRAN KANNAN AND ACHIM BACHEM

PROPOSITION 1. For any real n n matrix R,

Idet R[-<_ (n.
where IIRII- the maximum absolute value of any entry of R.

Proof. det R is the sum of n! terms each of which is at most I[R in absolute value.
Since n! -< n", the proposition follows.

LEMMA 1. For all 1,. , n

(1) IIA’ II-<- n(nllm 11)=/

(2) Ilg’ll <= n (nllm 111)="
Ai(K i) (i 1,. , n) denote the matrix A(K) after the (i i) principal minor has been
put into HNF by the algorithm (Note that A contains the original data.)

Proof. Clearly, A’ has been obtained from A’ by elementary column operations on
the first columns ofA alone. Thus ifM andN denote the (i i) principal minors ofA
and A respectively, there is a unimodular (i i) matrix/i such that

(3) Mi= giI i.
N is nonsingular, hence/i is unique and is given by/g= (N)-IM. Since
is at most the maximum absolute value of a cofactor of N we obtain (using
Proposition 1)"

Because M is in Hermite normal form we obtain

Idet
-]det

<= (illNil[) <= (iliA 111) -<- (nllA
hence

Further, we have

Thus flAil[<= nllA IIg ll n(nllA’[I)"/. The proof of Lemma 2 below was inspired by a

proof of Edmonds [8].
LZMMA 2. At any stage of the execution of the algorithm,

Proof. Let A’j denote the matrix A after the "do loop" of Step 4 has been executed
for the values and. First, we prove a bound on the entries in the (i + 1) st column of Ai’

and using this, prove a bound on the rest of A at every stage. Let d(i, , k) be the
determinant of the (/" + 1) (/" + 1) submatrix of A consisting of columns 1 through] and
column (i + 1) of A and rows 1 through j and row k of Ai. We show that there are
integers ri,/" 1,. , such that

(4) A’i,l.g+l d(i, j, k)/ri for all k _-> j + 1 and for all j _-< i.

POLYNOMIAL ALGORITHMS 503

For] 1 it is clear that (4) holds with rl GCD (A 1,1, A1,i/1). Suppose the statement
i,pis valid for]= 1, 2,..., p. Let k be such that n->k->p+2. Denote a =Ap/l,p+l,

i,p i,p i,p/ --Ao+1,i+1, T-" Ak,t+l and 8 A,i+I and let a,/T, 3/ and 8’ be the corresponding
elements of Ai’+1.

A + 1 A i’p + 1 A i’p+l + 1

* 00000. * 000000 * 000000
* * 0000. * * 00000 * * 00000
* * * 000. * * * 0000 * * * 0000

p+l-> * * * aO0* * * * aOO fl * * * a’O00
***** 0* ***** 0* ***** 0*

k-> * * * 3/* * * * * * Y* * * * * 3/’* * 8’

Then the matrices ay f16 and
3" 6’

have the same determinant and a’=

GCD(a, fl), hence using the induction hypothesis

6,=a’6’__ a6-fly =ad(i’p’k)-d(i’p’P+
a’ GCD(a,/3) rpGCD(a, fl)

Since the last term above represents the expansion of d(i, p+ 1, k) by the (p+ 1)th
column of A we obtain

16,1_- [A i,p+x,i+11- Id(i, p / 1, k)/rp+xl,

where we set ro/l roGCD(a,/3). Thus, (4) holds. Using Lemma 1 we obtain

A’i+l Id(i,], k)l

<=(nllAill)
=< n" (n (n[lA 11])2"+ 1)n

which gives a bound on the (i + 1)th column of A i,j. For all other columns 1 <- j <- we
conclude

[a,ii[ipA i,] 21 + [ql(n Ila 111(3"2))ka + qA k, +
<_ lP n 1Al1)2,+1

(cf. Step 4.2 of the algorithm). Both p and q are bounded by max {[A-[IAj,i+l l} (see
Appendix). Thus, [IAII -< 2n(=llA [I (6"2) f (say). This does not still account for Step
4,3. Note that REDUCE OFF DIAGONAL (j, A) increases [IAzll (the maximum
absolute value of entry of column Az) by at most a factor of (1 + IIAII). Thus [IAII <-

f(1 +f)" -< 2"f2". Hence Lemma 2 is proved.
LEMMA 3. At any stage of the execution of the algorithm,

tlgtl-<- (2n IIA
Proof. We have already proved (in Lemma 1) that K has small enough entries.

Each time the do loop of Step 4 is executed, (-Ai,i+/r) and (Aid/r) are bounded by
2n(1"2)[IA11[(6"2=d (cf. Lemma 2). By the modified Euclidean algorithm (see
Appendix) p and q are bounded by d. Thus each execution of the do loop multiplies
by at most 2d. There are at most n such multiplications before we arrive at Kg/l from

504 RAVINDRAN KANNAN AND ACHIM BACHEM

K i. Thus K<-(2d)"n(nllAlll)n’ (by Lemma 1). Again to account for Step 4.3, an
argument similar to the one in Lemma 2 shows that an exponent of O(n4) suffices.

THEOREM 2. Algorithm HNF is polynomial.
Proof of Theorem 2. Clearly the calculation in Steps 4.1, 4.2 and 4.3 of the

algorithm are to be done at most n 2- times. The GCD calculation of step 4.1 is
polynomial (see Appendix). Also, Step 2 of the algorithm is polynomial as shown again
in the Appendix. Hence, the number of arithmetic operations as well as the number of
digits of all intermediate numbers are polynomial and Theorem 2 is proved.

The algorithm HNF(n, A) is concerned with square nonsingular integer matrices.
However an examination of the procedure will show that with obvious modification the
algorithm works on arbitrary (m, n) integer matrix which has full row rank. In this case,
the normal form is (H, 0), where 0 is a (m (n- m)) block of zeros and the (m m)
matrix H is in the form prescribed by Theorem 1 The algorithm for this (referred to
later as H(m, n, A)) is as follows:

Use Step 2 of algorithm HNF(n, A) to permute the columns of A so that the first m
principal minors are nonsingular. Call the new matrix A’. Use the steps 3-6 of the

algorithm to transform the square nonsingular matrix
0I

into Hermite normal form (I

is an (n m) x (n m) identity and 0 an (n m) x m matrix of zeros). By Theorem 2 this
is a polynomial algorithm. Return the first m rows of this HNF and all of K. Clearly
using these algorithms we can transform any (m x n) integer matrix A with full column
rank into a left" Hermite normal form (LHNF) using row instead of column opera-

tions, i.e. A will be transformed into (/)where H is uppertriangular with positive

diagonal elements. Further, each off-diagonal element of H is nonpositive and strictly
less in absolute value than the diagonal element in its column. Let us denote this
algorithm by LHNF (m, n,A). LHNF (m, n,A) returns UA and U where U is an
(m x m) unimodular matrix and UA the left Hermite normal form. Obviously LHNF
(n, m, A) is still polynomial and an analogous result to Lemma 3 holds.

3. An algorithm for Smith normal form. THEOREM 3. (Smith [16]). Given a
nonsingular (n n) integer matrix A, there exist (n n) unimodular matrices U, K such
that S(A)= UAK is a diagonal matrix with positive diagonal elements dl, ", dn such
that di divides di+l(i 1,. , n 1).

The typical step of the polynomial algorithm for the Smith normal form can be
summarized in the following pictures:

.00000
0.0000

i00.000
00..00
00.**0
00.***

LHNF on
(i + 1)th
column

,00000
0,0000

00.***
000.**
000.**
000.**

HNF

,00000

0,0000

00.***
000.**
000.**
000.**

LHNF
,00000

0,0000
00,000
000,00
000.,0

000.**

HNF

,00000
0,0000
00,000
00.,00

00.**0
00.***

(i + 1)th step

POLYNOMIAL ALGORITHMS 505

Note that this algorithm puts the bottom right (n i) x (n i) square matrix into HNF
"frequently". Just after this is done each time, the product of the diagonal entries of A
equals the absolute value of the determinant of the original matrix and thus each entry
of A is at most this determinant in absolute value. Thus, the numbers are prevented
from cumulatively building up.

This repeated use of HNF is the crucial difference between the algorithm presented
here and the standard algorithms (e.g. [7] and [1]).

In the algorithm below we use the following notation. HNF (n- i, n- i, A) is the
procedure which puts the bottom-right-hand minor consisting of the last (n- i) rows
and columns into Hermite normal form. LHNF (n i, + 1, A) is the procedure which
puts the submatrix of A consisting of the last (n i) rows and the column + 1 into left
Hermite normal form.

ALGORITHM SNF(n, A): returns ($(A), U, K).
1. Set U--K -I the identity matrix of order n.
2. i=-1.
3. i=i+l. Ifi=nstop.
At this stage the top-left (i x i) matrix is already in SNF and, if _-> 1, Ag, divides

A,, V i<-j<-n, i<-k<-_n.

4. Call LHNF(n- i, + 1, A) (returns A and U*)

(i o)U-
0 U,U (I is an x identity matrix).

5. Call HNF(n- i, n- i, A) (returns A and K*)

o)K=K"
0 K*

(I is an identity matrix).

6. If Ai+I,i+I is not the only nonzero element in column (i + 1) go to 4.
7. If Ai+l,g+l divides every element Aj.k + 1 <-]<-k, + 1 <=k <-n, go to 3, other-

wise Ai+l,i+x does not divide Aj.k (say). Add column k into column + 1 in A and K. Go
to 4.

THEOREM 4. The algorithm SNF is polynomial.
Proof. Note that for a fixed every time Step 4 or 5 is passed Ai+l,i+ is replaced by a

proper divisor of itself except the last and possibly the first times. Thus, for a fixed i,
Steps 4 and 5 are executed at most log I[A(i)ll + 2 times where A(i) denotes the matrix A
at the beginning of the ith iteration. Clearly [IA(/)ll <_- max {Idet (A(0))I, IIA(0)II}, since
either 0 or A(i) is in Hermite normal form. Thus we count at most 2 + log (llA(i)ll) <--
n log (nllA(0)[[)+ 2 calls of Step 4 and 5 for each value of i. We have therefore at most
n2(log n[lA(0)l[)+ 2n passes of Steps 4 and 5. But here we use Hermite normal form
algorithms and using Theorem 2 this proves Theorem 4.

THEOREM 5. The unimodular matrices U and K which the algorithm SNF returns
have entries whose number of digits are bounded by a polynomial.

Proof. For every U* and K* in Steps 4 and 5 of the algorithm we have flU*f[,
[IK*ll<-(c.n.[lA(O)[])’(n for some polynomial p(n) and constant c (cf. Lemma 3). By
previous arguments, U and K at any stage are the product of at most n log ((nl[A(0)[I)n)
of these matrices. Thus the theorem is proved.

Clearly analogous to LHNF, we can modify the algorithm SNF(n, A) in such a way
that it works for arbitrary (n, m) integer matrices and remains polynomial. The details
are rather elementary and are left to the reader.

506 RAVINDRAN KANNAN AND ACHIM BACHEM

We must remark that the algorithms in this paper are not meant to be efficient. The
main concern has been simplicity of presentation. A computer code that includes
several efficiency improvements is available from the authors.

Appendix.
LEMMA A.1. IrA is a nonsingular n n matrix, then its columns can be permuted so

that in the resulting matrix, all principal minors are nonsingular.
Proof. The first row of A must have at least one nonzero element. Thus after a

permutation of columns, if necessary, we can assume that A is nonzero. Assume for
induction that the columns of A have been permuted to give a matrix A’ in which the
first principal minors are nonsingular for some i, 1 _-< _-< n 1. Let A" be the matrix
Consisting of all columns of A’ and only rows 1 through (i + 1). A’ is nonsingular implies
that rank (A")=i+I. Thus at least one of the columns say k, among (i+1),
(i + 2) , n of A" cannot be expressed as a linear combination of the first columns of
A". Swapping columns k and (i + 1) in A’ leads to a matrix whose first (i + 1) principal
minors are nonsingular. This completes the inductive proof.

The algorithm below uses essentially the idea of the proof.
Step 2 of Algorithm HNF.

for i- 1 to n
det determinant of the principal minor of A
/=1
do while (/" <_-n) and (det 0)

/=/+1
det determinant of the submatrix ofA consisting of the first rows of

A and columns 1 through (i- 1) and column j of A
end
it j > n, lerlninale/.A is singular ./

Interchange columns j and of A and of K.
end.

As remarked earlier, this subroutine is wasteful from the point of view of efficiency.
However, it is polynomial, since determinant calculations can be done in polynomial
time and at most n 2 determinants are to be computed.

GCD ALGORITHM. We use any standard algorithm (e.g. [2] or [6]) that for any two
given numbers a and b, not both zeros, find p, q and r such that r= GCD(a, b)=
pa + qb. We then execute the following step:

We assume [a ->_ [b[, else swap a and b.

[qlIf Iq[> lal, then do" p p + - b

q=q-a
end.

Note that we still have r pa + qb. But now, Iql < lal. Thus
Iqb]<[ab[,

pa + qb r :=), Ipa I< lab I+ Irl

Thus Ipl, [q[--< a 1.

POLYNOMIAL ALGORITHMS 507

The Euclidean algorithm is well-known to be polynomial and certainly the step
above is also polynomial.

Acknowledgment. The authors wish to thank Professor Les Trotter for reading the
manuscript and suggesting several improvements. Thanks are due to the referee for
several helpful suggestions.

REFERENCES

1] S. BARNETTE AND I. S. PACE, Efficient algorithms for linear system calculations; Part ImSmith form
and common divisor ofpolynomial matrices, Internat. J. of Systems Sci., 5 (1974), 403-411.

[2] W. A. BLANKINSHIP, A new version of the Euclidean algorithm, Amer. Math. Monthly, 70 (1963),
742-745.

[3] Algorithm 287, Matrix triangulation with integer arithmetic I [F1], Comm. ACM, 9 (1966), p.
513.

[4] Algorithm 288, Solution of simultaneous linear diophantine equations IF4], Comm. ACM, 9
(1966), p. 514.

[5] E. BODEWIG, Matrix Calculus, North Holland, Amsterdam, 1956.
[6] G. H. BRADLEY, Algorithm and bound for the greatest common divisor ofn integers, Comm. ACM, 13

(1970), 433-436.
[7] Algorithms for Hermite and Smith normal matrices and linear diophantine equations, Math.

Comput., 25 (1971), pp. 897-907.
[8] J. EDMONDS, Systems of distinct representatives and linear algebra, J. Res. Nat. Bur. Standards, 71B

(1967), pp. 241-245.
[9] M. A. FRUMKIN, Polynomial time algorithms in the theory oflinear diophantine equations, M. Karpinski,

ed., Fundamentals of Computation Theory (Springer, Lecture Notes in Computer Science 56, New
York, 1977) pp. 386-392.

[10] R. GARFINKEL AND G. L. NEMHAUSER, Integer Programming, J. Wiley & Sons, New York, 1972.
[11] G. A. GORRY, W. D. NORTHUP AND J. F. SHAPIRO, Computational experience with a group theoretic

integer programming algorithm, Math. Programming, 4 (1973), pp. 171-192.
[12] C. HERMITE, Sur l’introduction des variables continues dans la thgorie des Hombres, J. R. Angew. Math.,

41 (1851), pp. 191-216.
13] M. HEYMANN AND J. A. THORPE, Transfer equivalence of linear dynamical systems, SIAM J. Control

Optimization, 8 (1970), pp. 19-40.
[14] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.
[15] M. NEWMAN, Integral Matrices, Academic Press, New York, 1972.
[16] H. J. S. SMITH, On systems of indeterminate equations and congruences, Philos. Trans., 151 (1861), pp.

293-326.
[17] L. A. WOLSEY, Group representational theory in integer programming, Technical Report No. 41,

Massachusetts Institute of Technology, Cambridge, MA, 1969.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0003 $01.00/0

TOWARDS A PRECISE CHARACTERIZATION OF THE COMPLEXITY
OF UNIVERSAL AND NONUNIVERSAL TURING MACHINES*

LUTZ PRIESE

Abstract. A computation universal Turing machine, U, with 2 states, 4 letters, head and two-
dimensional tape is constructed by a translation of a universal register-machine language into networks over
some simple abstract automata and, finally, of such networks into U. As there exists no universal Turing
machine with 2 states, 2 letters, head and two-dimensional tape only the 2-state, 3-letter case for such
machines remains an open problem. An immediate consequence of the construction of U is the existence of a
universal 2-state, 2-letter, 2-head, two-dimensional tape Turing machine, giving a first sharp boundary of
the necessary complexity of universal Turing machines.

Key words. Turing-machines, two-dimensional tape, universal, nonuniversal, complexity-measures,
register-machines, networks of abstract automata

Introduction. About fifteen years ago several attempts were made to find simple
universal machines. Well known are the results of Watanabe (1961)mthere exists a
universal Turing machine with 8 states and 5 lettersmand Minsky (1962)mthere exists
a universal Turing machine with 7 states and 4 letters. However, the gap in complexity
between universal Turing machines and Turing machines which are not candidates for
universal computation (for example, 2 states in the case of quadruple instructions
cannot be sufficient, Fischer (1965)) was quite large and could not be closed. Some
generalizations of Turing machines, such as Turing machines with multi-dimensional
tape (or tapes) and multiple heads, led to some progress. Hooper (1963) showed the
existence of universal Turing machines with 1 state, 2 letters, but also 4 heads, while
Wagner (1973) proved Turing machines with 8 states and 4 letters operating on a
two-dimensional tape, to be universal. The last result was improved by Kleine Brining
and Ottmann (1977) to a universal two-dimensional Turing machine with 3 states and 6
letters and Kleine Brining (1977) proved in his Ph.D. thesis that 2 states and 5 letters or
10 states and 2 letters are also sufficient.

Kleine Brining and Ottmann proved their results by simulating so-called normed
networks. This technique was first used by the author (Priese (1974)) to find some
simple undecidable Thue-systems. We follow the principles of this technique in this
paper also. Wagner’s technique is very closely related to the common methods in
1-dimensional Turing machines.

Table 1 gives a review of the existing results. The mentioned complexity is
explained in the final section of this paper.

Wagner (1973) proved also that for no dimension n can a 2-state, 2-letter,
n-dimensional Turing machine be universal. This last result may offer a surprising
chance to close the gap of complexity between universal and nonuniversal Turing
machines" In this paper we prove the existence of a universal two-dimensional Turing
machine U with 2 states and 4 letters. Thus only the 2-state, 3-letter case for 1-head
two-dimensional Turing machines remains open. Any positive or negative charac-
terization of this case results in a complete characterization of the complexity of
universal two-dimensional Turing machines. In addition, U leads at once to a universal
2-state, 2-letter, 2-head, 1 two-dimensional tape Turing machine.

* Received by the editors February 10, 1978, and in revised form October 27, 1978.
t Fachgebiet Systemtheorie und Systemtechnik, Universitiit Dortmund, 4600 Dortmund 50, Federal

Republic of Germany.

5O8

THE COMPLEXITY OF TURING MACHINES 509

TABLE

Tape
Author Year States Letters dimension Heads Complexity

Watanabe 1961 8 5 1 1076

Minsky 1962 7 4 1049
Hooper 1963 1 2 4 6.1049
Hooper 1963 2 3 1 2 6.1036
Wagner 1973 8 4 2 3.1067
Kleine Brining, Ottmann 1977 3 6 2 5 1044
Kleine Brining 1977 2 5 2 1016
Kleine Brining 1977 10 2 2 1038

In the sequel the notation "universal Turing machine" is understood as:
For different types of Turing machines there exist concepts of configurations

("instantaneous descriptions"). A computation c of a Turing machine is a finite or
infinite sequence c Co, Ca, C2, of configurations Ci such that Ci+l is a successor-
configuration of C, for all C in c. We shall give a precise definition in 2. A Turing
machine, M, is universal if there exists two Goedel-functions
denotes the class of all partially defined, recursive functions ’: No tNo, No is the set of
all nonnegative integers, and C is the set of all configurations), and: C N0 (_J {+}, such
that for any ’e F,, n No and computation c Co, C1, C2, of M that starts with
Co cI)(]’, n), the following holds:

(a) f(n) is undefined - for all m tN0: (C,,,) +, and
(b) f(n) is defined there exists an index m0 with

(i) for all m < mo: (C,,,) +,
(ii) for all m -> m0: (C,,) =’(n).

A Goedel-function is a primitive recursive word-function. We have to use word-
functions since a configuration is generally a word over some alphabet rather than an
integer. A Goedel-function has to be primitive recursive since for the case of a recursive
coding, the whole complexity of the computation of M can be hidden in the coding-
functions and ; e.g. a trivial, nonoperating machine would become a universal
machine.

(C,,) + means that C,, contains no result of the computation of M. Conditions
(i) and (ii) ensure that, whenever a result has been found, this result remains unchanged
if the computation of M continues.

We thus do not require that M stop once a result is computed. As finite compu-
tations are allowed, M may stop, but may also compute further configurations that code
the same result.

The following construction of our universal Turing machine U implicitly describes
both required Goedel-functions.

1. Networks of register machines. The universality of some simple machine, M, is
often shown by implementing some universal calculus in M. Thus Minsky’s 7-4-
machine simulates tag-systems while Kleine Brining and Ottmann implement some
networks of abstract automata with only a few simple primitives. Networks of register
machines will be convenient for our purpose.

In this section we introduce in four steps the technical apparatus we need to
construct the universal Turing machine U. This apparatus is discussed in some depth to
simplify research on U in the second section.

510 LUTZ PRIESE

Step 1. 03-language register machines. Assume O1 and 02 to be the following
register machine languages of possibly labeled instruction"
O1: ai add 1 in register and goto the next instruction

subtract 1 in register and goto the next instruction
it register is empty goto to instruction k, else goto the next instruction

Si
t(k)

02" ai
tl(k) if register is empty goto instruction k, else subtract 1 in register and goto

the next instruction
It is well known (Sherpherdson-Sturgis (1963)) that both languages are universal

programming languages for register machines. In O1 the instruction si applied to an
empty register leads to a stop by error. In addition, register machines involving only
three registers are sufficient to compute any recursive function. If some standard codes,
like (x, y) 2 3 Y, are allowed for a representation of the input numbers two registers are
also sufficient.

A programming language, O, is called universal, if for all recursive functions

f F, f: No- No, there exists an O-program Pr such that Pr applied to the initial content
n in register 1 and 0 elsewhere leads to a final content f(n) in register 1 and 0 elsewhere.
If f(n) is undefined Pr, initialized as described, will never stop.

An alternative language is 03"
03" s subtract 1 in register and goto the next instruction

t(k) if register contains a nonpositive integer add 1 in register and goto
instruction k, else add 1 in register and goto the next instruction.

03 is a programming language that operates on register machines where the
register may store arbitrary integers, including negative integers. As a consequence s is
always applicable. This ability of storing negative integers also adds no more compu-
tational abilities, but reflects exactly the storing capacities of the universal Turing
machine of 2.

03 is also a universal programming language. Assume P to be a O1-program. To
obtain an equivalent O3-program P’ simply replace all instructions a;, si, ti(k) of P by
the O3-subprograms"
a -t[(k) and label the next instruction with k, where k is a label that

has not been used in P’ and is not used in P.
Si - t-(k); + +

si ;si where k is a label of no instruction in P’ (this simulates the
stop-by-error of si in P if si is applied to a register
containing 0).

ti(k)-t(k’);ai;
k’ sT; +

Si tT(k); s7 where k’ is a label that has not been used in P’ and is not used
inP.

We discuss this last translation" Suppose ti(k) is applied in P while register stores
an integer n.

Case 1. n > O"

Instruction in P’ Content of register

tT(k’) n-n+l
ai n+l-n+2
k"s n+2-n+l
s[n+l-n
t-(k) n-n+l
+

Si n+l-n

(goto next instruction)

THE COMPLEXITY OF TURING MACHINES 511

Case 2. n =0:
t?(k’) 0(-1

k"s 1,-0
+s 0--1

t-(k) -1(-0

(goto instruction k’)

(goto instruction k).

Thus, P and P’ compute the same functions f: 1o Nl0. Although P and P’ are
applied only to registers with an initial nonnegative content, P’ stores in some
intermittent steps negative integers also.

Step 2. Automata networks. The infinite automaton REG (L O, S, T) with inputs
I ={test, sub}, outputs O={>0, =<0, sub’}, all integers 7/ as states, is given by the
transitions T

(I S) (O S):

T: sub, n - sub’, n 1, n Z
test, n - > O, n + 1, n > 0
test, n <=0, n + 1, n <=0

where a transition ((i, s), (o, s’)) is written as i, s o, s’. REG will be graphically
represented as shown in Fig. 1.

test

sub
_sub’

REG

FIG.

We have defined the infinite register automaton REG in such a fashion that REG
behaves just like a register of a register machine with an O3-program. By using some
standard techniques--like the methods of representing regular events with finite
automata--any O3-program P of a n-register machine can easily be translated into a
finite, initial automaton, Mo, such that the automata network No of Fig. 2, with n copies
of the REG-automaton, simulates P in the following sense:

The program P applied to initial content mi in register stops with m in register if
and only if a signal, entering Me in its initial state via input line (start), while all REGi
are in the states mi, respectively, reaches the output line (stop) of Mo while all REGi are
in the states m , respectively. P applied to m never stops if and only if a signal, applied
to No as just described, never reaches the output line (stop).

Step 3. Universal primitives for automata-networks. The theory of normed networks
of D. R6dding leads to a further decomposition of Mo and simplification of REG. K and
P are the automata

K ((1, 2}, (3}, {a}, T), with the transitions
T: 1, a3, a and 2, a-3, a.
P ({t, c}, {t u, ta, c , ca}, {up, down}, T) with the transitions
T: t, up- t, up

t, down a, down
c, up c u, down
c, down c a, up.

512 LUTZ PRIESE

stop

start

Mp

test

sub

sub’

test
0
<_0

sub
sub

REGI

REGn

FIG. 2

They are represented by the diagram of Fig. 3.
K acts as a union of wires that is needed for topological reasons. P is a switch (or

"flip-flop") with a test-input, t, that tests the state of P, and with a change-input, c, that
changes and tests the state of P.

A normed network over some automata A1,’", A, consists of copies of the
automata A1,’’’, An that are connected according to the composition rule that any
output of a copy may be identified with at most one input of a copy and that no input
shall be identified with more than one output. The automata A1, , A, are regarded
as sequential machines with transitions of the described type I x $ - O x $. We always
refer to the model of a single signal, passing through a normed network and changing
the states of the components as described by the transitions. Formal definitions of
normed networks with heuristic discussion and results can be found in Ottmann (1973),
Priese (1978), Priese and R6dding (1974) and R6dding and R6dding (1978). The
automata K and E, where E results from P by identifying both outputs c" and c a, are

1 "; ;-3

j
P

FIG. 3

THE COMPLEXITY OF TURING MACHINES 513

universal primitives for normed networks: Any finite automaton can be simulated (in
the sense of Hartmanis, Stearns (1966), e.g.) by a normed network over the two
primitives K and E; see Priese, R6dding (1979). As an immediate consequence K and P
also form a universal base of primitives. In particular, there exists a normed network
that simulates Mp and consists only of K and P primitives.

We name the automaton that is obtained from REG by identifying both outputs
_-< 0 and sub’ by REG/. REG/ is represented by the diagram of Fig. 4.

sub

test
REG +

FIG. 4

It is quite a simple exercise to prove how to simulate REG with the help of REG/.
However, as such a proof cannot be found in the literature of normed networks, and in
order to give an idea of how to operate with normed networks, we will outline a proof.

REG is simulated by the normed network, NR, of Fig. 5. NR shall be in a state n and
all automata P1, P2 and P3 are in the same state up or down. A signal that enters NR via
the input test reaches the input test of REG/ while all Pi are in the state down, as this
signal has tested the state of P1 and eventually changed the states of all Pi to down. A
signal that enters Nl via its input sub reaches the input sub of REG+ while all Pi are in
the state up. Thus, if a signal leaves REG/

via its output sub’ a further test of the state of
P3 tells whether the output was reached as a consequence of an input-signal on the
sub-input (P3 is in the state up) or of an input-signal on tl-.e test-input while REG+ was in
a state <-0.

Combining the results of Steps 2 and 3 any O3-program of a n-register machine can
be simulated by a normed network with the primitives K and P and n copies of REG/.

Step 4. Topological standardizations of normed networks. We will restrict the
representations of normed networks over K and P to some standardized diagrams.
Those diagrams consist of some rather complicated patterns of "dominoes." We
operate with the elementary standardized diagrams of Table 2. These components
involve one cell (components In, r-d, u- d, u- l, l-r, r- l), two cells (components
l-d-l, l-u-l, K), three cells (components r-d-r, r-u-r), five cells
(component Out), six cells (component l-u- r), fifteen cells (component CR), and

sub.j

FIG. 5

514 LUTZ PRIESE

twenty-eight cells (component P). In the following the term s-diagram refers to a
(partial) covering of the Gaussian plane to Nl0 by standardized diagrams according to
the rule that all arrow-inputs and arrow-outputs shall be connected with arrow-outputs
and arrow-inputs, respectively, of the neighboring cells. No overlapping of those
standardized diagrams is allowed.

Out

TABLE 2

r-u-r

-d-r

I-u-I

Arrows thus have to start with an/n-component and end with an Out-component.
The components K and P are alternative representations of the automata K and P. Any
s-diagram defines uniquely a normed network over K and P. The opposite is also true:
Any normed network over K and P can be represented by an s-diagram. Figs. 6 and 7
give the idea of how to find a representing s-diagram. One starts with a (nonstan-
dardized) diagram representation of a given normed network and applies some
"topological transformations" to obtain an s-diagram.

The first two lines of Fig. 6 show how to get horizontal arcs in an s-diagram. The
third line gives an idea of how to implement a vertical "up-to-down" arc. It should be
noted that we implement some "bented" vertical arcs, due to the restrictions in the
elementary diagrams of Table 2, that start from a horizontal line and lead to a horizontal
line again. We have shown an implementation of a "from left-(go down)*-go right" arc.
All remaining versions of line 3 are easily implemented in analogy.

THE COMPLEXITY OF TURING MACHINES 515

FIG. 6

Line 4 shows an implementation of a vertical "down-to-up" arc with a second
implementation of a different length modulo four.

Figure 7 shows how to implement different versions of crosses with the help of the
cross CR and bented arcs. The same holds for different versions of the K-element. The
last line of Fig. 7 "separates" the inputs and outputs of the K- and P-diagrams in such a
way that further connections with arcs can be done. These examples should suffice to
give a clear idea of how to implement any normed network over K and P into an
s-diagram.

An s-diagram with exactly one occurring In- and Out-diagram is called a 1-1-
diagram, and a normed network with exactly one input and output is called a 1-1-net.
By Step 2, 1-1-nets over K, P and REG form a universal logic. This allows us to turn
our attention to 1-1-diagrams.

2. Two-dimensionaiTuring machines. A (two-dimensional) Turing machine, M, is
a tuple M (S, L, I) of a finite set S of states together with a distinguished (initial) state,
sl, a finite set L of letters together with a distinguished (blank) letter, B, and a functional
relation I c_ (S L) x (L x S {u, d, r, 1}). An instruction (s, l’, s’, m) L m

516 LUTZ PRIESE

FIG. 7

{u, d, r, 1}, has the interpretation: If M is in the state s and the head of M reads a letter
l, M replaces this letter by l’, moves the head one cell to m, where r abbreviates right,
left, u up, and d down, and switches to state s’. M may operate on the plane Z x Z or the
first quadrant N0 x N0; here 7/denotes the set of all integers (and No of all nonnegative
integers). An application of an instruction that forces the head of M to leave the first
quadrant would lead to a stop by error in the second case. Our main theorem will hold
for both cases with some minor differences.

We have to state some definitions on two-dimensional Turing machines.

THE COMPLEXITY OF TURING MACHINES 517

Let us regard the plane F, F 2o or 7/2. A (plane-)configuration C is a mapping
C: F -* (S (_J {*}) L with the properties:

(i) #{ceF; C(c)(SI2{.}){B}}<o,
(ii) # {c e F; C(c) e $ L} 1.

12 denotes the set of all configurations. By condition (i) we regard only finite configura-
tions, where only finitely many cells carry a letter different from the blank letter B. By
condition (ii) exactly one cell carries also a state of S. This cell denotes the position of the
Turing machine head and the state of the Turing machine. A configuration thus
describes uniquely a finite pattern of letters on the plane, the position of the head and
the state of the Turing machine. A computation c of a Turing machine, M, is a finite or
infinite sequence Co, C1, C2,’" of configurations Ci where Co is an initial
configuration and all C+-configurations are successor-configurations of the C-
configurations. An initial configuration is a configuration with the head positioned on
the origin of the plane in the initial state Sl, i.e.: C0((0, 0)) e {s} L. A configuration C’
is a successor-configuration of a configuration C if the following holds:

Assume (Xo, Y0) to be the position of the head, i.e.: C(x0, y0)) (s, l) for some s e S
and e L (s .).

If there exists no instruction of M with the left-hand side (s,/), M stops on C, i.e.,
C’= C holds.

If there exists an instruction s, --> l’, s’, m of M, then there holds for C’:
(i) C’((Xo, yo))= (*, l’),
(ii) [C((xo+6l, yo+6))= (*, l")]>C’((Xo+x, yo+6:))= (s ’, l") holds for

tl= 0, 82= 1 if re=u,

t= 0, 2=-1 ifm=d,

tx= 1, t2= 0 ifm=r,

g=-l, t2 0 ifm=/,

(iii) C’(c)= C(c) for all remaining cells c.
This is a straightforward generalization of configurations of one-dimensional

Turing machines to the case of a two-dimensional tape.
A Turing machine, M, simulates a 1-1-net, N, (with the input and output o), if

there exists two Goedel-functions : {i} SN--> C, q: C--> ({o} SN) (-J {+}, such that for
any s, s’ -,N:

(a) i, s -->N O, S’ holds if and only if a computation Co, C1, C2, of M, starting
with Co (i, s), possess an index mo with

(i) for all m < too: (C,)= +,
(ii) for all m -> mo: T(C,,,) (o, s’).
(b) there exists no o, s’ such that i, s -->N O, S’ holds if and only if for a computation

c Co, Cx, Ce, of M, starting with Co (i, s), (C,,) + holds for all m
It is well known that there exist universal register machines (in exactly the same

sense of universality as we defined for Turing machines. A register machine configura-
tion describes the number of the applied instruction and the content of all registers). If
we simulate such a universal register machine, R, by a 1-1-net, NR, over K, P and
REG/, and, finally, NR by a Turing machine, MR, according to the above definition, MR
is also a universal machine.

The universal Turing machine U. Define U to be the 2-state, 4-letter, two-
dimensional tape Turing machine U ({1, 2}, {B, C, D, U}, I) with the instructions:

518 LUTZ PRIESE

I: 1, BC, 2, u

2, BB, 2, d

1, C-C, I,r

2, C-C, 2,1

1, D-D, 2, d

2, D-U,I,d

1, UU, 2, u

2, UD,I,u.

B is the blank letter and I the initial state. To ease an understanding of U the letters
should be read as: Blank (B), continue (C), go Down (D), go Up (U), and the states 1
and 2 should be read as "move right" and "move left." Figure 8 gives a kind of
letter-diagram for U, using right and left for the states i and 2. These mnemonic names
refer to the activities of U.

left/left,d left/left.

right/left, u right/right,

left/right.d left/right, u

right/left, d right/left, u

FIG. 8

THEOREM. U simulates any 1-1-net over K, P and REG+.
Proof. Let N be a 1-1-net over K, P and REG+. The following construction attaches

to any state of N a finite sub-configuration for U. We will not state the Goedel-functions
explicitly but the constructions will elucidate them with all the required properties.

By Step 4, N is represented by an s-diagram of the standardized components plus
diagrams for the necessary registers REG+.

Implementation of the s-diagrams. All s-diagrams of Table 2 are implemented into
finite sub-configurations as shown in Table 3. The two letters D/U in the P-implemen-
tation mean that this cell stores the letter D if P is in the state down, and U in the state
Up.

Figure 9 gives an example of how U operates on these sub-configurations. It is
shown how a signal, that enters P in the state up via its input t, passes P to the correct
output u. A number 1 or 2 in a cell describes the position of the head and state of the
machine. If the head reads a letter C(for Continue) in state 1 ("move right") it moves
right, leaving the letter and state unchanged. The same holds for the state 2 ("move
left"). A letter U (D), always forces the head to move up (down) by changing the
horizontal direction (state), while the letter might be replaced by a D (or U, respec-
tively) if the head reads this letter in state 2. Thus, whenever the head is positioned on a
cell, implementing an arc "to the right" of the s-diagrams, the state has to be 1. It should
be obvious, that the given implementation in Table 3 of the s-diagrams of Table 2
ensures a correct movement of the head, which thus reflects the movement of a signal in

THE COMPLEXITY OF TURING MACHINES 519

a normed network along the paths of its s-diagram representation. The changes of the
states of the P-automaton are also correctly simulated, as one may easily test, analogous
to Fig. 9. We always dropped the sign in the cells the head is not looking at. All cells
that receive no letters in these figures are of no interest for the intended behavior (and
may carry any letter).

TABLE 3

Out

-u-r

-d-r

I-d-I

I-u-I

I-u-r D C

C U

u c

c D C D

U C

C C C C---- --> c c c c

C U D C

D C C U

U C C D

C D U C

cccc

For a correct initialization of the first configuration Co of a computation the head is
positioned in state 1 on the/n-implementation, this being the origin (0, 0) with the letter
C.

A configuration codes the result of a U-computation if the head has entered (and
remains captured in) the one Out-implementation, or if U stops. Note that U can only
stop by a stop-by-error in the case that U operates on the plane F N and the head
tries to leave F. U operating on F 7/2 allows for no stop!

This brief comment should elucidate the principle of U simulating any normed
network over K and P.

An implementation of a REG/-component is shown in Fig. 10.
This implementation requires an infinite number of cells in the blank state, B, of

breadth 3 and a one-sided infinite length. As an implementation of a normed network
over K and P involves only a finite number of cells, say in a rectangle R with the left

520 LUTZ PRIESE

cIc

ID

c in

clc

SII

IC

Ic

fllC

c’

]c Ill

IC

-C

Clfl

,-

SC l

Ill

DI CI

cI fll DI

cI El cl

Ic

D!f

Ill

fl

sC

If]

ICI cl Cl c

]1

I]1

SDI

cI cI cl

FIG. 9

iCtnl

fllCICl

f]l D[

clcIcIc

lower corner (0, 0), such REG+-implementations may be placed on the right periphery
of R.

The difference m of the length between the lower and upper C-string represents
the state m + 1 of REG/. For example, REG/ in state 0 receives in Fig. 11 the part with
the difference m 1"

B B B B B B B B

c c c c C B B B

C C C C B B B B

The Turing machine head, entering the implementation R+ of REG+ via test in
state 1 changes one letter B to C, thus alters the difference m to m + 1, and reaches the

iJ---i

IB

II}tC

FIG. 10

THE COMPLEXITY OF TURING MACHINES 521

FIG. II

cell >0, if m > 0 holds (see Fig. 11) and the cell sub’ for m -< 0 (see Fig. 12). Entering R+

via cell sub also changes one letter B to C (on the upper C-string) thus m changes to
m- 1 and the cell sub’ is reached. Any operation test or sub always results in a
prolonging of the C-strings whilst their difference contains the required information of
the state of REG/. With this technique negative integers may also be stored.

This proves U to be a universal machine.

3. Discussion. One may try to compare the different machine concepts with a
structural complexity measure" Define the complexity of a Turing machine M, say with

FIG. 12

522 LUTZ PRIESE

n states, letters, d dimensions, k tapes, h heads, etc., to be the total number of all
possible instructions with at most n states, letters, d dimensions, k tapes, h heads, etc.
Taking into account whether a stop-instruction shall be available or not and whether a
movement of the head has to be fulfilled in any step or not, we see that the mentioned
Turing machines are of the following complexities"

U is of complexity (4.2.4)2.4= 328= 102. Wagner’s machine is of complexity
(4 8 4 + 1)4.8= 12932= 3 1067. Kleine Biining’s two machines are of the complexi-
ties (2.5 4+ 1)25=41= 106 and of (10.2.4+1)2=8i2= 1038 and the
machine of Kleine Brining and Ottmann possesses the complexity (3.6.4 + 1)3.6=
7324=5 1044. Watanabe’s and Minsky’s machines possess the complexities
(8 5 2)8‘5 8040= 10TM and (7 4- 2 + 1)7.4= 5728= 1049. Although Hooper’s
machine seems to be pretty small it is of complexity (24. 1" 34+ 1)’24-- 129716=
6. 1049 due to the four independently operating heads that increase the number of
possible instruction sets. A further universal Turing machine of Hooper (1963)
operates with 2 states, 3 letters and 2 heads, resulting in complexity (32 2 32 + 1)2.32=
163 TM 6 1039.

Comparing these results, we observe that the machine U has the lowest complexity.
However, the comparison of different machine-concepts cannot be done without some
force. Even Shannon’s (1956) complexity measure (number of states times number of
letters) for classical Turing machines (with one head and one one-dimensional tape) is
by no means self-evident. One may also try to classify Turing machines with the help of
a vector v (n, l, d, h) of the number of states (n), letters (/), the dimension of the tape
(d), the number of heads (h), but in this case different concepts are no longer
comparable by a linear ordering. However, such a classification offers the nice advan-
tage that one may receive a sharp boundary for the existence and absence of universal
machines. Due to Wagner (1973) there is no universal Turing machine in the class
(2, 2, d,1) for all integers d. As we have shown the existence of a universal Turing
machine in the class (2, 4, 2, 1) a characterization of the class (2, 3, 2, 1) would give a
precise boundary.

One may object that the Turing machine U possesses no special stop-instruction.
However, as a simulation without a need of a stop-instruction is reasonably definable
(and on the N0-plane a stop-by-error is achievable, as a compensation) and Wagner’s
impossibility results holds good whether a stop-instruction is available or not, we see no
necessity for such a stop-instruction. This research is restricted to Turing machines that
operate only on finite tape-inscriptions. One may also investigate Turing machines
operating on infinite, periodic or nonperiodic, initial inscriptions, but in this case all
computation may be concealed in these inscriptions by using R6dding’s (1969/70)
technique of infinite periodic wire-connections to prove the undecidability of expres-
sions of first order predicate logic without equality, functions, constants, predicates with
3 or more attached variables and with exactly one predicate with 2 attached variables.

As a simple result, also nonprinting, 1-state Turing machines, operating on an
infinite, but periodic, initial inscription may be universal. Thus infinite inscriptions are
not reasonable for research on the complexity of nonuniversal and universal machines.

A conclusion for two-head machines. It can easily be verified that our machine U in
(2, 4, 2, 1) yields a universal machine, U’, in the class (2, 2, 2, 2): U’ operates on two
copies of the initial tape (plane) inscriptions of U (the plane can be covered by two such
inscriptions as we needed only inscriptions that cover N x 1, m for some fixed m N)
where both heads move synchronously on both inscriptions just as the single head of U
does. By a simple coding two letters are now sufficient in both inscriptions to receive the
behavior of U.

THE COMPLEXITY OF TURING MACHINES 523

By Wagner’s result (2, 2, 2, 1) cannot contain universal machines. This gives a first
sharp boundary of the complexity between universal and nonuniversal Turing
machines. The diagram of Fig. 13 visualizes the current situation"

universal \\\\\\universal\\\\\

(7. z,. .)
. uniw,rsal

large gaps

open
(2.

: : ,[shrp bndry

FIG. 13

REFERENCES

P. C. FISCHER (1965), On formalisms for Turing machines, J. Assoc. Comput. Mach., 12, pp. 570-580.
J. HARTMANIS AND R. E. STEARNS (1966), Algebraic Structure Theory of Sequential Machines, Prentice-

Hall, Englewood Cliffs, NJ.
PH. K. HOOPER (1963), Some small, multitape universal Turing machines, Computation Laboratory,

Harvard Univ., Cambridge, MA.
H. KLEINE BONING (1977), UberProbleme bei homogener Parkettierung yon 7 77 durch Mealy-Automaten

bei normierter Verwendung, Ph.D. Thesis, Institut fiir math. Logik, Miinster.
H. KLEINE BONING AND T. OTTMANN (1977), Kleine universelle mehrdimensionale Turingmaschinen,

Elektron. Informations Verarbeit. Kybernetik, 13, pp. 179-201.
M. L. MINSKY (1962), Size and structure of universal Turing machines using tag systems, Proc. 5th Symp. in

Appl. Math. (1962), American Mathematical Society, Providence, RI, pp. 229-238.
T. OTTMANN (1973), Ober M6glichkeiten zur Simulation endlicher Automaten durch eine Art sequentieller

Netzwerke aus einfachen Bausteinen, Z. Math. Logik Grundlagen Math., 19, pp. 223-238.
L. PRIESE (1974), Ober einfache unentscheidbare Probleme: Computational-und constructional-universelle

asynchrone Riiume, Ph. D. thesis, Institut fiir math. Logik, Miinster.
(1978), Normed Networks: Their Mathematical Theory and Applicability, Applied General Systems
Research: Recent Developments and Trends, NATO Conference Series (II-Systems Science), vol.
5, pp. 381-394.

L. PRIESE AND D. RODDING (1974), A combinatorial approach to self-correction, J. Cybernetics, 4, pp.
7-25.

D. RODDING (1969/70), Reduktionstypen der Pr2idikatenlogik, Institut fiir math. Logik, Miinster.
W. RODDING AND D. RODDING (1978), Networks of finite automata, Progress in Cybernetics & System

Research, vol. 3, to appear.
C. E. SHANNON (1956), A universal Turing machine with two internal states, Automata Studies, Princeton

University Press, Princeton, NJ, pp. 157-166.
J. C. SHEPHERDSON AND H. E. STURGIS (1963), Computability of recursive functions, J. Assoc. Comput.

Mach., 10, pp. 217-255.
K. WAGNER (1973), Universelle Turinmaschinen mit n-dimensionalem Band, Elektron. Informations

Verarbeit. Kybernetik, 9, pp. 423-431.
S, WATANABE (1961), 5-symbol 8-state and 5-symbol 6-state Turing machines, J. Assoc. Comput. Mach., 8,

pp. 476-584.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Indstrial and Applied Mathematics

0097-5397/79/0804-0004 $01.00/0

ON V-OPTIMAL TREES*

A. BAGCHI" AND J. K. ROY$

Abstract. The problem of determining minimal cost trees when the cost function is a linear combination
of degree path length and external path length arises in the study of optimal disk merge patterns, as first
pointed out by Knuth. This paper considers the special case when internal nodes of degrees two and three only
are permitted. The notion of the V-cost of a tree is introduced, and the properties of trees of minimal V-cost
are found, with particular emphasis on the case when the external weights are all equal. Some algorithms are
presented which generate trees of minimal V-cost under certain restrictive conditions.

Key words. 3-trees, Huffman cost, V-cost, V-optimal tree, convex function

1. Introduction. Binary trees of minimum weighted path length have applications
in many areas such as construction of variable length codes, searching files, and merging
sorted lists. Huffman’s well-known algorithm can be used to build such trees. The
generalized version of this algorithm is as follows"

ALGORITHM H. Let {wx, w2, , wn} be a multiset of n positive integer weights,
and let m _-> 2 be a given integer. We construct a tree H(m, n) on the given multiset of
weights in the manner described below"

If m _--- n then combine the n weights and stop. Otherwise, if m 2 go to step H2;
else go to step H1.

H1. Find s such that 1 -<_ s _-< m 1 and s n mod (m 1). If s 1 go to step H2.
Else combine any s smallest weights in the multiset and replace them in it by the
combined weight.

H2. Combine any m smallest weights in the multiset and replace them in the set by
the combined weight. Repeat this step until only one weight remains. 71

We will call a tree an m-tree if it has no internal node of degree greater than m. So
H(m, n) is an m-tree. The Huffman cost of an m-tree will be the sum of the weights of all
internal nodes in the tree. It is known that H(m, n) has minimal Huffman cost among all
m-trees built on a given multiset of n weights (see Knuth [2, pp. 399-405]). We concern
ourselves in this paper only with 3-trees. It should be noted that if n is odd then H(3, n)
has internal nodes of degree 3 only, and if n is even then H(3, n) has one internal node
of degree 2 which is formed by combining the two smallest weights in the given multiset.

The notion of the V-cost of a 3-tree, which we now introduce, may be viewed as a
generalization of the idea of Huttman cost. Let two (nonzero) positive real numbers U
and V be given. Let T be a 3-tree built on n given positive integer weights
w l, w2," ", wn. Let M and N be the sums of the weights of all internal nodes in T of
degrees 2 and 3 respectively. We consider the problem of minimizing the quantity
MU+NV. Since only the ratio V!U is of significance, we can put U 1 and try to
minimize M +NV. We call the quantity M+NV the V-cost of T, and we write it as
c (T, n, V). The tree with minimal V-cost is V-optimal, and we designate this tree and its
cost by Q(n, V) and c(Q, n, V). (For some multisets of weights and some values of V
there can be more than one V-optimal tree. In such cases Q(n, V) will indicate some
one of the V-optiinal trees.) To take an example, let the given multiset of weights be
{2, 2, 3, 3, 6}. In Fig. 1 we show three different trees with the above weights as external
nodes. It can be checked that T1 is V-optimal when V 1, T2 is V-optimal when V 2,

* Received by the editors February 15, 1977.
f Indian Institute of Management, Calcutta, India.
: Indian Statistical Institute, Calcutta, India.

524

ON V-OPTIMAL TREES 525

c(T1,5,V 23V

\ T2

clT2,5.V) 36

FG.

c(T3,5,V)=16V.,10

and T3 is V-optimal when V 1.5. Note that Algorithm H generates the tree T1 if
m 3 and the tree T2 if m 2.

Knuth [3, pp. 366-373] and Schlumberger and Vuillemin [4] have studied a more
general problem in their efforts to find optimal disk merge patterns. Kfluth uses a
different notation to ours, and does not restrict himself to 3-trees. For a given tree T let
D(T) be the (weighted) degree path length of T, i.e., the sum over all leaves of T of the
weight of a leaf multiplied by the sum of the degrees of the nodes on the path connecting
this leaf to the root of T, and similarly let E(T) be the (weighted) external path length of
T. Knuth lets his cost function be aD(T)+ E(T), where a, fl are given nonnegative
real constants, and he presents a dynamic programming algorithm which minimizes the
cost of n equal weights in (n2) time and (n) memory space. To see how our problem
resolves itself into a special case of Knuth’s we confine ourselves to 3-trees anal set

U=2a +/3,

V=3a +,8

in the cost function MU+NV described in the last paragraph. Knuth remarks that
usually in practical situations that arise in disk merging, 0 <- a -</3. In our notation, when
we set U 1, this would correspond to 1 <= V <_- provided/3 # 0.

In this paper we study the properties of V-optimal trees, and we try to determine
which 3-trees are V-optimal. We succeed in our efforts only in some special cases. In 2
we consider the general situation where the given weights are not necessarily equal.
Section 3 deals with a particular class of sequences of weights which we name rapidly
growing sequences. In 4 the weights are all equal.

2. The general case. When the n given weights are not all equal it becomes quite
difficult to construct a V-optimal tree for an arbitrary (positive) V. We have succeeded
in showing that when 0< V _<- 1 then H(3, n) is V-optimal and when V _-> then H(2, n)
is V-optimal. In the range 1 < V <- the problem is still unresolved in the general case,
and in 4 we confine ourselves to this range.

THEOREM 1. Let a multiset of n weights be given. Then
(i) the tree H(3, n) constructed on the given multiset is V-optimal for 0 V <- 1;
(ii) the tree H(2, n) constructed on the given multiset is V-optimal for V >-_.
Proof. All trees referred to below are built on the given multiset of n weights. Let

M2 be the Huffman cost of H(2, n), and let M3 and N3 be the sums of weights of internal

526 A. BAGCHI AND J. K. ROY

nodes in H(3, n) of degrees 2 and 3 respectively. It is to be noted that M3 0 when n is
odd. Let T be any 3-tree and letM and N be the sums of weights of internal nodes in T
of degrees 2 and 3 respectively. Then if T is V-optimal,

(1) M +NV

and

(2) M +NV <= M3 +N3 V.

Moreover, since H(3, n) has minimal Huffman cost among all 3-trees,

(3) M +NM3+N3.

By Algorithm H, when n is even the two smallest weights in the given multiset combine
to form the internal node of degree 2 in H(3, n), so

(4)

We now show that

(5) M +_->M2.

(For a more general result of a similar type see Bagchi and Roy [1].) Consider any
internal node of degree 3 in T. Let the three sons of this node have weights a, b and c
where a <- b -< c. We can split this node into two degree 2 nodes as shown in Fig. 2. The
sum of the weights of these two degree 2 nodes is

2(a+b)+c

b

C

c a b
FIG. 2

which is less than or equal to

-(a + b +c).

This proves inequality (5), since H(2, n) has minimal Huffman cost among all 2-trees.
By inequalities (1) and (5)

5N
M+NV<_M+

3

It follows that for V>, N 0. So for V>, T may be taken to be identical with

H(2, n). Moreover, if H(2, n) is V-optimal for V> , H(2, n) will be V-optimal for

V =- as well.

ON W-OPTIMAL TREES 527

By inequality (4), M-M3 is nonnegative, so by inequality (3), for 0< V_-< 1,

M-M3 >_- (N3- N) V.

Hence by inequality (2), for any V in the range 0 < V _-< 1,

M M3 (N3 N) V.

Ignoring those trees (if any) which are V-optimal at isolated values of V (i.e., at single
points) and considering only those trees that are V-optimal over ranges of V values, we
conclude that for 0 < V -< 1,

M=M3 and N=N3.

Therefore, we conclude that T may be taken to be identical with H(3, n) for 0 < V _-<
1. [q

We now come to some general properties of V-optimal trees. We note to begin
with that every subtree of a V-optimal tree is V-optimal on its own multiset of external
weights. A more interesting property is the following. We know that at any step in
construction of H(2, n) using Algorithm H, a minimum weight pair get combined.
Similarly, in the construction of H(3, n) using Algorithm H, at the first step either a
minimum weight pair or a minimum weight triple get combined, and at each subsequent
step a minimum weight triple get combined. We show now that given V and any
multiset of weights there exists a V-optimal tree on this set of weights which can be built
in such a way that at any step in its construction either a minimum weight pair or a
minimum weight triple get combined. The problem we face is in deciding whether to
combine a minimum weight pair or to combine a minimum weight triple at any step.
This problem, if solved, would give us a general algorithm for constructing V-optimal
trees.

Before coming to the theorem we introduce the notion of V-level. Let us define the
V-level of any node q in a 3-tree T built on n given weights as lq + mq V, where lq and mq
are the total numbers of degree 2 and degree 3 nodes (excluding q) on the path joining q
to the root of T. When V i the V-level of any node in T is identical with its level in T
as normally defined. Clearly,

c(T, n, V) wi(li + miV)

where the summation is over the n given external weights w1, w, , w, numbered as
nodes 1, 2, , n in T. If the tree T happens to be V-optimal, then for any two nodes q
and r in T, internal or external, if the weight of q is less than the weight of r, then the
V-level of q is greater than or equal to the V-level of r. In the proof below, when we talk
about the V-level of a weight, we mean the V-level of the node, whether internal or
external, with which that weight is associated.

THEOREM 2. Let V and a multiset of n weights be given. Then there exists a
V-optimal tree Ton this multiset which can be so built that at any step in the construction of
T:

(i) if two nodes (internal or external) get combined, the weights of these two nodes
form a minimum weight pair at that step;

(ii) if three nodes (internal or external) get combined, the weights ofthese three nodes
form a minimum weight triple at that step.

Proof. Let S be a V-optimal tree on the given multiset of weights. Let a, b and c be
the weights of any three nodes (internal or external) in S, such that a -< b =< c. Then, since
S is V-optimal, V-level of a ->_ V-level of b -> V-level of c. Hence if the V-levels of a

528 A. BAGCHI AND J. K. ROY

and c are equal, then

V-level of b V-level of a.

It follows that if any two node weights in S have the same V-level, then all intermediate
weights also have an identical V-level. We can now get the tree T from $ by simply
reassigning nodes to their fathers at each V-level in order of increasing weights, starting
at the numerically largest V-level in S and working towards the root of S. l-I

E
FIG. 3

In Fig. 3 we give an example of a tree S built on the multiset of weights
{1, 1, 3, 3, 3, 4, 7, 7, 7, 10, 14} which is V-optimal for V 2

3- but which does not satisfy

ON V-OPTIMAL TREES 529

the conditions of Theorem 2. The corresponding tree T which does satisfy the
conditions is also shown.

A question we have been unable to answer is the following. It is clear from
Theorem 1 that for a given multiset of at least three weights the root node of a
V-optimal tree is degree 3 for small V (i.e., V =< 1) and degree 2 for large V (i.e., V _-> -).
So there exist values of V, for instance, at which no V-optimal tree on the given multiset
has root of degree 3. Consider the lower bound of all such values of V. When V exceeds
this lower bound in value, must the root of a V-optimal tree necessarily be of degree 2?
This is equivalent to asking whether the set of values of V at which a V-optimal tree
with root of degree 3 exists is a connected subset of all real numbers. A similar question
can be asked with 3 replaced by 2. The answer to the above questions is in the
affirmative for rapidly growing sequences of weights studied in the next section.

3. Rapidly growing sequences. In this section we study a class of sequences of
nondecreasing weights which we call rapidly growing sequences. As we shall see, the
construction of V-optimal trees on such sequences can be achieved in a relatively
straightforward manner, so this section serves to illustrate and clarify some of the
concepts introduced earlier.

DEFINITION. A nondecreasing sequence of positive integer weights Wl, W2, W3,

is called a rapidly growing sequence if

wi + wi+l <- w/2 for all -> 1.

When Wl W2 1, and the inequality in the above definition is replaced by an equality,
we get a Fibonacci sequence of weights 1, 1, 2, 3, 5, 8, 13,. .

Let V and a rapidly growing sequence of weights wl, w2, w3, w4, be given. By
Theorem 2, there is a V-optimal tree on the given sequence of weights which can be so
built that at any step in its construction either a minimum weight pair or a minimum
weight triple combine. For a rapidly growing sequence this V-optimal tree will lean
completely to one side. This suggests the following "bottom-up" algorithm for creating
a V-optimal tree O(i, V) on the weights Wl, w2," , w. We represent the V-cost of
O(i, V) by c(Q, i, V), and the degree of the root of O(i, V) by d(Q, i, V).

AL6ORITI-IM R. Let V and a rapidly growing sequence of n weights w1, w2, , wn
be given. This algorithm creates a V-optimal tree O(n, V) on the weights by inductively
determining the quantities d ((2, i, V) for 2 <_- <_- n. Set

For 3 _-< <- n, let

and

c(O, 1, V) 0,

c(O, 2, V)=wa+w2 and d(O, 2, V)=2.

where

c(O,i, V)=min{W+c(Q,i-1, V), WiV+c(O,i-2, V)}

d(Q,i, V)={ 2
3

if c(Q, i, V)= W + c(O, i- 1, V),
otherwise;

As an example, suppose V 1.4 and the given rapidly growing sequence is 2, 2, 5,
10, 27, 44, 120. Figure 4 shows the table and the corresponding V-optimal tree.

Since the table gives d(Q, 7, V)= 2, the root node of the tree must have degree 2.

530 A. BAGCHI AND J. K. ROY

cig,i/l,V) d(Q,i+l,V)

4 2

2 12.6 3

3 30.6 3

76.6 2

5 156.6 3

6 366.6 2

5/3

V
Q (I- 2,V) W’

FIG. 4

S

-1 w Q(i-l,V) w

ON V-OPTIMAL TREES 531

Again, since d(Q, 6, V)= 3, the left son of the root has degree 3, and so on. On a
sequence of n weights, Algorithm R requires (7(n) computations (i.e., additions,
multiplications, and comparisons).

We would now like to show that with increase of V, d(Q, n, V) changes value just
once from 3 to 2. We begin by remarking that c (Q, i, V) for >= 2 when plotted against V
is a continuous curve consisting of a finite number of straight line segments, since there
are finitely many 3-trees with the rapidly growing sequence of weights wl, w2," , wi
as external node weights (see Fig. 4). By Theorem 1 this curve has constant slope for
V _-< 1 and zero slope for V -> 35-. So given a positive integer n >_- 3, there are positive real
numbers V0, V1," , Vr for some r > 0 such that

(i) 1-- Vo< Vl < W2" < Wr-1 < Wr--
and

(ii)
for each k, 0 < k <- r, and for each i, 2 <- < n, c (Q, i, V) is a straight
line when plotted against V in the interval Vk-1 <- V <= Vk.

We can therefore write, for 2 <_- < n,

c(O, i, V)=ai(k)+bi(k)V

where ai(k) and bi(k) are nonnegative integers which depend only on k, 0< k <_-r.
Now consider the trees S and T shown in Fig. 4. Clearly, Q(i, V) for 3 _-< _-< n is

5either S or T. In particular, when V-< 1, Q(i, V) is identical with S, and when V >-,
Q(i, V) is identical with T. We can write

c(S, i, V)= WV+ c(Q, i-2, V),

c(T, i, V) W + c(Q, i- 1, V)

where W Wl+ w2 +"" + wi as before. It follows that c(S, i, V) or c(T, i, V) when
plotted against V will be a continuous curve consisting of at most r + 2 straight line
segments. In fact, c(S, i, V) or c(T, i, V) will be a straight line when plotted against V in
the interval Vk-1 V Vk for 0 < k <- r. Let us write

c(S, i, V)= ei(k)+fi(k) V,

c(T, i, V)= gi(k)+hi(k)V

where ei(k), fi(k), gi(k) and hi(k) are nonnegative integers which depend only on k.
Then hi(k) equals either fi(k) or hi(k) for 3-<i < n, and

W3 for 3,
/i(k)=

bi-2(k)+ W for 4=<i_-<n;

hi(k) bi-(k) for 3 _-< _<- n.

If we can now show that f. (k) > h. (k) for each k, 0 < k =< r, then it will follow that the
degree of the root node of Q(n, V) changes just once from 3 to 2 as V increases from 1
to o

FACT. fn (k) > h,, (k) for each k, 0 < k <= r, and for n >= 3.
Proof. We fix k and do an induction on n. When n 3, f. (k) W3 and h,, (k) 0, so

the fact is true. We assume that fi(k) > hi(k) for 3 =< < n. Now

f,,(k)= b.-2(k)+ W. and h.(k)= b.-l(k).

532 A. BAGCHI AND J. K. ROY

There are four cases"

Case 1.

Case 2.

Case 3.

Case 4.

Taking Case 3 for example

f,,(k)= f._2(k)+ W,,,

h.(k) f._(k);

f.(k)= f._2(k)+ W,,,

h,,(k)=h._(k);

f.(k) h.-2(k) + W.,

h.(k) f.-l(k);

f,,(k) h.-2(k) + W,,

h.(k)+h,,_l(k).

f,,(k)-h,,(k) h,,-2(k) + W,,-f,,-l(k)

b,,-3(k) + W.-b,.,_3(k)- W.-1

wn>0.

The other cases can be taken care of in a similar manner.
Let Vo(n) be the value of V at which d(O, n, V) changes from 3 to 2. For an

arbitrary rapidly growing sequence wl, WE," , W,,, Vo(n) is a complicated function of
the weights. When the sequence of weights is the Fibonacci sequence, however, it is not
hard to show that

Wn+3--2Vo(n)
Wn+2-- 1

which approximately equals the golden ratio when n is large. This yields a "top-down"
procedure for generating a V-optimal tree in this case, since the degree of the root node
can be determined by just comparing V with Vo(n), and this procedure can be iterated
to get the test of the tree.

4. The equal weights case. We come finally to the equal weights case, where we
can take all the weights in the multiset to be unit weights. Even in this apparently simple
situation, we have been successful in evolving a simple algorithm for generating
V-optimal trees only for certain ranges of values of V lying between 1 and -. For other
ranges of values we have not been able to prove that the simple algorithm works,
although it looks likely that it does. We begin by showing that when V lies between 1
and , the V-optimal tree on n unit weights may be taken to be identical with H(3, n).

THEOREM 3. Given any Vin the range 1 <- V <_--, H(3, n) builton n unitweights is a
V-optimal tree.

Proof. Let T be a V-optimal tree on n unit weights for the given V in the range
1 <= V <_--. We first show that for n >_- 3 the root node of T can be taken to be degree 3.
Suppose the root node of T is not degree 3. Then one of the five cases shown in the

ON V-OPTIMAL TREES 533

C

FIG. 5

b C

d

a b c

d

a b
FIG. 6

a b c d
FIG. 7

d

a b

lefthand sides of Figs. 5 through 9 will apply. In each case a simple transformation yields
the tree shown in the corresponding righthand side which is of no greater V-cost but has
a root of degree 3. In the figures we have labeled some nodes with their weights. In Fig.
5, c 1, i.e., the node labeled with the weight c is an external node. Similarly, in Fig. 6,
d 1. All other nodes in the figures may be either internal or external. We now take the
individual cases one by one"

Case 1. Figure 5. Since c=l, we have 2(a+b)->c. Hence 2a+2b+c=>
(a + b + c)V for V in the given range.

Case 2. Figure 6. Since d 1 and c -> 1, c + d c + 1 => V dV. Hence

(a +b+c)V+(a +b+c+d)>-(a +b)+(a +b +c+d)V.

534 A. BAGCHI AND J. K. ROY

a b c d e
FIG. 8

a b c

o b c d e
FIG. 9

a b c d e

Case 3. Figure 7. We assume here that a-<_b<-c-<_d. So, 2(a+b+c+d)->_
(a +b)+(a +b+c +d)V.

Case 4. Figure 8. We can assume here that a =< b =< c -< d -< e, because if min (d, e) <
max (a, b, c) then T is not V-optimal. So it follows that

(a +b+c)V+(a +b+c +2d+2e)=>(a +b+c)+(a +b+c +d +e)V.

Case 5. Figure 9. Here the two trees shown have the same V-cost.
Since every subtree of a V-optimal tree is V-optimal, once the root node of the

entire tree has been made degree 3, the roots ot the subtrees can be similarly
transformed to degree 3. It is clear that if any degree 2 nodes remain in the V-optimal
tree after all necessary transformations are completed, then the sons of such degree 2
nodes must be external nodes. Suppose there are two degree 2 nodes r and s in the
V-optimal tree with weights a and b. Then a b 2. Suppose

lr + rnrV _-> Is + ms V.

Then if we attach one of the sons of r to s, and raise the other son of r one level, the
change in V-cost is

4 + 2(l + rnV + ls + msV)- 3 V- 3(/s + rnsV)-(l + m,V)

(4-3 V) + [/ + mrV-(Is + rnsV)]

which is nonnegative for V _-< . So by Theorem 2, the V-optimal tree we are left with
may be taken to be identical with H(3, n). El

As a consequence of Theorem 3, we need to consider only values of V lying
between and for further study. We now take help of the concept of a convex function,

ON V-OPTIMAL TREES 535

as defined and used in Knuth [3, p. 372]. We say that a function f with the positive
integers as domain and the real numbers as range is convex if for every n >_-2

f(n)-f(n- 1)-<f(n + 1)-f(n).

Suppose we can show that for any given V in the range 34- < V < 35-, the V-cost c (Q, n, V)
of a V-optimal tree Q(n, V) built on n equal unit weights is convex when viewed as a
function of n. Then by Knuth [3, p. 372], when Q(n, V) has root of degree 2, the two
subtrees of the root are Q([n/2J, V) and Q([(n + 1)/2J, V) and when Q(n, V) has root
of degree 3, the three subtrees of the root are Q([n/3J, V), Q([(n + 1)/3/, V) and
Q(l(n + 2)/31, V). This yields an algorithm very similar to Algorithm R for generating
O(n, V):

ALGORITHM T. Let V in the range < V< be given. This algorithm constructs a
tree T(n, V) on n equal unit weights. The tree T(n, V) is V-optimal provided the
V-cost of a V-optimal tree is convex when viewed as a function of n for the given V. We
let c(T, n, V) and d(T, n, V) represent the V-cost T(n, V) and the degree of the root
node of T(n, V) respectively, and we define them inductively. Two auxiliary functions
.f(T, n, V) and g(T, n, V) are used in the definition.

Set

Now let us put, for 3 _-< _-< n,

and

We define

c(T, , V) O,

c(T, 2, V)= 2,

d(T, 2, V)= 2.

f(T, i, V)= i+c(T, [], V)+c(T, [i __1], V)

i+2|g(T, i, V)=iV+c(T, [], V)+c(T, I_--J’ V)+ V)

c(T, i, V)= min {f(T, i, V), g(T, i, V)}

and

2 if c(T, i, V)=f(T, i, V),
d(T, i, V)

3 otherwise. 71

In the construction of the tree T(n, V) we do not need to know d(T, i, V) for all in
the range 2-<i -< n. For example, when n 20, d(T, 8, V) and d(T, 9, V) are never
needed. So a reduction in the computation is possible, but since this can only be
achieved by computing in advance the values of for which c(T, i, V) needs to be
known, the net saving does not appear to be substantial.

As an example, suppose V 1.574 and n 15. Figure 10 shows the table and the
tree T(15, V). Algorithm Q takes (n) time to construct T(n, V). So we would expect
Algorithm Q to be very useful in the construction of a V-optimal tree Q(n, V) for those
values of V for which we have been able to prove that c (Q, n, V) is convex viewed as a
function of n. It so happens, however, that in our theorems below on the convexity of
c(Q, n, V) we are able to specify the degree of the root node of Q(n, V), so that

536 A. BAGCHI AND J. K. ROY

No.

2

2 3

3 4

4 5

5 6

6 7

7 8

8 15

n=15

c (T,i,V)

2

4..722

6

11.722

15./.44.

19.722

2/*

58,.722

V 1.57/*

d (T,i, V)

2

3

2

2

2or3

2

2

2

FIG. 10

Algorithm (3 is no longer needed for constructing O(n, V). For some values of V in the
range < V < we have not been able to prove the convexity of c ((2, n, V). If it should
turn out that c (O, n, V) is not convex for some V (viewed as a function of n), then for
that value of V Algorithm Q cannot be used for constructing a V-optimal tree, and a
more general algorithm similar to that given in Knuth [3, p. 368] will be needed. It is
interesting to observe in this connection that for V< the cost c(O, n, V) of a
V-optimal tree built on n unit weights is not necessarily convex in n. Consider, for
example, the case n 5.

The major task remaining is to show that the V-cost function of a V-optimal tree,
namely c(O, n, V), is convex viewed as a function of n for any given V in the range

3534- < V < . We have been able to show this except for V in the small range < V < ..

ON V-OPTIMAL TREES 537

Vll

v

+ + + + + + + + + + + + + + +

+++ + + ++++++++++

+ +++++++++++++ ++

+ + ++++ + +++ + + ++++ +

538 A. BAGCHI AND J. K. ROY

We summarize our conclusions in a series of theorems given below. Since the theorems
have similar proofs, we give the proof on Theorem 8 only. Figure 11 gives expressions
for c (Q, n, V) for various values of V and certain typical values of n. The expressions
for c(Q, n, V) given in the theorems were initially obtained by generalizing from the
values given in Fig. 11, which were determined by trial and error. To avoid confusion we
note that for some ranges of values of V and some values of n, the root node of a
V-optimal tree can have degree 2 or 3. Consider, for example, V and n 6. In such
cases we have taken the degree of the root node to be 3 in Theorems 4, 5 and 6, and we
have taken the degree of the root to be 2 in Theorems 7 and 8.

In the range < V <= , we arrive at the convexity of c (Q, n, V) by generalizing the
proof of Theorem L in Knuth [3, p. 371]. We state the theorem below:

THEOREM 4. Let V in the range < V <- be given. The V-cost c(Q, n, V) of a
V-optimal tree built on n equal unit weights is convex viewed as a function ofn and has the
following expression for n >-2.

-1)(n-3k)
c(O, n, V)

knV + 2(n 3 k)
for 2 3 k-1 < n <_-- 3 k,
for 3 k <n <_--2 3 k.

The root node of Q(n, V) has degree 3 ior n > 2 and degree 2 for n 2.
When the value of V crosses , the root nodes of Q(4, V) and Q(5, V) become

degree 2. This changes the expression for c (Q, n, V) and we get the following theorem:
THEOREM 5. Let V in the range < V <= be given. The V-cost c(Q, n, V) o]: a

V-optimal tree built on n equal unit weights is convex viewed as a function ofn and has the
following expression]:or n >-_ 2.

k 3 k V+(n--3k)[8--(4--k)V]

for 3 k <_-- n < 4 3 k-l,
[V(k-1)+2]. 4.3k-1+(n--4 3k-1)[(k+2)V-1]

c(O, n, V)=
for 4.3k-l<_--n <2" 3 k,

(kV+ 1). 2.3k +(n-2 3k)[(k +3)V-2]

for 2 3k <= n 3k+l.
The root node of Q(n, V) is degree 2 for n 2, 4 and 5, and it is degree 3 otherwise.

Again when V crosses t, the root nodes of Q(7, V) and Q(8, V) become degree
2. This causes a further change in the expression for c(Q, n, V).

30THEOREM 6. Let V in the range < V <-_ be given. The V-cost c(Q, n, V) of a
V-optimal tree built on n equal unit weights is convex viewed as a function ofn and has the
following expression for n >-6.

n[9-(4-k)V]/8 3k(v--2) for 2.3k <--n <8. 3k-I

n[(k + 17)V-24]+8 3k+(3--2V) for 8. 3k- <--n <3k+

c(Q,n, V)= n[8-(3-k)V]+4.3g+(V-2) for3+_<-n<4.3k

n[lO-(4-k)V]+16.3k(v-2) for4.3k<--n<16.3k-

n[(k+17)V-23]+16.3k+(3-2V) for 16.3k-_-<n<2.3k+l.
The V-cost c(Q, n, V) for 2 <-n < 6 is the same as in Theorem 5. The root node of
Q(n, V) is degree 2 for n 2, 4, 5, 7, 8, 13, 14, 15, 16 and 17, and it is degree 3
otherwise.

ON V-OPTIMAL TREES 539

For values of V lying between and 30
N the degree of the root node of a V-optimal

tree for quite a few values of n can be 2 or 3 (i.e., both are possible). As V increases
beyond 30

N the root nodes of V-optimal trees for most n tend to switch to degree 2 from
degree 3 In the interval 30 35

N< V < it gets difficult to deduce a closed-form expression
for c (O, n, V). This difficulty disappears as V attains the value. It is not totally clear to
us whether the methods of this section would yield expressions for c(O, n, V) when
30 35
1< V < even if we break up the interval into a number of smaller subintervals, since
we may need infinitely many such subintervals. The problem arises because for all but
finitely many n, the root of a V-optimal tree has degree 3 when V =< 9 and degree 2
when V >_-. Nor have we succeeded in evolving a method for showing c(O, n, V) is
convex in n for a given V which does not require that we first get a closed-form
expression for c(O, n, V). So whether c(O, n, V) is convex in n for V in the range
30 35
1< V < is still open.

35We now see what happens when V->.
THEOREM 7. Let V in the range <= V< be given. The V-cost c(O, n, V) of a

V-optimal tree built on n equal unit weights is convex viewed as a function ofn and has the
following expression for n >-6.

c(O, n, V)=

(n-3.2k)(k+8-3V)+3.2k(V+k)]:or3.2k<=n<2+2,
(n-2+z)[18V-(25-k)]+(k +2)2+2 for 2+2<_- n <9.2k-l,
(n-9.2k-1)(k+7-2V)+2-1(18V-25+k)- (k + 2)2+2 for 9.2-1 <= n < 3 2+1.

The V-cost c(O, n, V) for 2 <= n < 6 is the same as in Theorem 5. The root node of
Q(n, V) is degree 2 for all n except n 3, 9, 10 and 11, for which it is degree 3.

When V lies between 58- and - in value, the root node of a V-optimal tree O(n, V) is
degree 2 for all n except n 3.

THEOREM 8. Let V in the range <-V< be given. The V-cost c(O, n, V) of a
V-optimal tree built on n equal unit weights is convex viewed as a function.ofn and has the
following expression for n >-2.

(n 2k+1)(3 V + k 2) + (k + 1)2’+1 for 2+ <- n < 3- 2,
C(, n, V) (n-3.2)(k+8-3V)+3 .2(V+k) for3.2<-n<2+2.

The root node ofa V-optimal tree O(n, V) is degree 3 for n 3 and is degree 2 otherwise.
As pointed out earlier, Theorems 4 through 8 have similar proofs. So we only give

the proof of Theorem 8 below:
Proof of Theorem 8. The proof is by induction on n. The theorem clearly holds for

n 2 and n 3. For n _-> 4, we define, following Knuth [3, p. 372]

and

c:(O, n, V)=c(O, [], V)+c(O, In +1],
c3(O, n, V)=c(O, [], V)+c(O, In +13], V)+ c(O, In +2j,3 v).

Since the expression for c(O, n, V) given in the statement of the theorem is known to be
valid for 2 _-< m < n with m substituted for n in the expression, we get by direct

540 A. BAGCHI AND J. K. ROY

evaluation

(n 2+2)(3 V + k 2) + (k + 1)2+

for 2+-<n/2<3 2k

c2(O,n, V)=
3.2k+)(k+8-3V)+2k+a(3V+k-2)+(k+l)2k+2(n

for 3 2 <- n/2 < 2+2;

and

(n 3 2k+1)(3 V + k 2) + (k + 1)3 2+1

for 2+1<_-n/3<3 2k

c3(0, n, V)=
(n-9.2)(k+8-3V)+3 2(3V+k-2)+3 2+(k+1)

for 3 2 _-< n/3 < 2+2.

It can now be checked that the given expression for c(Q, n, V) has the property that

c(O, n, V) n + c2(O, n, V) <= n V + c3(Q, n, V).

Moreover, we have

c(O,n, V)-c(O,n-1 V)={ 3V+k-2k+8-3V

so that

for 2k+l < n _--< 3 2k,
for 3 2k < n <_-2k+2,

c(Q, n, V) c(O, n 1, V) >- c(O, n 1, V) c(O, n 2, V).

Hence, c(Q, n, V) is convex at n.
The other theorems can be proved in a similar manner. In particular, we need to

show the following:
(i) In Theorem 4, for all n _-> 3,

c(O, n, V) c3(O, n, V) + nV <-- c2(O, n, V) + n

(ii) In Theorem 5, for all n _-> 6,

c(O, n, V)

(iii) In Theorem 6, for all n -> 18,

c(O, n, V) c3(O, n, V) + nV = c2(O, n, V) + n

(iv) In Theorem 7, for all n -> 12,

c(Q,n, V)=c2(Q,n, V)+n<-c3(Q,n, V)+nV.

In each case, for values of n smaller than the given bounds, the validity of the
expression for c(Q, n, V) must be verified by actual construction of a V-optimal tree,
i.e., by reference to Fig. 11.

An open problem of critical importance in the equal weights case is whether
30 35c (Q, n, V) is convex viewed as a function of n for V lying in the range N< V <. When

this question is answered the equal weights case will be completely solved. An
interesting query is whether for any V in the interval 30 35

N< V < the root node of a
V-optimal tree can be degree 2 for infinitely many n and degree 3 for infinitely many
other n.

ON V-OPTIMAL TREES 541

Acknowledgment. The problem studied in this paper was suggested to the first
author in a more general form some years ago by Professor C. L. Liu of the Department
of Computer Science, University of Illinois.

REFERENCES

1 A. BAGCHI AND J. K. RoY, Bounds on cost ratios ofoptimal trees, Symposium on Graph Theory, Indian
Statistical Institute (Calcutta, December 20-25, 1976).

[2] D. E. KNUTH, Fundamental Algorithms The Art of Computer Programming, Vo|. 1, Addison-Wesley
Reading, MA, 1968.

[3], Sorting and Searching, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading,
MA, 1973.

[4] M. SCHLUMBERGER AND J. VUILLEMIN, Optimal disk merge patterns, Acta Informatica, 3 (1973), pp.
25-35.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0005 $01.00/0

A NOTE ON LOCATING A SET OF POINTS IN A
PLANAR SUBDIVISION*

F. P. PREPARATA?

Abstract. In this note we algorithmically show that a set of k points can be located in the planar
subdivision induced by a straight-line planar graph with n vertices in time O(k log k)+O(n)+ O(k log n),
given a preprocessing time O(n log n).

Key words. Computational geometry, computational complexity, point location, point set location

A planar straight-line graph (PSLG) G with n vertices induces a subdivision of the
plane into regions which are simple polygons. Locating a given point Po (target point) in
this subdivision means finding the subdivision region which contains Po.

In this note we consider the problem of collectively locating a set S {P1, , Pk}
of points in the planar subdivision induced by G; a solution to this problem is relevant to
finding the intersection of planar maps and the intersection of convex polyhedra [1];
indeed, a recent result on the latter problem [2] makes crucial use of the method to be
presented. Notice that set $ could be located in O(kn) time by an obvious brute force
method (with no additional preprocessing), and in O(k log2 n) time by the Lee-
Preparata algorithm (with O(n log n) preprocessing) [3]. We shall now describe a
simple extension of the latter for locating a set of k points in time O(k log k) + O(n) +
O(k log n);2 this new variant uses the same data structure given in [3], to which the
reader is referred for a detailed description. We now just recall the essentials.

Let {Vl,’’’, vn} be the vertex set of G, with ordinates y(vl)->’" >= y(vn). G is
assumed to be regular, i.e. for each vertex vj(] 1, n) of G there are integers < j < k
such that (vi, vj) and (vi, Vk) are edges of G (if G is not regular, it can be made so by
adding edges in time O(n log n)). In a regular graph G, one can find a set c
{Cl, c2, , c,,} of polygonal lines consisting of edges of G, called chains, from Vl to v,
with the following properties:

(i) each edge of G belongs to at least one chain;
(ii) each chain c c is monotone with respect to the y-axis, i.e., if (Ul, u2, , u,)

is the sequence of vertices in c y(ul) y(u2) " -> y(u,);
(iii) for any two chains ci and G of , the vertices of ci which are not vertices of ci lie

on the same side of G (the set is ordered).
Clearly Cl " LI c,, embeds G (see Fig. 1 for an example of a graph G and of the set of
chains embedding it).

A location of a single point can be accomplished by a nested binary search. In fact, a
(primary) binary search on locates P0 between two consecutive chains; by property
(ii), for any c , a (secondary) binary search on the ordinates of the vertices of c locates
P0 on either side of c.

* Received by the editors September 19, 1977. This work was supported in part by the National Science
Foundation under Grant MCS76-17321 and in part by the Joint Services Electronics Program under Contract
DAAB-07-72-C-0259.

I Coordinated Science Laboratory, University of Illinois at Urbana. Also, Department of Electrical
Engineering and of Computer Science.

All logarithms in this note are to the base 2.
After the original submission of this note, Lipton and Tarjan presented an algorithm [4] which locates a

point in time O(log n) on a data structure which is also constructible in time O(n log n). On the point set
location problem their method has a time performance comparable in the order to that of our approach, but is
algorithmically far more complicated.

542

LOCATING A SET OF POINTS 543

u

(a) (b)
FIG. 1. Examples of G and

The location procedure for a set of points is essentially based on the observation
that the secondary binary search on the y-coordinates of the vertices of c can be
replaced by a linear search, and that, for a set of points, the corresponding linear
searches can be done concurrently as a single linear search (after ordering the k points in
S according to their y-coordinate). The latter search would be straightforward, were it
not for some complications due to the nature of the searchable data structure.

Indeed, we recall that the set is organized as the set of nodes of a balanced rooted
binary tree T(), whose paths from the root correspond to sequences of chains, in the
order in which they are used when performing point locations. Thus each edge e of
Gaalthough possibly shared by several consecutive chains of CO--need be stored only
once in the list of the chain which contains e and is closest to the root of c. This achieves
O(n) storage; however the typical edge list of a chain appears as in Fig. 2, where the
pointers "bypass" edges which have been assigned to other chains in T().

The following procedure PARTITION (U, c) splits a sequence of points U into
two sequences U’ and U" of points which lie respectively to the left and to the right of
chain c. Notationally, y’(e) and y"(e) (y’(e) >- y"(e)) respectively denote the ordinates of
the upper and lower extremes of an edge e; also, with each edge e we associate the pair

//
/

Byposs Pointers

FIG. 2. Illustration of typical edge list of a chain.

544 F.P. PREPARATA

of names (L[e], R[e]) of the two regions sharing e, and the pair of integers (Imin[e],
/max[e]), which are respectively the smallest and the largest indices of the chains
containing e. With each point P to be located there is an associated triple of parameters
(R (P); l(P), r(P)), where R(P) is the region to which P is tentatively assigned, and l(P)
and r(P), (l(P) < r(P)), are integers denoting that P lies between clp) and Crp) in c. We
may also assume that, for any point P, maxein y’(e)_-> y(P)->_ mineino y"(e).

Input:’a list U: (Pl, P2,"’,Pt, Pt+x) where i<jy(Pi)>=y(Pi); a list c=
(el, e2," es, es/l) where h < => y"(eh) => y’(et), and an integer INDEX (c)
Pt/l and es+l are dummy sentinels, with y(Pt/l)- y’(es/l)= y"(es/l)=-c.

Output: two lists U’ and U" of points.
1. k-i,-j-l, U’-U"-.
2. While k <_- + s do
3. begin If y(Pi) > y’(e.) then
4. If/(Pi) =>INDEX (c) then U"- U" U{Pi}, else U’- U’U{Pi}
5. ii+l
6. else If y(Pi) < y"(e.) then j - j + 1
7. else If P lies to the right of e. then

U" *- U"t_J{P}, l(P) Imax[ei], R(P) R[ei]
else U’ U’ U{P}, r(P),-Imi[e], R(P)-L[e]
i,-i+l9.

10. k,--k+1

end
11. return { U’, U"}

Notice that a point Pi is assigned to one of the two sets U’ or U" either in steps 7-8 (by
discriminating P against edge ei) or in step 4, when y"(e.) > y(P) > y’(ei+l): in this case
P lies in the horizontal strip corresponding to a bypass pointer (see Fig. 2), and the
assignment to U’ or U" is governed by the parameters (/(P), r(Pg)). It is easily realized
that PARTITION (U, c) runs in time proportional to]U]+]c], where]c] is the number
of the edges actually assigned to c in the construction of T().

We can now describe the location procedure, where Tic] denotes the subtree
whose root is c T(). The symbol A denotes the empty tree.

LOCATE (S, T)
Input: S, T. For each P S, (P) O, r(P) TI + 1, R (P) A.
Output: a set K {(P, R (P))]P S, R (P) a region of the subdivision contain-

ing P}
1. begin K -
3.
4.
5.

9.
10.
11.
12. end

If S : Q3 then
begin c - ROOT (T)

{S’, S"} PARTITION (S, c)
If RIGHTSON (c) A then K" LOCATE (S", T [RIGHT-
SON (c)])

else K" {(P, R (P))IP $"}
If LEFTSON (c)# A then K’LOCATE (S, T [LEFTSON
(c)])

else g’
KK’UK"

end
return K

LOCATING A SET OF POINTS 545

We now evaluate the performance of the described algorithm. The bulk of the
computational work is performed in step 4, and we have already noted that PARTI-
TION (S, c) runs in time O(IS[+ [cl). Since the algorithm entails at most one visit to each
node of T((), it is convenient to "charge" the work to the individual nodes of T(().
Specifically, let S(c)

_
S be the set of points to be discriminated against chain c. Thus the

global computational effort is

T(C) ce T(C)

but, by the construction of the data structure T(),)[c] equals the number of
edges of G, i.e., it is O(n) due to the planarity of G. Moreover, since obviously
[S(LEFTSON (C))] +]S(RIGHTSON (c))[IS(c)l, at any given depth in T() the sum
of S(c)] is a constant and is equal to]S[k. Since T() has at most [log2 m] levels, and
m is O(n), we conclude that r)]S(c)] O(k log n).

In summary,excluding preprocessing of the search structurethe set of points
can be collectively located in time O(k log k)+O(n)+O(k log n), where the term
O(k log k) is due to the initial sorting of the set {y(Pi)[P S}. The corresponding work
for the algorithm of [3] is O(k log2 n); a comparison of these two measures indicates
that for a wide range of k (typically when k O(n)) the present algorithm has a better
worst-case performance.

REFERENCES

[1] M. I. SHAMOS, Computational Geometry, Dept. of Comp. Sci., Yale University, 1977. To be published by
Springer-Verlag.

[2] D. E. MULLER AND F. P. PREPARATA, Finding the intersection of two convex polyhedra, Theoretical
Computer Science, to appear; also available as Report ACT-6, Coordinated Science Lab., Uni-
versity of Illinois, Urbana, Illinois, November 1977.

[3] D. T. LEE AND F. P. PREPARATA, Location of a point in a planar subdivision and its applications, this
Journal, 6 (1977), pp. 594-606.

[4] R. J. LIPTON AND R. E. TARJAN, Application of a planar separator theorem. Proc. of the 18th Symp. on
Found. of Comp. Sci. (Providence, RI), 1977, pp. 162-170.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0006 $01.00/0

ON THE SEMANTICS OF "DATA TYPE"*

JAMES DONAHUE?

Abstract. This paper considers the general problem of specifying the meaning of programming languages
that include "data type definition facilities." The fundamental question posed in attempting to define such
languages is: "what meaning should be given to a data type definition," or more simply, "what does data type
mean?" In this paper we describe a new approach to defining the meaning of data types, treating data types as
values, and give its application to the definition of a typed lambda calculus extension. We also prove a theorem
stating that our lambda calculus definition is "strongly typed."

Key words. Data types, semantics, polymorphism, lambda calculus

1. Introduction. A recent trend in programming languages is to allow definitions of
data types in programs. Although there is currently much ferment about what form such
definitions should take (cf., PASCAL (Jensen and Wirth [7]), Euclid (Lampson et al.
[8]), and CLU (Schaffert [17]), there seems to be general agreement about their utility
as a programming tool.

The introduction of type definitions requires that we have a clear idea of what we
mean by "data type," so that we can know just what is being defined. A clear notion of
"data type" is also important for understanding languages without type definition
facilities. In attempting to give the semantics (using any kind of formalism) of a language
with either a fixed or changeable set of data types, we somehow must give some meaning
to the type identifiers and expressions appearing in programs.

This paper presents an approach to defining the meaning of "data type" in
programming languages. We do not give the semantics of a language involving type
definitions; how specific data type values are created is left unspecified. Instead, we
focus on the interpretation of programs in which data type values are used. Indeed,
given the lack of agreement as to how type definition should be done, we are
well-advised not to choose any single form of type definition. We hope the reader will
see how his favorite form of definition can be viewed using this approach.

The paper is organized as follows. In the next section we describe in informal terms
our interpretation of the meaning of "data type," using examples from Algol 60. We
then give a formal definition of a far simpler language, a version of the typed lambda
calculus, to show how the approach allows a rigorous formulation of the meaning of
data types. Finally, we prove a theorem showing that this simple language is "strongly
typed." In doing so, we provide a semantic justification for the common use of
"type-checking" to catch erroneous programs.

2. An informal view of data types. Our treatment of data type is a radical
departure from the usual view of types as sets of values. Instead, we take a data type to
be a set of operations specifying an interpretation of values. What such a set comprises
depends on the particular programming language under discussion. Below, we will
discuss informally the meaning of Algol 60 data types using this view; in the next section
we will apply this same view to a formal treatment of a typed lambda calculus variant.

The notion of type as a set of operations specifying an interpretation (in the sense of
"bringing out the meaning of") of values is drawn from the algebraic approach to
abstract data types. One way of viewing the claim that "an abstract data type is the

* Received by the editor October 27, 1977.
? Computer Science Department, Cornell University, Ithaca, New York 14853. This work was partially

supported by the National Science Foundation under Grant MCS76-14293.

546

ON THE SEMANTICS OF "DATA TYPE" 547

isomorphism class of an initial algebra in a category of algebras" (Gougen et al. [3]) is
that the meaning of an abstract data type is not embodied in the carrier set of its algebra,
but in the effect of the operations of the algebra on elements of the carrier. Thus, we
may focus our attention on the initial algebra, knowing that there exists a homeomor-
phism from it to any other algebra in the category, i.e., that the initial algebra captures
the effect of the operations as well as any other algebra in the category.

We have generalized this algebraic approach to include a larger class of operations
that are necessary to specify fully how values are interpreted in common programming
languages. Consider, for example, a language like Algol 60 that has only primitive
(nonstructured) data types. In such a language, we may store values in variables, extract
values from variables and compose values by application of certain primitive functions.
Our approach to data types is to take the meaning of this set of primitive operations over
some value space as the meaning of a data type. As in the algebraic approach, we make
no prior assumptions about the structure of the value space manipulated by these
operations. The space may be a union of disjoint components or may be "typeless," like
pxw (Scott [18]) or the memory of most machines. We are interested only in how values
are interpreted by operations.

So, in the following Algol 60 fragment

integer x, y
x:=0;
y :=x

the meaning (or denotation) of "integer" would provide the meaning of the following
operations"

1. Value extraction, specifying how to interpret the values "stored" in variables,
2. Assignment, specifying how a value is used to "update" a variable, and
3. the evaluation of the nullary function 0, i.e., which value "represents" 0.
A similar, but less formal, treatment of data types can be found in the axiomatic

definition of PASCAL (Hoare and Wirth [6]). In the rule of assignment,

{P} x:=y {P},
if the type T ofX is a subrange of the type of y, thenP is replaced by pT(y) where T(y)
is the restriction of y to a value of type T). In this case the meaning of the assignment
x :=y is explicitly stated to be dependent on the type of x. All we are doing is
formalizing this by saying that the meaning of a data type is the semantics it gives to
assignment (i.e., the axiom {P(Y)} x:=y {P}).

There are two important reasons for adopting this approach to data types. Firstly, it
allows us to side-step neatly the question of whether each value belongs to only one type
(as hypothesized in (Hoare [5])). Values are essentially "meaningless" in this approach;
it is only through the application of some operation that they are given an inter-
pretation. Thus, while we do not rule out the possibility that each value has some
distinguishing attribute called "type," we do not demand it. It is perfectly reasonable to
assume that the same value may be interpreted many different ways. For example, the
same sequence of bits in the memory of a machine is commonly interpreted as logical
value, integer, floating point or piece of program depending on the operations used.

The second important characteristic of this approach is that data types themselves
may be treated as values. If we choose a value space that is "universal" (Milne and
Strachey, [12]), i.e., it is isomorphic to the space of operations over it, then data types
(which are just sets of operations) are values in the space. This importance of treating
data types as values is that we can give a simple interpretation to polymorphic
definitions, i.e., definitions that have types as parameters. In the next section, we will

548 JAMES DONAHUE

give a simple denotational semantics for a polymorphic lambda calculus using this
approach.

The idea of treating data types as values also appears in Shamir and Wadge [19]
and Scott [18]. However, unlike Shamir and Wadge, we do not add special "data type"
values to form an extended domain, but simply use values of a particular form as data
types. Thus, our approach is similar to that of Scott in [18]. In fact, in the formal
semantics to follow, we will use "retracts" as the meaning of data type for our lambda
calculus variant, as is done in Scott [18]. And we will give an intuitive motivation for
this choice of the meaning of type in terms of our preceding discussion.

3. A lambda calculus extension and its semantics.
3.1. The language. The language we use as an example of this approach to giving

meaning to data types is an extension of the typed lambda-calculus first suggested by
Reynolds [16]. As in the basic typed lambda-calculus (Morris [13]), it includes the usual
forms of abstraction and application. For example, Ax t.x defines the identity
function of type (Ax t.x has type t- t), and if y has type t, (Ax t.x y) denotes the
application of the identity function to the argument y (yielding y). Additionally, we
extend the language in two ways"

1. If T is a type, then T$c will be used to denote the constant c of type T. The
syntactic form of constants will be left unspecified to shorten the presentation.

2. Just as we allow normal abstraction and application, so we allow type abstrac-
tion and application. For example, given the type identity function &x t.x, we
can abstract it with respect to the type identifier by writing At.Ax t.x to
produce the polytnorphic ("of many types") identity function (of type At.t t).
From At.Ax t.x we can produce the identity function of any particular type by
applying our polymorphic function to the type. Thus,

At.Ax t.x [integer]

produces the integer identity function as its result.
Below, we give a complete formal description of the language using the denotational
approach to semantics.

3.2. Formal semantics. We begin by giving a formal syntax for the language (using
identifiers beginning with a capital letter to denote nonterminals). Exp, the set of
lambda expressions, is defined as follows"

Exp: Id$ Const

Id
Aid W.Exp

(Exp Exp)
AId.Exp
,xp w]

constants of type Id
(Const will be left unspecified)
normal variables
normal lambda abstraction
(where W is a type expression, as
defined below)
normal application
type abstraction
type application

W, the set of type expressions, is defined by:

Aid. W

type identifiers
functional types (the types of
terms)
polymorphic types (the types of A
terms)

ON THE SEMANTICS OF "DATA TYPE" 549

We give formal semantics to the language by defining a function Me mapping each
lambda expression to its meaning as an element of some domain. As in treatments of
other forms of the lambda calculus, we will take the meaning of expressions as elements
of the domain

D=B+[DD]+[TD]

where B is a domain of primitive or basic values (which we assume will be used to
interpret constants) and T is the domain of type denotations. (One can think of D -Dvalues as the meanings of A-terms, T-D values as the meanings of A-terms.)
Obviously, the heart of the matter is the definition of T, and it is here that we apply our
previously stated view of data types.

The most basic operation in the lambda calculus is clearly the evaluation of the
basic expressions, i.e., identifiers and constants. For the untyped lambda calculus, the
usual interpretation of the meaning of a variable x is its value in the current environ-
ment, a member of the domain Id D. However, in the typed calculus, the value
produced by evaluating x in the current environment must be consistent with the type
associated with x. One approach to satisfying this requirement in the semantics is to say
that the environment must be "type-respecting," i.e., that the value associated with x in
the environment must be compatible with the type of x. (This approach is adopted in
Reynolds 16].)

Our approach is to take as the meanings of data types the interpretations of "taking
the value of an identifier in an environment." Thus, we take T to be functions of type
D -D such that for any environment e, if x has type t, then the "meaning of t" applied
to e (x) produces a "type-respecting" value. For the basic data types in the language, the
meaning of the data type will also include a component of type Const- B giving the
meaning of constants of that type. (Since we have included no data type definition
facility in the language, how constants are given denotations is left unspecified.)

This interpretation of data types can be informally explained in terms of the
operation of an SECD machine (Landin [9]) evaluation of lambda expressions. In an
SECD definition of the lambda calculus, the meaning of "taking the value of a variable"
is to push its current value in the environment onto the stack. Now consider the
implementation of the stack on some machine of fixed word length. The action of the
machine will involve"

1. allocating a number of words of storage (the number may differ for various
types) on the top of S to hold the value to be copied, and

2. filling this space with the current value of the variable in E.
Our use of a function of type D-D as the meaning of "data type" can be viewed as
simply the denotational encoding of this action of an SECD machine, i.e., as giving the
interpretation of any value in D as an element of the type.

This interpretation of the meaning of data types points out one further aspect of
our semantics worthy of note. It is natural at first glance to view the D -D component
of types that introduce constants (i.e., types in [Const-B][D-D]) as simply
restrictions of the identity function. For example, if we decide to define the Boolean
constants true and talse by the integers 1 and 0 respectively, a natural choice for the
second component of the meaning of Booleans would be

Ax D. x is Integer then (x > 1 then 3- else x) else

This choice can be viewed as choosing a single-bit representation of Booleans and
checking to make sure one never moves nonprimitive values (functions, for example)

550 JAMES DONAHUE

onto the stack. When viewed in this light other possibilities suggest themselves. For
example,

hx D.x is Integer then (x > 255 then 2_ else x) else 255

suggests the choice of eight bits to represent Booleans and less care in ruling out the
assignment of nonprimitive values to Boolean variables. In fact, all we really require is
that the interpretations of constants (given by the first component of a primitive type)
remain unaltered by the application of the D -D (second) component of the data type.
In more formal terms, we require that these functions from D to D be "retracts," i.e.,
functions f such that f-f of, with range including at least the denotations of all
constants introduced by the type. And clearly this restriction makes sense in terms of
the SECD analogy; it simply says that when allocating space on the stack, we always
allocate enough space for the denotation of any constant of the type.

Thus, we now give a formal definition of the meaning of "data type" for the
polymorphic lambda calculus.

DEFINITION. A function f: D -D is a retract iff f f f. (Note that all elements of
the range of f are fixed points of f, i.e., x f(x).) An element Const B x [D D
is a data type iff:

1. [t]2 (the second component) is a doubly strict retract (a function f is doubly strict
iff f(2- 2- and f(T) T), and

2. [c Const, [t]xC is a fixed point of It]2, i.e., the meanings of all constants are
preserved by the second component of the type.

An element f D D is a data type iff f is a doubly strict retract.
Given this restriction on data types, we can now give a simple characterization of

what it means for an element of D to be a member of a data type.
DEFINITION. An element x D is said to be an element of a data type iff x is a

fixed point of hx D.Apply (t, x), i.e., x in the range of hx.Apply (t, x), whereApply:
T x D]-D is defined by

Apply (t, d) is D D then t(d) else [t]2(d).

Several points need to be made about these definitions. First, we will impose no
requirement that each element ofD belong to a unique data type. We are using our data
types to impose a type structure on the basically "typeless" domain D, and it is quite
natural to assume that elements of D will serve as elements of many data types. In fact,
because of our requirement that these retracts be doubly strict, 2- and -1- will be
elements of every data type.

Second, for the basic data types (those giving meaning to constants), we require
only that the denotations of constants be elements of the data type, not that these
denotations be the only elements of the data type. The weakness of the assumption can
be viewed as allowing an implementor to choose any representation for the data type he
finds appropriate, as long as all of the constants can be represented satisfactorily.

Now, given this basic decision about the meaning of data types, we are now ready to
"lay our domains on the table" to specifying the complete semantic structure of the
language. Informal commentary follows the formal description.

Basic Domains
Exp
W
D=B+[DD]+[TD]
T [D D]+[[Const B] [D D]]

as above
as above
expression denotations
data types

ON THE SEMANTICS OF "DATA TYPE" 551

Meaning functions
Me" Exp --> O -. Te --> Env D
where

O Id-. W
Te Id-. T

Env Id --> D

Mt" W Te-> T

meaning of expressions

syntactic type environment
semantic meaning of type
identifiers
meaning of free identifiers

meaning of types

The meaning of an expression (the particular element in D =B +[D-->D]+
IT--> D] it denotes) depends in several ways on the free identifiers appearing in the
expression; the domains Q, Te, and Env are used to capture these various depen-
dencies. Q is used to provide the "syntactic type" (element of W) associated with each
free identifier. For example, inside the body of hx t.exp, x "has type t", i.e., the
element of Q used to interpret exp will associate with x. The "type environment" Te
provides the mechanism for giving a meaning (as elements of T) to these syntactic types
of providing the element of T associated with each free type identifier. Finally, the
domain Env associates a value in D with each free normal identifier in the expression.
Before giving the definitions of Mt and Me, we first must define an auxiliary function
TypeOf which produces the "syntactic type" of every expression:

TypeOf: Exp --> Q -0 W

is defined by

TypeOf id$const(q)= id
The type of a constant is determined by the constant.

TypeOf id(q) qid
The type of an identifier is found in q.

TypeOf (expl exp2)(q)= Range(TypeOfexpl(q))
where

Range" W--> W and
Dom: W W

extract the range and domain of type expressions of the form W1 --> W2, i.e.,

Range W W2]] W2 and
Dom W1 "-’) W2 W1
Note that in specifying the syntactic type of a normal application, all we

demand is that the type of the left-hand expression be some functional type; we do
not require argument/parameter type correspondence. Expressions where such
mismatches occur will have a proper (i.e., defined) type, but improper semantics.

TypeOfhid w.exp(q) w -> TypeOfexp(q[id - w])

where q[id w] is hid’.id’ id then w else qid]. (Thisnotation for "updating" a
function will be used extensively in what follows.)

Normal abstractions are of functional data types.

Type OfAid.exp(q) Aid.TypeOfexp(Replace (q, id, _1_)) where

Replace (q, id, w)= hid’.qid’]][w

552 JAMES DONAHUE

i.e., all occurrences of the type identifier id in q are replaced by w. This use of
Replace is necessary to reflect the fact that previous bindings of identifiers to type
expressions involving are no longer valid inside the body of At.exp.

TypeOf exp[w]]](q)= Body (TypeOf exp]](q))]V(TypeOfexp(q))

where Body: W W and BV: W Id extract the body and bound variable of type
expressions of the form Aid.w.
One aspect of our treatment of syntactic types, as specified by TypeOf, is worthy of

further comment. That is, the expression Af t t.Xx t.(fx) always has syntactic
type (t t)(t-t) independent of surrounding context. Thus, for example, the
expression

At.Af t.Ax t’.(f x)[t’ - t"]

has improper type because f is not of some functional type, even though normal
beta-reduction would reduce this to

afe t’ -, t".x t’.(f x)

which has a proper type. In implementation-oriented terms, this restriction imposed by
TypeOf can be viewed as allowing us to "compile" a polymorphic procedure by being
able to typecheck its body independently of any type arguments to which the poly-
morphic procedure may be applied. Note that the desired effect of the above expression
could be achieved by the correctly typed expression

At.At.Af e t - t.Ax h.(fx)[t’][t"],

which can be shown to be semantically equivalent to

,f t’- t".Ax e t’.(f x).

We first present the clauses of the meaning function Mt, which give a meaning to
data type expressions (remember Mt has functionality W Te T).

Mtid(te) teid

Mewx w(te)= Arrow (MtWl(te), Mtw2(te))
Arrow" IT x T] T is defined by
Arrow(t1, t2) Xf e D.(Ax D.Apply (t2, x)) lID --, D

(Ax e D.Apply (tl, x))

where f2 fl is normal function composition, i.e., (f2 fl)(X) f2(fl(x))

The meaning of functional types is to map their arguments to "type respec-
ting" functions, i.e., functions that accept values of type W and produce
results of type w2.

MtAid.w(te) Delta (at e T.Mtw(te[id t]))

where

Delta: IT T] T is defined by
Delta (y) Ax D.At T.Apply (y (t), (xlT- D)(t))

The meaning of polymorphic types is to take polymorphic values to "type-
respecting" polymorphic values.

It is clear that Mt produces elements of T; however, for us to justify it as a meaning
function for "data type expressions," we must prove that it maps retracts to retracts.

ON THE SEMANTICS OF "DATA TYPE" 553

The following theorem shows that Mt in fact produces "data types" as results.
THEOREM 1. If /id Id, teid is a data type, then for all w W, Mtw(te) is a

data type.
Proof. The proof is by induction on the structure of w.
Basis. w id Id. ThenMtw(te) tew and tew isa data type by assumption.
Induction. There are two cases: 1. w Wl-W2. Then Mtw(te)=

Arrow (Mtwl(te), Mtwz(te)). From the induction hypothesis, we have that both
Mtwl(te) and Mtwz(te) are data types. So we need to show that for any data types tl
and t2, Arrow (tl, t2) is a data type (a doubly strict retract), i.e., that

Arrow (tl, t2)= Arrow (tl, t2) Arrow (tl, t2).

But

Arrow (tl, t2)(f) Ax D.Apply(t2, x) f]D - D hx D.Apply (tl, X)

and because tx, t2 are data types

(hx D.Apply (t2, X) Ax D.Apply (t2, X)) f[D -Dhx D.Apply (tx, X) Ax D.Apply (tx, X))

and simply collecting terms

(Arrow (tl, t2) Arrow (tl, t2))(f).
Q.E.D.

2. w Aid.w’. Then Mtw(te)= Delta (At T.Mtw’]](te[id t]))
From the induction hypothesis, we have that At T.NIt w’](te[id - t]) maps data types
to data types, so we need to show that if y T T maps data types that

Delta (y) Delta (y) Delta (y).

But

Delta (y)(x)(t) Apply (y(t), (x T- D)(t))

and if y(t) is a data type

Apply (y (t), Apply (y (t), (xlT- D)(t)))

(Delta (y) Delta (y))(x)(t).

Q.E.D. Theorem 1.
We are finally ready to give the clauses of the definitions of our meaning functions

Me, which gives the meaning of lambda-calculus expressions

Meid $const]](q)(te)(e te id]] is Const B][D D] then teid]]]lconst]]

else Y.

If id is a type for which constants are defined, produce as value the meaning of the
constant (i.e., the value of the first component of the meaning of the type applied to
the constant); otherwise, the expression is erroneous.

Meid(q)(te)(e) Apply (Mt[[TypeOf id(q)(te), eid)

The meaning of an identifier is simply its value in the current environment applied
to the meaning of the type of the identifier.

554 JAMES DONAHUE

Me(expl exp2)(q)(te)(e)=
TypeOf exp2(q) Dom (TypeOf expl(q)) then

(Meexpl](q)(te)(e) ID D) (Meexp2(q)(te)(e))
else +/-

where w w2 is true iff w is alpha-convertible to W2 and x[D -. D restricts x D
to elements of D - D, i.e., x lD -D is

+/-if x=+/-

7- if x =T or xC_D-D
z if x D-.D

The meaning of an application is to produce a proper result only when the type of
the argument is consistent with the type of the parameter.

Me[lAid w.exp]](q)(te)(e)=
Ay D.Meexp(q[id w])(te)(e[id - y])

MeAid.exp](q)(te)(e
At T.Meexp] (Replace (q, id, +/-))(te[id t])(e)

Meexp [w](q)(te)(e)=
(Meexp(q)(te)(e)l T D)(Mtw(te))

The meaning of type application is simply to apply the meaning of the expression
(as an element of T D) to the meaning of the type (an element of T).

Two points of interest in the semantics above should be noticed:
1. Our treatment of data type abstraction and application is a straightforward

extension of the treatment of normal abstraction and application in the lambda calculus.
In particular, we avoid the "serious lacuna" of Reynolds’s semantics for this same
language, where the meaning given to polymorphic types may not be elements of a
domain (unlike our choice of T). Moreover, his earlier semantics requires the use of
category theory to give the meaning of functional and polymorphic types, a mathema-
tical complication we avoid.

2. When read operationally, these meaning functions are consistent with common
implementations of statically typed programming languages (ignoring the extra
complexities caused by polymorphism). We have already described our interpretation
of data types in terms of an SECD machine. The other point to note in this regard is the
treatment of parameter-passing and type-checking in the semantics. The meaning of
applications involves a simple syntactic check that the type of the argument is consistent
with the type of the parameter. This sort of type-checking has been described in many
other places (Morris [13], Ledgard [10], Gannon and Horning [1]) and is readily
contrasted with the checking of the types of values found in "dynamically typed"
languages like GEDANKEN (Reynolds [15], Tennent [21]). Also the interpretation of
A-abstraction involves no test of the "acceptability" of the parameter in the body of the
abstraction. This "blind faith" in the validity of an argument is precisely the reason that
"compile time" type checking is performed in statically typed languages.

We end the presentation of the semantics by proving that our meaning function Me
is "correctly typed," i.e., the meaning of an expression is an element of the meaning of
the type of the expression.

THEOREM 2. Vq Q, /te Te, Ve Env, if /id Id, teid is a data type, then

Meexp(q)(te)(e

ON THE SEMANTICS OF "DATA TYPE" 555

is an element If data type

MtTypeOf exp(q)](te),

i.e., the semantics is "correctly typed."
Proof. The proof is by induction on the structure of exp.
Basis. There are two cases" 1. exp id$const. Then

Meexp(q)(te)(e) teid is [Const - B][D -D]then (teid]])l[const]] else T.

If [teid][const is defined, then the theorem is true because teid is a data type;
otherwise, 7- is an element of every data type.

2. exp id. Then

Me[exp(q)(te)(e) Apply (Mt[TypeOf [[id(q)(te), eid)

and the theorem is true because

Mt[[TypeOf id(q)(te) is a data type by Theorem 1.

Induction. There are four subcases: 1. exp=Aid w.exp’. Then Me,exp,(q)
(te).(e)=Ay D.Meexp’]](q[id -w])(te(e[id -y]), To show that this function is an
element of type Mtw - TypeOfexp]](qid - w(te), we need the following lemma.

LEMMA. Meexp’](q[id - w])(te)(e[id y])= Meexp’(q[id - w])(te)(e[id -Apply (Mtw]](te), y)]).
Proo]olLemma. That this is true can be seen from the fact that Mtw(te) is a data

type (and thus a retract) and that if id appears in an expression in exp’, its meaning will
always be an element of Mtw(te).

Then, given this lemma, we have that

Me[[exp]](q)(te)(e)

Ay D.Meexp’(q[id - w])(te)(e[id - y])

Ay 6 D.Meexp’]](q[id - w])(te)(e[id .- y])

Ax 6 D.Apply (Mtw (te), x)

and from the application of the induction hypothesis and our previous theorem

Ax 6 D.Apply Mt[[TypeOfexp’(q[id - w])(te), x)

Ay 6 D.Meexp’]](q[id - w])(te)(e[id - y])

Ax 6 D.Apply Mtw(te), x).

Finally, from the defifiition ot Mt, it is clear that this value is an element of

Mt[[w TypeOf exp(q[id - w])(te);

thus the theorem is true.
2. exp (expx exp2). Then

Me[[exp(q)(te)(e

TypeOf expz(q) Dom (TypeOf expa(q)) then
(Mel[expl]](q)(re)(e)1D -D)(Me[[expE]](q)(re)(e))

else 7-.

556 JAMES DONAHUE

The error case (if the type-checking fails) is taken care of by the doubly strict nature of
data types. Otherwise, the simple fact that expl is of a functional type, i.e.,
TypeOf expl]](q) wl - WE is sufficient to guarantee the truth of the theorem. By the
induction hypothesis, if TypeOfexp](q)= w- wE, then Meexp]](q)(te)(e) is an
element of type Mt[[wx- wE]](te). And from this, we know that tot any dD,
(lle[exp]](q)(te)(e)lD- D)(d) is an element of data type Mlt[wEl](te), as required by
the theorem.

The cases of type abstraction and application are straightforward and are left to the
reader. Q.E.D.

An important aspect of the preceding theorem is that its truth is independent of the
type-checking clause introduced in the meaning of normal applications. One is tempted
to cite this as a failing of the semantics (after all, type-checking shouldn’t be
superfluous). But this property is symptomatic of the dangers of using an "untyped"
domain to give the semantics of a language (whether it be the domain D defined above
or 32-bit words); function applications may always produce results that look reason-
able, even though the argument to which the function is applied was not reasonable.
However, as we show below, this syntactic type-checking is important is guaranteeing
the representation independence we desire.

3.3. A "strong typing" theorem. Although the type-checking clause in the rule for
normal applications does not affect the type-correctness of the semantics (as was shown
above), it does allow us to prove a stronger theorem asserting that the semantics has a
degree of "representation independence." The sort of representation independence we
desire is the following.

Let us assume that for some expression exp in our language, we have that:
1. TypeOf exp]](q)= for some q Q and
2. when is bound to some basic type (i.e., a type for which constants are defined),

we have that Meexp]](q)(te)(e) Me[[t$const]](q)(te)(e) for some const .Const.
If this is true for some particular choice of a meaning for t, then it should be true for all
choices of the meaning of (or any other data type).

If we ignore the type-checking clause of the role for normal application, then this
property need not be true, i.e., we could produce "representation-dependent" results.
These results could arise because of two aspects of our treatment of basic data types,
i.e., ones introducing the meaning of constants.

First, we have simply required that the meaning of constants of a basic type of
elements of the type, i.e., be part of the "representation" of the type. These values need
not be the only values of the type, however. Thus, for example, the meaning of the
expression

(Ax Boolean.x IntegerS0)

(which has syntactic type Boolean) some cases might have a nonerroneous value (not +/-

or 3-) that is not the denotation of any Boolean constant.
Also, we have not assumed that the representation of different basic data types are

disjoint. Thus, the meaning of

(Ax Integer.x Boolean$true)

(which has type Integer) could have the meaning of any of several Integer constants
depending on the meaning of the Boolean constant true.

1. If Boolean$true and IntegerS0 denote the same value, then the meaning of the
above expression is IntegerS0.

ON THE SEMANTICS OF "DATA TYPE" 557

2. If Boolean$true and IntegerS1 denote the same value (in a fashion similar to
PL/I), now the meaning of the expression becomes IntegerS1.

(Note that one can achieve precisely this effect in PL/I using EXTERNAL procedures.)
We now prove that our semantics disallows the possibility of producing such spurious
results.

To prove this, we first define a notion of "similar data types," i.e., data types that
are structurally similar and may be freely substituted one for another.

DEFINITION. Two data types and t’ are similar iIt:
1. t, t’ [Const- B] x [D- D], i.e., both allow the introduction of constants, or
2. Arrow (tl, tz) and t’= Arrow (t, t;) and tl is similar to t and t2 is similar to

t, or
3. Delta (y) and t’= Delta (y’) and for all tl, t

tl is similar to t implies y(h) is similar to y’(t).
LEMMA. If Vid Id, teid is similarto te’id, then Vw W, Mlw](te) is sirnilarto

Mtw](te’).
Proof. The proof (which is by structural induction on w) is omitted.
Now, we define a representation relation between elements of D stating when

d and d’ are representations of the same "abstract value" according to similar types
and t’.

DEFINITION. Let Rep(t, t’): D----x D be a relation in (D D) for similar data types
and t’ such that Rep(t, t’): d d’ iff d is an element of t, d’ an element of t’ and either:

1. t, t’ [Const--> B] x [D --> D] and 3c Const such that [/]1C d and [t’]lC
d’, i.e., d and d’ are denotations given to the same constant, or

2. Rep(Arrow (tl, t2), Arrow (t’l, t’2))" d--d’ iff Vdl, d Rep(tl, t): dl-->d.
implies
Rep(t2, t): d(dl)-->d’(d’), or

3. Rep(Delta (y), Delta (y’)): d -> d’ iff V similar tl, t’l
Rep(y (tl), y’(t)): d(tl)---> d’(t’).

And now, we can prove that Me preserves Rep.
THEOREM 3. If we have, (a) Vid Id, te[id similar to te’[id, and
(b) Vid Rep(Mt[q[id]](te), Mt[qid](te’)): e[[id] -- e’[[id], i.e., each identifier in

e, e’ refer to the same "abstract value," then Vexp Exp,

Rep(t, t’): Me[[exp(q)(te)(e)->Meexp(q)(te’)(e’)

where

t= MtTypeOf exp]](q)]](te) and

t’= Mt TypeOf exp]](q)]](te’).

.Proof. The proof is by structural induction on exp. Most cases are simple appli-
cations of the definitions of Rep and Me and the preceding theorems (to show that Me
produces values in and t’). The only interesting case is normal application, where we
have that if exp (expl exp2), then

Rep(Arrow (tl, t2), Arrow (tl, t)): Me[Iexp]](q)(te)(e)-

Meexp(q)(te’)(e’)

from the induction hypothesis and the fact that TypeOf expl(q) 14’1 -) w2 for some wl
and w2. Now, for our definition of Rep to assure us that

Rep(t2, t[): Meexp(q)(te)(e)->Me[[exp(q)(te’)(e’),

558 JAMES DONAHUE

we must have

Rep(t, t): Meexp2]](q)(te)(e) Me[[exp2]](q)(te’)(e’),

which we can assure only if TypeOf exp2](q) w1. (Here we need a trivial lemma that
for all w, w’, w- w’ implies Mtw](te)=Mtw’](te).) And this is exactly what the
type-checking clause of the meaning of application allows us to assert. Q.E.D.

One way to view this result is that "the implementor is free to choose any
representation he desires." For example, let us assume for the moment that the domain
B includes the usual flat domains of integers and Booleans, Int and Bool, i.e.,
B Int + Bool +. .. Then consider the following data types tl and t2 used to implement
Booleans:

1. tx (Ac E Const.C true then 1 else c false then 0 else 2-, hx E d.x) and
2. t2=(hcConst.C=true then true else c =false then false else 2-, hx

D.xlBool).

Note that the retract used in t2 only produces value in Bool, i.e., the only elements of
data type t2 are the elements of the domain Bool, while all values in D are elements of
the data type tl.

Now from our definition of Rep, Rep(tl, t2) relates the following pairs of values
(1, true), (0, false), (2_, 2_), and (T, T). And from the theorem above, we know that if
TypeOf exp(q) Boolean, then

Rep(tl, t2)(Meexp(q)(te[Boolean - q)(e),

Meexp](q)(te’[Boolean - t2])(e’))

if te, te’ and e, e’ are as required in the theorem. This means that:
1. even using t as the meaning of Boolean, the only values produced by Boolean

expressions are 0, 1, 2_, or T, and
2. the denotation of the same Boolean constant is produced in either case, i.e., if

the "abstract meaning" of an expression is Boolean$true, then its meaning will
always be the meaning of Boolean$true.

Thus, when read in implementation-oriented terms, this says that the implementor may
choose the meanings of the basic data types as he pleases. If we view the purpose of
type-checking as guaranteeing representation independence of the sort we define
above, then our semantics is not only "correctly typed," but "strongly typed."

4. Conclusions. We have described a new approach to the meaning of "data type"
and applied it to the definition of a typed lambda-calculus extension. In conclusion, we
would like to step back from the details of the previous section and suggest the
advantages of this approach as illustrated by our lambda-calculus semantics.

First, we claim that our lambda calculus semantics, while admittedly abstract,
treats data types in an intuitively appealing manner. As we described above, the choice
of

T [Const --> B] [D --> D] +D --> D

can be motivated in terms of an SECD implementation and our restriction of T to
retracts again makes sense in terms of this machine-oriented view. (It is interesting to
note that Scott also uses retracts to define data types of his "universal domain" Pw
(Scott [18]).) And, as is common in statically typed languages, our semantics does not
involve any checking of the "types" of values, but only the "syntactic types" associated
with identifiers and expressions. Finally in this regard we note the weakness of the

ON THE SEMANTICS OF "DATA TYPE" 559

assumptions used in proving the theorems of the previous section. Of particular interest
is the fact that no assumptions were made about the domain B of basic values. Although
we are using B to interpret constants, we do not require it to be "fiat", (i.e., without
structure). Indeed, we could even do without B altogether and make elements D D
serve double duty as both functions and constants without changing the interpretation
of data types at all.

This definition also shows nicely the differences between typed language and
"typeless" languages, like BCPL. One way to view a "typeless" language is to say that in
fact there is only a single type. In BCPL, this view can be seen in the single
interpretation of assignment; the operational meaning of x := y is "move k bits from y
to x." In the untyped lambda calculus, the same view suggests a semantics with only a
single meaning for "take the value of the variable x." This is exactly what one finds in
semantic treatments of untyped or "typeless" lambda calculus and its variants (cf., Stoy
[20], Scott 18]).

Finally, two points relating to language design should be made. As languages have
included more complex data type definitions, the rules for type-checking have also
become far more complex (see, for example, the descriptions of type-checking in Euclid
(Lampson et al. [8]) or Mesa (Geschke et al. [2])). Although the expressed purpose of
such type-checking is to catch program errors, one can’t help wondering whether these
type-checking rules do not, in fact, introduce subtle semantic errors. Our represen-
tation theorem, however, suggests a means of judging the soundness of any proposed
type-checking rules; the type-checking must be sufficient to guarantee the represen-
tation independence of the semantics in the fashion we described above.

Most interestingly, our view of data types allows a simple and straightforward
treatment of constructs allowing types as parameters. To illustrate the lack of under-
standing of such constructs, we need only refer to the following comments of Wirth [22]:

I would caution, however, against any further generalization [or array type
specifications of procedure parameters]. Allowing the component type of an array
to be a parameter too, for example, would destroy many advantages of the Pascal
type concept at once.

Although PASCAL data types are certainly more complicated than typed lambda
calculus data types, we are convinced that the same principles used in this paper apply.
To this end, we (with A. Demers and G. Skinner) are designing an extension of
PASCAL (called Russell) incorporating polymorphic procedures and data types. Both
denotational and axiomatic semantics for this language are also being developed.

5. Acknowledgment. Robert Constable, David Gries and the referees provided
many helpful comments on earlier drafts of this paper.

REFERENCES

1 J.D. GANNONAND J. J. HORNING, The impactoflanguage design on the production ofreliable software,
SIGPLAN Notices, 10 (1975), pp. 10-22.

[2] C. M. GESCHKE, J. H. MORRIS AND E. H. SATTERTHWAITE, Early experiences with Mesa, Comm.
ACM, 20 (1977), pp. 540-552.

[3] J. A. GOUGEN, J. W. THATCHER AND E. G. WAGNER, An initial algebra approach to the specification,
correcmess and implementation ofabstract data types, RC6487, IBM. T. J. Watson Research Center,
Yorktown, New York, 1976.

[4] J. V. GUTTAG, The specification and application to programming of abstract data types, Ph.D. thesis,
Department of Computer Science, University of Toronto, 1975.

[5] C. A. R. HOARE, Notes on Data Structuring. Structured Programming, Academic Press, London-New
York, 1972.

560 JAMES DONAHUE

[6] C. A. R. HOARE AND N. WIRTH, Axiomatic definition ol the programming language Pascal, Acta
Informat., 2 (1973), pp. 335-355.

[7] K. JENSEN AND N. WIRTH, PASCAL User Manual and Report, Springer-Verlag, New York 1975.
[8] B. LAMPSON, J. J. HORNING, R. L. LONDON AND G. L. POPEK, Report on the proramming language

Euclid, SIGPLAN Notices, 12 (1977), pp. 1-79.
[9] P. J. LANDIN, The mechanical evaluation o] expressions, Comput. J., 6 (1964), pp. 308-320.
10] H. LEDGARD, A model]or type checkinguwith an application to Algol 60, Comm. ACM, 15 (1972), pp.

956-966.
[11] B. LISKOV AND S. ZILLES, Programming with abstract data types, SIGPLAN Notices, 9 (1974), pp.

50-59.
[12] R. MILNE AND C. STRACHEY, A Theory ofProgramming Language Semantics, Halstead Press, 1976.
13] J. H. MORRIS, Lambda-calculus models olprogramming languages, MAC-TR-57, Project MAC, MIT,

1968.
[14] ., Types are not sets, ACM Symposium on Principles of Programming Languages (Boston, 1973),

pp. 120-124.
15] J. C. REYNOLDS, GEDANKENwa simple typeless language based on the principle o[completeness and

the relerence concept, Comm. ACM, 13 (1970), pp. 308-318.
[16] Towards a theory o] type structure, Colloquim on Programming, Paris, 1974.
[17] C. SCHAFFERT, A. SNYDER AND R. ATKINSON, The CLU reference manual, Project MAC, MIT,

1975.
[18] D. SCOTT, Data types as lattices, this Journal, 5 (1976), pp. 522-580.
[19] A. SHAMIR AND W. W. WADGE, Data Types as Objects, Automata Languages and Programming, 4th

Colloquium, Lecture Notes in Computer Science No. 52 (Turku, 1977), pp. 465-479.
[20] J. STOY, The Scott-Strachey approach to the mathematical semantics ofprogramming languages, Project

MAC, MIT, 1974.
[21] R. D. TENSEST, The denotational semantics ofprogramming languages, Comm. ACM, 19 (1976), pp.

437-453.
[22] N. WIRTH, An assessment of the programming language Pascal, SIGPLAN Notices, 10 (1975), pp.

23-30.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics
0097-5397/79/0804-0007 $01.00/0

A PATCHING ALGORITHM FOR THE NONSYMMETRIC
TRAVELING-SALESMAN PROBLEM*

RICHARD M. KARP"

Abstract. We present an algorithm for the approximate solution of the nonsymmetric n-city traveling-
salesman problem. An instance of this problem is specified by a n n distance matrix D =(dii). The algorithm
first solves the assignment problem for the matrix D, and then patches the cycles of the optimum assignment
together to form a tour. The execution time of the algorithm is comparable to the time required to solve an

n n assignment problem.
If the distances dii are drawn independently from a uniform distribution then, with probability tending to

1, the ratio of the cost of the tour produced bythe algorithm to the cost of an optimum tour is <1 + e(n), where
e(n) goes to zero as n c. Hence the method tends to give nearly optimal solutions when the number of cities
is extremely large.

Key words, traveling-salesman problem, combinatorial optimization, approximation algorithms, prob-
abilistic analysis of algorithms

1. Introduction. Let ,En denote the set of all permutations of {1, 2, , n} and let
Y_,,* denote the set of all cyclic permutations of {1, 2,..., n}. For any n n matrix
D (dij) of nonnegative real numbers and any permutation zr Y-,n, define c(Tr, D)=
i= d i,’n’(i).

The (nonsymmetric) traveling-salesman problem is stated as follows: given D, find a
cyclic permutation 7r*(D) (or simply r*, when D is understood) such that c(zr*, D)
minr.*, c(Tr, D). This problem typically arises in machine scheduling applications,
where dii represents the set-up cost for job/" upon the completion of job i, and an
optimum sequence of job execution is desired. Since the directed traveling-salesman
problem is N-hard [6], it is not reasonable to expect to find a polynomial-time
algorithm for its exact solution. Well-designed branch-and-bound methods are capable
of efficiently solving problem instances of size up to about n 100 [8].

By an approximation algorithm for the traveling-salesman problem we mean an
algorithm 4 that, given any matrix D, produces a cyclic permutation -(D). The relative
error associated with the execution of on D is

c(’?r(D), D)- c(Tr*(D), D)
e(D)

c(zr*(D),D)

Sahni and Gonzales have shown that, given any e > 0, it is -hard to solve the
traveling-salesman problem with relative error <e. Thus, we cannot expect to find a
polynomial-time approximation algorithm with uniformly bounded relative error.

In this paper we present a polynomial-time approximation algorithm which tends
to give solutions with small relative error. The algorithm starts by solving the n x n
assignment problem, which is stated as follows: given D, find a permutation 7i-(D) (or
simply) such that

c(, D) min c(zr, D).

There are algorithms which solve the assignment problem in time O(n 3) [4], [9]. Our
approximation algorithm produces a cyclic permutation - by patching together the

* Received by the editors January 23, 1978, and in final revised form September 8, 1978. This research
supported by National Science Foundation under Grant MCS74-017680-A02.

" Computer Science Division, Department of Electrical Engineering and Computer Sciences and the
Electronics Research Laboratory, University of California at Berkeley, Berkeley, California 94720.

561

562 RICHARD M. KARP

cycles of the optimal assignment permutation 7i-(D). The running time of the algorithm
is O(n3). The algorithm also yields an upper bound on the relative error e (D). Our main
theorem states that, if the dij are drawn independently from the uniform distribution on
[0, 1], then with probability tending to 1 as n - o, this upper bound is very small.

A companion paper to the present one [7] gives similar results for the traveling-
salesman problem in the plane.

It is interesting that a patching algorithm similar to ours has been proven to give
strictly optimum solutions for an important special class of traveling-salesman problems
[5].

2. The patehilag algorithm. We begin by stating the m n assignment problem. Let
m and n be positive integers with m-<_ n. Let S,., denote the set of single-valued
one-one functions from {1, 2,..., m} into {1, 2,..., n}. In particular, when m n,
S,,,, E,, the set of permutations of {1, 2,. , n}. Given an m n matrix A (aij) of
real numbers, the assignment problem asks for a function 7? S,,, such that

, a i,(i min E a i,(i.
i=1 Sm,n

There are algorithms to solve the rn n assignment problem in O(m2n) steps [4], [9].
Given an n x n matrix D, the patching algorithm begins by finding an optimum

assignment 7?. If, fortuitously, 7? is a cyclic permutation, then the traveling-salesman
problem is solved. Otherwise, , will have two or more cycles. The algorithm patches
these cycles together into a single cycle, thereby obtaining a cyclic permutation.

We next describe how the patching is done. Let p E be the permutation that
interchanges elements and j, leaving all other elements fixed. The transformation

Ri: Y_,, - E,,

defined by Rii(Tr) 7r P0, is called the i,] patching operation. Also, define

/Xi(r, D) d,(i + di,(d,(di,(i.

The following lemma is immediate.
LEMMA 1. For all i, j,

c(Tr Pii, D) c(Tr, D) + Aii(Tr, D).

Also, if andj are in different cycles ofTr, then the elements in these two cycles lie in a single
cycle of zr Pi, and the other cycles of 7r remain unchanged.

Figure 1 indicates the effect of the i, j patching operation.

rr .n. p

FIG. 1. Effect of the i, patching operation.

A PATCHING ALGORITHM 563

We next describe a patching process which, given a permutation a with k cycles,
attempts to transform a to a cyclic permutation by applying a sequence of k- 1
patching operations. This sequence is selected as follows. First, some cycle C of
maximum length in a is selected. Let the remaining cycles be C1, C2,"’, Ck-x.
Ambiguously, we let the name of a cycle also stand for the set of elements of the cycle. If
ItS[< k 1, then the algorithm reports failure and halts. (We shall see that this event has
negligible probability.) Otherwise, a (k- 1)x [t assignment problem is set up whose
solution gives an optimum way to patch all the cycles C1, C2, , Ck-x into C at distinct
places. The matrix A defining this problem has k 1 rows and a column for each j C.
The i-j entry is

(*) aii min Ai(a, D).
lCi

Thus, a0 is the least cost of a patching operation involving element] C, and any
element in Ci. Let the minimizing in (.) be denoted l(i, j). Let the solution to this
assignment problem be a 1-1 function 0"{1,2,...,k-1}-C. Then, for i=
1, 2,..., k-1, the patching process performs the patching operation R l(i,o(i)),o(i).

These operations commute, and may thus be performed in any order.
Figure 2 indicates how a permutation a with four cycles might be converted into a

k-1
tour. Let 8(a, D, C) Ei= a i,O(i). Then the cyclic permutation obtained by applying the

FIG. 2. Application of the patching process.

patching process to a has cost C(a, D) + 6 (a, D, C). The time required for the patching
process is O((k- 1)2[])_ O(n3).

The over-all patching algorithm is now easily stated:
(i) find an optimal assignment - for the matrix D;
(ii) if - has k cycles and no cycle is of length _->k 1, then halt and report failure;
(iii) otherwise, apply the patching process to obtain a cyclic permutation ,k(D) of

cost c (,t?, D) +(, D, C);
(iv) print out the permutation - and the error bound

(r, D, C)
e(D) <-

c (’Fr, D

The execution time of the patching algorithm is O(n).
Section 3 analyzes the distribution of e(D). Section 4 gives a heuristic error

analysis for a variant of the patching algorithm.

3. Relative error ot the patching algorithm. Recall that, for any matrix D, ,(D)
denotes the cyclic permutation produced by the patching algorithm, and zr*(D) denotes

564 RICHARD M. KARP

an optimal solution to the traveling-salesman problem for D. Thus the relative error of
the patching algorithm is given by

s(D)
c(r, D)-c(’rr*, D)

c(r*, D)

Let Unn be the uniform distribution over the set of n n matrices whose elements
lie in [0, 1].

THEOREM 1. Let D be drawn from Unn. Then with probability tending to 1 as
n -- oO
(1) e (D) < 9(ln n)3/2n-24.

The present section is devoted to the proof of Theorem 1. We begin with some
preliminary remarks and propositions needed for the proof.

Drawing a matrix D from U,, is equivalent to drawing each element indepen-
dently from the uniform distribution on [0, 1]. With probability 1, aD drawn from U,,
has the property that no two sets of its elements have the same sum. We assume that all
distance matrices considered have this property. Thus, in particular, we assume that
every matrix D presented to the algorithm has a unique optimum assignment.

The first proposition gives upper bounds on the tails of the binomial distribution.
The first of these bounds is given in Chvfital [3], where it is attributed to S. N. Bernstein.
The bound has also been derived by D. Angluin [1], using a technique due to Chernoft
[2]. The second bound is a direct consequence of the first. The third bound has been
derived from the first by Angluin [1].

PROPOSITION 1. For 0 <- p <- 1, Na positive integer and a a nonnegative integer less
than or equal to N

(a) if a <= Np then

(g) k p)N-k (_)a(N_!I_.’.P_)
N-a

k--0 k
p (1- <_--

\N-a/

(b) if a >-Np then

ka (N) k)N-k (--)a(N(1--P))
N-a

k
p (1-p _-<

/V-a

(c) for all fl [0, 1]
[(1-t)NP] (N) k _p)N-k ([32

p <exp
k=0 k 2]"

The second proposition concerns random permutations. Ambiguously, let
denote both the set of all permutations of {1, 2,. , n}, and the uniform distribution
over this set. The symbol m(a) denotes the maximum length of any cycle of the
permutation a.

PROPOSITION 2. Let a be drawn from E,. Then, with probability tending to 1 as
n -- oO(a) c has at most 3 In n cycles;

(b) n/(3 In n) m () <= n n 2/3

and
(c) a has exactly one cycle of length re(a).

A PATCHING ALGORITHM 565

Pro@ Let a be a permutation in Zn. By the cycle structure of a is meant that
partition of n in which an integer appears as many times as a has cycles of length I. The
uniform distribution over Zn induces a probability distribution P. over all the possible
cycle structures.

Consider the following method of selecting a random partition of n.
PROCEDURE PARTITION(n)

begin;
in;
while > 0 d begin;

1. select a random integer k from the uniform distribution
over {1, 2,..., i};
ii-k

The multiset of integers k selected during the process forms the desired partition.
We claim that executing PARTITION(n) is equivalent to sampling from the

distribution P,. This follows from two observations. First, for each k between 1 and n,
the number of permutations in Z, such that some fixed element x lies in a cycle of length
k is (n 1)!. Therefore, the length of the cycle containing x is uniformly distributed over
{1, 2,. , n}. Secondly, given that x lies in a cycle of length k, all permutations of the
remaining n- k elements are equally likely.

We prove (a) by considering the execution of PARTITION(n). Call an execution
of step 1 a success if [log2 i] > [log2 (i- k)]. At each step the probability of success is
>_-1/2. Also, the process terminates no later than the [log2 n]-th success. Hence, the
probability that a has more than 3 In n cycles is less than or equal to the probability that
3 Inn flips of a fair coin will result in fewer than [log2 n heads; and, by Proposition 1,
this probability is o (1).

To prove (b), note that

Pr{m (a <n} <Pr{a has at least 3 In n cycles} o(1)
31nn

and

Pr{m (a) > n n 2/3} Pr{element 1 lies in a cycle of length (n 2/3

=0(n-1/3).
or >n n 2/3}

To prove (c), note that

Pr{a contains two cycles of length k}

n
<--(Pr{a contains two cycles of length k, and element x is in one of them})

n 1
<- Pr{ E.-k has a cycle of length k}
-2k n

n 1 1 1

2k n k 2k2"

566 rucnArm M.

Hence,

n
Pr for some k>=31nn a contains two cycles of length k}

,/z 1 (ln n<= 2
k n/ln

The third proposition concerns properties of permutations, given an upper bound
on the lengths of their cycles.

PROPOSITOY 3. Letm and n be integers. Let denote {] e n and re(a) <- m}.
Let A denote the expected number of elements occurring in cycles of length k in a
permutation drawn at random from 2,’2. Then

(a) k=l A’ n and
(b) A=<A2=..
Proof. Part (a) is immediate, since every element is in exactly one cycle. To prove

(b) let F, Then

(2) for all 1, Ft <= lFt-.

This follows from the observation that the/th element can be added into each member
of ?_ in at most ways to produce a permutation in ?, and all permutations in ? are
produced by such insertions. Also

n(n-1)...(n-k+l)F._k
(3) A F.
since A is n times the probability that element x lies in a cycle of length k. Hence

A (n-k+l)F._k
>-1.

Ak-1 Fn-k+l
The fourth proposition concerns matrices drawn from
PgoPosrrIoy 4. LetD be drawn from U,,. Let r be the optimal assignmentforD.

Then, with probability tending to 1 as n -+ oo, 1/2 < c(r, D) < 3.
Proof. To prove the lower bound on c(#, D), note that

"r{c(’,O)>}>-Pr{E, rn,!nd,,>1/2}>-Pr{ {ilm,!n
But, for any fixed i,

Prmin dij> 1- e

Applying Proposition la (with N=n, 1/2<p<e -2/3, (1-/3)= 1/(2p)), it follows that
Pr{l{ilminid,> 2/(3n)}l>-n/2} tends to 1.

The upper bound on c(#, D) is due to David Walkup [10]. l-1
Now we embark on the proof of Theorem 1. LetD (dij) be drawn from Un. Call

D exceptional if any of the following are violated:
(i) 77(D) has at most 3 Inn cycles;
(ii) n/(3 In n) <- m(#(D)) <- n n 2/3"

(iii) 77(D) has a unique longest cycle;
(iv) < c(-, D) < 3.

By the above propositions, the probability thatD is exceptional tends to 0 as n - oo. For

A PATCHING ALGORITHM 567

any cr Y_.,,, define the matrix D by (D)ii di.(i). Thus D is obtained by permuting
the columns of D. Let [D] denote the set {D[r X,,}. The following lemma is the basis
of our proof.

LEMMA 2. For any permutation a, c(a, D) c(r-la, D). Hence, r is an optimal
assignment]’or D if and only if o’-lr is an optimal assignmentforD. Also, Aii(a, D)=
mii (o--lo, D).

Given any set T
_

{1, 2, , n }, let ,7- denote the set of all permutations
such that

(a) T is the set of elements in a cycle of c and
(b) the cycle containing these elements is a longest cycle of a;

i.e., re(a) [TI.
Let 5 {T {1, 2,..., n}ln/(3 In n)_<-ITI <- n nZ/3}. For any T 5’ let [D, T]

denote the set of matrices in [D] whose optimum assignment is in Y.nT. Note that, unless
D is exceptional, it lies in exactly one set [D, T].

In the next four lemmas, let $ be a fixed set in 6e. For any permutation a :,s, we
construct a patching matrix A (D, S) of dimension (n -ISl) ISI. The rows of this matrix
correspond to the elements of {1, 2, , n } not in S, and the columns, to the elements of
S. The i,/" entry gives the patching cost Aii(a, D), which, by Lemma 2, is equal to

Aii (o’-lo, D).
A bad element of A (D, S) is one which is >n’Z6m -1/2. An element which is not bad

is a good element. A bad row of A (D, S) is one that contains fewer than 3 In n good
elements. The matrix AS(D, $) is a bad matrix if it contains more than / bad rows;
otherwise A (D, S) is a good matrix.

LEMMA 3. IfD is drawn at random from U.. and a is drawn at random from
then Pr{A (D, S) is bad} o (4-").

Proof. Define a matrix 12 (D, S) (or, briefly, 12s) with the same rows and columns
as AS(D, S), such that (12s)i d i.s(i) / dhs(i). Then 12 is element-by-element greater
than or equal to A (D, $), and it remains only to prove that Pr{f is bad} o (4-"). The
elements of Os are independent, and each is the sum of two independent samples from
the uniform distribution on [0, 1]. Thus, independently for each pair i, , Pr{12 is
good} nZ/(2m). Thus, applying Proposition lc with N m, p n’sz/(2m) and/3
1-6 In nn -Sz, we obtain:

.52

/has <3= In n good elements} < exp (-(1-6 In nn-Sz)2n--.Pr{row

O(exp (-n51)).
Thus each row has probability O(exp (-n5)) of being bad. Then, the probability that
there are more than / bad rows is bounded above by substituting N n- m,
p O(exp (-n’5)), a / in Proposition lb. The resulting upper bound is o(4-").

LEMMA 4. LetD be drawn from Un., letD be drawn at random from [D, S], and
let r r(D). Then Pr{D is not exceptional and h (D’, S) is bad} o(1/4).

Proof.

(*)

Pr{D is not exceptional and A (D, S) is bad}

<-Pr{c(r,D)<3 and A(D, S) is bad}

<- Pr{::la .s. c(a, D) < 3 and A (D, S) is bad}

<-El{a xS.lc(a,D’)<3 and AS(D, S)is bad}l
<-_ n !Pr{c (a, D) < 3 and A (D, S) is bad},

568 RICHARD M. KARP

where a is a random element of Zs But (,) is equal to

n!Pr{A(D, o--iS) is bad and c(,D)<3}<-n!Pr{lI(D, o’-lS) is bad and c(/, D) < 3}
-1where/ tr a is a random permutation in -lS. The two events "f(D, g-Is) is

bad" and "C(/3, D) < 3" are independent, since the first depends only on matrix entries

dii such that -/3(i), and the second depends only on {di,(i)}. By Lemma 3 the first
event has probability o(4-"). The probability of the second event is

Xl+...+Xn<=3
,...,xn >= 0

1,"’,Xn <=

dx1 dx2" dx, <-
n!

Thus (,)<-(n!3"/n!)o(4-n)=o()n. E
LEMMA 5. If AS(D, S) is a good matrix and D is drawn at random from

{D o [D]I 0-1a :.s} then, Pr{O-la has a cycle, all of whose elements correspond to bad
rows of As} O(ln nn-I/6).

Proof. The permutation 0-10 is a random element of .v_,,s. Thus, restricting O-aa to
the domain {1, 2, , n}- S gives a random permutation & from E,,n-m, where m ISI.
If the number of bad rows in A (D, S) is t, then the expected number of cycles of & with
all rows bad is

min (re, t) 1

k=l

where (1/k)A gives the expected number of cycles of length k in a random

(t)/(n-m) isthe probability that all the rowspermutation from E_,, and the ratio
k k

of a cycle of length k are bad. Using the facts that

(a) (;)/(n k-m) is a decreasing function of k;

(b) A-" is an increasing function of k (cf. Proposition 3); and
()EC k=l Jk n -m,

we conclude that

min (re, t) 1

k=l (kn-m) k=l k m (n-m)k
n (k) ()

k

mk=l n-m

m n-rn

A PATCHING ALGORITHM 569

Using the inequalities

n <m<n_nZ/3 and t</
In n

Pr{4) has a cycle with all rows bad}

ln/,/(-ln (1-3))---O(ln/,/. Ft-1/6).

LEMMA 6. If 0-1 s
a En has at most 3 In n + 1 cycles, and has no cycle whose

elements all correspond to bad rows of A" (D, S), then

6(0-1a, D, S) <- 3(ln n)3/2n -’24.

Proof. Uniter the stated assumptions it is possible to carry out the patching process
so that each patch has cost <=n26//-. Hence 6(O-la, D)<-3 In n(nZ6/x/m). Using
the inequality m-> n/(log n), the result follows. [3

LEMMA 7. Let D be drawn from Unn. Let r be the optimal assignment]’or D. Let
6(, D) denote the cost of applying the patching algorithm to D. Then

Pr{6(6-, D) > 3(ln n)3/2n -’24} o(1).

Proof. All elements of [D] are equally likely to be drawn. Hence, the desired
probability is equal to

1)3/:Znn!E(I{D [D316(o--77, D > 3(ln n -4}1).

In order that 6(o--, D) be greater than this bound one of three events must occur:
(a) D is exceptional;
(b) D is not exceptional and, for some T ow, D [D, T] and A’(D)(D, T) is

bad;
(c) D is not exceptional and, for some T 6e, D [D, T], A’(D")(D, T) is good,

and 6(#(D), D, T) > 3(ln/,/)3/2?,/-.24.
The expected number of matrices for which the first event is true is o(n !). The

expected number of matrices for which the second event is true is 2rse I[D, T]1o(43-) ".
Here, o(1/4)" is an upper bound on the probability that A (D, T) is bad (cf. Lemma 4). By
Lemmas 5 and 6 the expected number of matrices for which the third event is true is
Y.rel[D, T]lO(ln n. n-1/6). Finally, recalling that a matrix occurs in only one set
[D, T] unless it is exceptional, the result follows. 71

Proof of Theorem 1. The inequality (1) can fail only if c(#(D),D)< or
6((r(D), D) > 3(ln n)3/Zn-24. By Proposition 4 and Lemma 7, the probability of each of
these events tends to zero. [3

Results analogous to Theorem 1 hold whenever the dij are drawn from a dis-
tribution over [0, oe] having a bounded density function continuous at 0+.

4. Heuristic analysis o[a modified patching algorithm. Theorem 1 shows that,
when the number of cities is sufficiently large, the patching algorithm tends to give
nearly optimal solutions to random nonsymmetric traveling-salesman problems. The
result is not entirely satisfying, however, because the upper bound on e (D) given in the
theorem tends to zero very slowly, and is acceptably small only when n is astronomically
large. Also, the probability that the upper bound will be exceeded tends to zero very
slowly.

570 RICHARD M. KARP

In this section we present a modified patching algorithm and offer a heuristic
argument indicating that its expected patching cost is less than 2n -1/2.

In the modified patching algorithm, all entries dii are set to +. This ensures that
the optimal assignment permutation will have no fixed points; i.e., no cycles of length 1.
All permutations without fixed points remain equally likely to occur as the optimum
assignment.

Having constructed the optimal assignment ,, the algorithm converts it to a tour as
follows:

MODIFIED PATCHING PROCESS

while t has more than one cycle do;
Iegin;
let C be a shortest cycle of tr;

let Rij be a minimum-cost patching operation such that C,/’ C,
and neither nor j has been involved in a previous patching operation;
o" Rij(tr)
end.

Thus, we no longer restrict attention to patching operations that join the short cycles of
directly into the longest cycle of ,. Figure 3 indicates how the modified patching

process converts a permutation to a tour.

FIG. 3. Application of the modified patching process.

Next we study the behavior of the modified patching algorithm on a special class of
matrices, and argue heuristically that the algorithm should have similar behavior when
applied to matrices from Unn.

We denote the special class of matrices by //t. A matrixD is in the class /if the row
minima in D lie in distinct columns, and hence determine the optimal assignment for D.
Formally, D if there is a permutation 7? such that, for all and/’, d.,) <_-di.

A PATCHING ALGORITHM 571

The following theorem states that, when a matrix is drawn at random from ///, the
patching costs Ao tend to be at least as small as they would be if the Ao were
independent, and each were distributed as the sum of two independent samples from
the uniform distribution over [0, 1].

To frame the theorem precisely, we introduce the concept of stochastic dominance.
Let X (Xl, x2,’’’, x.) and Y (yl, y2, , y.) be two random variables over
where denotes the reals. We say X < Y (X is stochastically smaller than Y) if, for
every A=(al, a2,...,a.)e, Pr{X<A}>-Pr{Y<A}. Here X<A if, for all i,
xi < ai.

Let 7? be a fixed permutation of {1, 2,..., n} without fixed points. Let X
{x0[1 _-< <] _-< n,/" e #(i) and e 7?(/’)} be the random variable over ()-" determined
by the following experiment" draw a matrix D from the set of matrices in /having 7? as
their optimal assignment; then let Xo Ao(7?, D). Let Y {yql 1 -< <] < n,] e 7?(i) and
i#(/’)} be the random variable over ()-" determined as follows: the Y0 are
independent, and each is the sum of two independent samples from the uniform
distribution over [0, 1].

THEOREM 2. X < Y.
Proof. We condition on arbitrary fixed values for the entries d i,#(i). Then the d0,

/" 7?(i), are independent, with d0 distributed according to a uniform distribution over
[d i.#(i), 1]. Hence the differences dij- di.#(i) are independent, and each such difference
is drawn from a uniform distribution over [0, 1 di,#(i)]. Hence the Aij are independent
of one another, and each particular patching cost Ao (do di,(i + (dii di.(i) is the
sum of two independent random variables; one drawn from the uniform distribution
over [0, 1 d i.,,)], and the other from the uniform distribution over [0, 1 di,7(])]. The
result now follows, since a random variable uniformly distributed over [0, 1- di,.,]
stochastically dominates a random variable uniformly distributed over [0, 1].

We conjecture that an analogous property holds when matrices drawn from U..,
rather than /, are considered. More precisely, let 77 be a fixed permutation without
fixed points. Let Z ={Zol 1 <-_i <] <-n,] 7?(i), i: 7?(])} be a random variable over
()-" determined by the following experiment: draw a matrix D from the set of
matrices in U.. having 7? as their optimal assignment; then let zii Aii(7?, D).

CONJECTURE. Z < g.
As a heuristic argument in support of the conjecture, we define a mapping

r" U.. - as follows. Let D e U.. have 7? as its optimal assignment. Then

for k 7r(i)

(r(D))i,(i m!n do

dik if dik min d0,
(r(D))ik

di,(i) if dik min d0.

Thus, -(D) is obtained by interchanging the minimum element in each row with the
element of that row which occurs in the optimum assignment. The following facts are
immediate.

(a) The matrices D and -(D) have the same optimal assignment 7?;
(b) For all and], Aii(7? D) <= Aii(7? z(D)).

Theorem 2, coupled with condition (b), which asserts that the patching costs associated
with r(D) are at least as great as those associated with D, tends to support the
conjecture. To prove the conjecture, it would be necessary to show that, when D is

572 RICHARD M. KARP

uniformly distributed over U,,, its image -(D) is approximately uniformly distributed
over

In view of Theorem 2 and Conjecture 1, it is of interest to elucidate the behavior of
the modified patching algorithm when 7? is a random permutation without fixed points,
the Aij are independent, and each is the sum of two independent random variables
uniformly distributed over [0, 1]. We do so briefly, omitting details. Let the random
variable y,, denote the cost of the modified patching process under these assumptions.

THEOREM 3. lim,_. nl/EE(’y,) <= 2.
The underlying ideas of the proof are as follows:
(a) the expected number of cycles of length k in a random permutation without

fixed points is (1/k)(1 + O(n-l));
(b) given a cycle C of length k, E(min {Aij]i C, j_ C}) <- x/(3.1416)/(k(n k)).

These facts suggest that the expected patching cost is bounded above by =2 (l/k)
(1+O(n-1))/(3.1416)/(2k(n-k))--2n -1/2. The proof becomes more complicated
than this sketch because of the possibility that the short cycles of # may become joined
as the patching process takes place. We omit further details.

COROLLARY 1. If the previous Conjecture is true, then lim,_. nl/EE[c(,D)
c(Tr*, D)]_<- 2 where D is drawn from U,,.

A Monte Carlo simulation was conducted to further determine the behavior of the
random variable y,. The simulation was equivalent to determining 3’, at each of 100
random choices of and {Ai}, for each of the values n-100, n 1,000, and
n 10,000. The simulation avoided explicit generation of random permutations and
random patching costs; instead, it conducted a probabilistically equivalent experiment
using theoretical properties of the cycle structure of a random permutation, and of the
distribution of the minimum of a given number of independent patching costs. The
results were as follows.

TABLE
Simulated behavior of the random variable 3’,

100 1,000 10,000

sample size 100 100 100
sample mean .18 .067 .018
sample mean x x/ 1.8 2.1 1.8
sample median x x/ 1.6 2.0 1.7
sample maximum x/ 5.4 4.9 4.0

Acknowledgment. I would like to express my appreciation to an anonymous
referee who corrected the original proof of Theorem 1.

REFERENCES

[1] D. ANGLUIN, personal communication, 1978.
[2] H. CHERNOFF, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of

observations, Annals Math. Statist., 23 (1952), pp. 493-507.
[3] V. CHVATAL, Determining the stability number of a graph, Report STAN-CS-76-583, Stanford

University Computer Science Department, 1976, Stanford, CA.
[4] J. EDMONDS AND R. M. KARP, Theoretical improvements in algorithmic efficiency for network flow

problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.
[5] P. GILMORE AND R. GOMORY, Sequencing a one state variable machine: A solvable case of the

travelling-salesman problem, Operations Res., 12 (1964), pp. 655-679.

A FATCHING ALGORITHM 573

[6] R.M. KARP, Reducibility among combinatorialproblems, Complexity of Computer Computations, R. E.
Miller and J. Thatcher, eds., Plenum Press, New York, 1972.

[7], Probabilistic analysis of partitioning algorithms]:or the traveling-salesman problem in the plane,
Math. of Operations Res. (1977).

8] G. L. THOMPSON, Algorithmic and computational methods for solving symmetric and asymmetric
traveling-salesman problems, Working Paper presented at the Workshop on Integer Programming
(Bonn, 1975).

[9] N. TOMIZAWA, On some techniques useful for solution of transportation problems, Networks, 1 (1972),
pp. 173-194.

[10] D. WALKUP, On the expected value of a random assignment problem, this Journal, 8 (1979), pp.
440-444.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0904-0008 $01.00/0

CLASSES OF PEBBLE GAMES AND
COMPLETE PROBLEMS*

TAKUMI KASAIt, AKEO ADACHI:t: AND SHIGEKI IWATA

Abstract. A "pebble game" is introduced and some restricted pebble games are considered. It is shown
that in each of these games the problem to determine whether there is a winning strategy (two-person game) is
harder than the solvability problem (one-person game). We also show that each of these problems is complete
in well-known complexity classes. Several familiar games are presented whose winning strategy problems are
complete in exponential time.

Key words. Turning machine, two-person game, winning strategy, pebble game, log-space, polynomial
time, NP, polynomial space, exponential time

1. Introduction. A number of complete problems in various complexity classes are
reported. Jones and Laaser [9] showed some familiar problems which are complete in
deterministic polynomial time with respect to log space reducibility. A great number of
familiar problems have been reported which are complete in NP (nondeterministic
polynomial time) [1], [3], [11]. Even and Tarjan [6] considered generalized Hex and
showed that the problem to determine who wins the game if each player plays perfectly
is complete in polynomial space. Schaefer [13] derived some two-person games from
NP complete problems which are complete in polynomial space. Chandra and Stock-
meyer [2] proved some two-person games to be complete in exponential time.

We introduce a "pebble game" which involves moving pebbles according to certain
rules. The goal of the game is to put a pebble on a particular place. The pebble game
introduced here is somewhat different from the pebble game which appears in [8]. We
show that when the game is played by two persons the problem to determine whether
there is a winning strategy is complete in exponential time, and when played by one
person, the problem to determine whether one can put a pebble on a particular place
(called the solvability problem) is complete in polynomial space. Then we consider
various classes of restricted pebble games and study their complexity classes. In
particular, it has been shown that the problem of determining whether there is a winning
strategy in a game played by two persons is harder in a sense than the solvability
problem played by one person.

Our results are summerized in Table 1.1, where NLOGSPACE, P, NP, PS, EXP
stand for nondeterministic log space, deterministic polynomial time, nondeterministic
polynomial time, polynomial space, deterministic exponential time, respectively.

TABLE 1.1

Solvability problem
(played by person)

Winning strategy problem
(played by two persons)

Pebble game of fixed
rank NLOGSPACE complete P complete

Acyclic pebble game NP complete PS complete
Pebble game PS complete EXP complete

Received by the editors June 22, 1978.
t Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan.
:t: Academic and Scientific Programs, IBM Japan Ltd., Roppongi, Tokyo, Japan.
Department of Information Science, Sagami Institute of Technology, Fujisawa, Kanagawa, Japan.

574

CLASSES OF PEBBLE GAMES 575

The basic results are applied to show that certain problems are complete in
exponential time. We consider a game, so called "Chinese checkers game," and a game
similar to the "Towers of Hanoi." It has been shown that the winning strategy problems
of these games are exponential time complete. As a corollary, we have that the
reachability problem for some restricted class of vector addition systems is complete in
polynomial space.

2. Preliminaries. In this section, the basic objects with which we are concerned are
reviewed. For additional details and background, see [1], [2], [7].

By Turing machine, we mean a machine with a finite-state control, a two-way
read-only input tape and a single two-way read-write work tape; the machine halts
whenever it enters the accepting state.

Let w be the input to a Turing machine and Iwl-- n. DTIME(T(n)) is defined to be
the class of languages accepted by deterministic Turing machines within T(n) time.
NTIME(T(n)) is defined analogously for nondeterministic Turing machines. Similarly,
DSPACE(S(n)) and NSPACE(S(n)) are defined to be the classes of languages accepted
within $(n) space by deterministic and nondeterministic Turing machines, respectively.
Now, let

NLOGSPACE 1,3 NSPACE(i log n),
i0

P DTIME(ni),
i=>o

NP= NTIME(ni),

PS= DSPACE(ng) NSPACE(n),
i>_0 i_>_0

EXP= U DTIME(2"’).
i0

Let F be a set of tape symbols. A function f: F* - F* is computable in log-space if
and only if there is a deterministic Turing machine M additionally equipped with a
one-way write-only output tape such that for any input w of M,M halts with f(w) on its
output tape, having scanned no more than log (] w I) work tape symbols. Let L, L’

_
F*. L

is log-space reducible to L’ if and only if there is a function f computable in log-space
such that for any input w, w L if and only if f(w) L’. For a class of languages C, a
language L is called C complete if L is in C, and L’ is log-space reducible to L for any
language L’ in C.

DEFINITION [2]. A k-tape alternating Turing machine (ATM for short) is an 8-tuple
M (Q, Z, F, 3, b, q l, qa, U) where:

(1) O, q, q are the finite set of states, initial state, accepting state, respectively, q,
qO.

(2) Y_,, F are the finite set of input symbols and the set of tape symbols respectively,
with E

_
F.

(3) b, in F-E, is the blank symbol.
(4) 8, the next move function, maps a subset of Q x E x Fk to subsets of Q x Fk

{-- 1, 0, + 1}k+l. An element of {- 1, 0, + 1}k+ represents changes of head locations of
the input tape and k work tapes.

576 TAKUMI KASAI, AKEO ADACHI AND SHIGEKI IWATA

(5) U is a set of universal states, U Q.
(6) Q- U is a set of existential states.
The ATM has a read-only input tape, with the reading head initialized to the first

symbol of the input. A configuration of the ATM consists of the state, head positions
and contents of the k + 1 tapes. Each of k work tapes is initially blank. A move of the
ATM consists of reading one symbol from each of k + 1 tapes, and then writing one
symbol on each work tape and moving the heads as allowed by 8, along with a
state-change of the ATM. If C is a configuration of M, let Nextt(C) denote the set of
possible configurations after one move of M. We say a configuration is existential
(respectively universal, initial, accepting) if the state of the ATM in that configuration is
an existential (respectively universal, initial, accepting) state.

Let C be a configuration of an ATM. A value v(C) of C is either true or false
defined by followings:

(1) If C is an accepting configuration, v (C) is true.
(2) If C is an existential configuration but not an accepting configuration, and

there is C’ NextM(C) such that v(C’) is true, then v(C) is true.
(3) If C is a universal configuration but not an accepting configuration, and for

every configuration C’ Nextt(C), v(C’) is true, then v(C) is true.
M accepts the input w if and only if v(Co) is true where Co is the initial

configuration.
We say an ATM is standard if (1) M has only one work tape with the head

initialized to the first cell of the tape, (2) if a configuration C of M is existential
(universal), then every configuration C’ NeXtlvt(C) is universal (existential), (3) the
initial state is existential and the accepting state is universal, and (4) Nextt(C)= if
and only if C is an accepting configuration.

We let ATIME(T(n)) and ASPACE(S(n)) denote the classes of languages accep-
ted by ATM’s within time T(n) and within space S(n), respectively.

LEMMA 2.1 [2]. Let S(n)>=logn and T(n)>-n. If LASPACE(S(n)), then L is
accepted by a standardATMwithin space S(n). IlL ATIME(T(n)), then L is accepted
by a standard ATM within time O(T2(n)).

TI-IEOrZM 2.1 [2].

EXP= ASPACE(ni),
i=>0

PS= U ATIME(ni),
i=>0

P LI ASPACE(i log n).
i__>0

3. Pebble games.
DZFINITOr. A pebble game is a quadruple G (X, R, $, t) where:
(1) X is a finite set of nodes; the number of nodes is called the order of G.
(2) R

_
{(x, y, z): x, y, z X, x # y, y z, z x} is called a set of rules. For A, B

_
X, we write A k-- B if (x, y, z) 6 R, x, y 6 A, z A, and B (A -{x}) tA {z}. We say the
move A b---B is made by the rule (x, y, z). A symbol -- denotes the reflexive and
transitive closure of ----.

(3) S is a subset of X; the number of nodes in $ is called the rank of G.
(4) is a node in X, called the terminal node.
A pebble game is said to be solvable if there exists A

_
X such that S--A and

teA.

CLASSES OF PEBBLE GAMES 577

At the beginning of a pebble game, pebbles are placed on all nodes of S. If
(x, y, z) R and pebbles are placed on x, y and not on z, then we can move a pebble
from x to z. The game is solvable if we can place a pebble on the terminal node by
moving pebbles according to rules.

A pebble game played by two persons is a game between two players, P1 and P2,
who alternatively move pebbles on the pebble game, with P1 playing first. The winner is
the first player who can put a pebble on the terminal node, or who can make the other
player unable to move.

By the term "one-person pebble game problem," we mean the problem to
determine for a given pebble game G, whether G is solvable. By "two-person pebble
game problem," we mean the problem when a pebble game is played by two persons to
determine whether the first player has a winning strategy, i.e., a way to win the game.

THEOREM 3.1. A two-person pebble game problem is EXP complete.
Proof. It should be clear that this problem is in EXP in the size of the representation

of the game.
Let M (Q, Y_,, F, 8, b, ql, qa, U) be a standard ATM such that only p(n) cells are

available on the work tape for some polynomial p in n, where n is the length of input w
of M. Since EXP (.J i>-_0 ASPACE(n i) by Theorem 2.1, it suffices to construct a pebble
game G’ such that the construction is performed within log-space and M accepts w if
and only if the first player P1 has a winning strategy in G’. Let Q {ql,""", qs} and
W=WlW2" wn (wiE, i= l,2,. ,n).

Let G’= (X’, R’, S’, t’) where:
(1) X’ ={[q, i, I]: qQ, l<-i<-n, l<-l<=p(n)}

U{[/, a]: l<-l<-p(n),aeF}
U{[q, i, l, a, a’]: q Q, 1 <-i <-n, 1 <-l <-p(n), a, a’ eF}
t3 {s, s, t’}.

(2) R’ is defined as follows:
(2.1) foreachqeO, aF,i (l<-i<-n),l (l<-l<-_p(n)),
(2.1.1) if 8(q, wi, a) contains (q’, a’, (d’, d")), a a’ then let

([q, i, l], [l, a], [q, i, l, a, a’]),

([/, a], [q, i, l, a, a’], [l, a’]),

([q, i, l, a, a’], [l, a’], [q’, + d’, + d"])

be elements of R’;
(2.1.2) if 8(q, w, a) contains (q’, a, (d’, d")) then let

([q, i, l], [l, a], [q’, + d’, + d"])
be an element of R’;

(2.2) for each (1 <_- <_- n), (1 <- <- p(n)), let

([q, i, l], Sl, $2)

be elements of R’;
(2.3) let (s2, s l, t’) be an element of R’.
(3) S’={[ql, 1, 1], sa} U {[l, b]: l<-l<-p(n)}.
A pebble on a node of the form [q, i, l] represents that the current state of the ATM

M is q and that the current head positions of the input tape and the work tape are on the
ith cell and on the/th cell respectively. A pebble on a node [/, a represents that symbol
a is written on the /th cell of the work tape and a pebble on a node of the form

578 TAKUMI KASAI, AKEO ADACHI AND SHIGEKI IWATA

[q, i, l, a, a’] means that M is to change symbol a to a’ on the/th cell of the work tape
and that M is in state q at the head position on the input tape. Two nodes Sl and s2 are
added to enable the player to put a pebble on t’ who first put a pebble on a node of the
form [qa, i, 1]. Thus pebbles on all nodes of $’ imply the initial configuration of M. It is
clear that the construction can be performed within log-space. We now show that M
accepts w if and only if the player P1 wins the game G’.

Suppose that M accepts w. Then the value of the initial configuration of M is true.
Thus, for every true-valued existential configuration C1, there is a true-valued universal
configuration C such that C’1 Nextt(C1), and for every true-valued universal
configuration C2 except the accepting configurations, C’2 Nextt(C2) implies that C
is a true-valued existential configuration. Each move of M corresponds either to three
consecutive moves of G’ induced by the rules in (2.1.1) or to one move induced by
(2.1.2). In case a move of M changes a symbol on the work tape, player P1 moves a
pebble by the first rule of (2.1.1) corresponding to a move of M from a true-valued
existential configuration to a true-valued universal configuration. Then player P2 has to
move a pebble by the second rule of (2.1.1). After that, P1 moves a pebble by the third
rule of (2.1.1). In case the move ofM does not change the symbol on the work tape, P1
moves a pebble by a rule of the form (2.1.2). Then it is P2’s turn. Whatever rules P2 may
choose, the moves correspond to moves of M from a true-valued universal configura-
tion to a true-valued existential configuration.

Since the initial configuration is existential and the accepting configurations are
universal, P1 can first place a pebble on a node of the form [qa, i, l], then P2 has to place a
pebble on s2 and P1 can place a pebble on the terminal node t’ of G’.

Therefore, P1 has a winning strategy.
Suppose that M does not accept w. Then the value of the initial configuration ofM

is false. In this case, player P2 can always move pebbles to nodes in G’ which correspond
to false-valued configurations of M. Thus, P1 cannot win.

COROLLARY. A one-person pebble game problem is PS complete.
Proof. It should be clear that the problem is in PS. Let M be a nondeterministic

Turing machine which accepts an input w, w[n, within polynomial space. We
construct a pebble game G such that M accepts w if and only if G is solvable. Note that
if all universal states of an ATM are treated as existential states, then the ATM behaves
as a nondeterministic Turing machine. Hence we can treat the ATM in the proof of
Theorem 3.1 as a nondeterministic Turing machine. Now let G be the pebble game
constructed in the proof of Theorem 3.1; then it is clear thatM accepts w if and only if G
is solvable.

DEFINITION. A pebble game G (X, R, S, t) is acyclic if the digraph (X, E) is
acyclic, where

E ((x, z), (y, z): (x, y, z) R}.

THEOREM 3.2. A two-person acyclic pebble game problem is PS complete.
Proof. The maximum number of moves made in an acyclic pebble game G

(X, R, S, t) is less than IXI" ISI, since each pebble can move at most IXI times. Thus this
problem is in PS.

LetM be a po(n)-time bounded standard ATM, where n is the length of an input w
of M, and p0 is a polynomial in n. Then we can construct a pebble game GI--
(X1, R, Sl, tl) as in the proof of Theorem 3.1 such that M accepts w if and only if the
first player can win in GI within pl(n)= 3 po(n) moves. Now we construct an acyclic
pebble game G2 (X2, RE, $2, t2) such that the first player wins in G2 if and only if the

CLASSES OF PEBBLE GAMES 579

first player wins in G1 within pl(n) moves. Let G2 (X2, R2, S2, t2) where:

X2 {Ix, i]: x X1, 0-<i =<pl(n)},

Rz={([x,i], [y,j],[z, max(i,j)+l]): (x, y,z)R,z tl,

O <= i, j < pl(n)} U {([x, i], [y, j], [z, pl(n)]): (x, y, z) R1,

z=tl, 0<-i,i<pl(n)},

S2--" {Ix, 0]: X

t2=[tx, Pl(n)].

It is obvious that the pebble game Gz is acyclic. It is also obvious that the first player has
a winning strategy in Gz if and only if the first play.er has a winning strategy in G1 within
pl(n) moves. Thus M accepts w if and only if the first player has a winning strategy in
Gz. Note that the construction of Gz from M is performed within log-space. Since
PS U i-_>0 ATIME (ni), the problem is PS complete.

COROLLARY. A one-person acyclic pebble game problem is NP complete.
Proof. Since the maximum number of" moves made in an acyclic pebble game

G (X, R, S, t) is less than]XI" tSI, the solvability problem is in NP. We can show that
for any nondeterministic Turing machine M, there is an acyclic pebble game G2 such
that M accepts input w within polynomial time in [w[if and only if G2 is solvable by the
same construction method as in the proof of Theorem 3.2.

DEFINITION. Let G (X, R, $, t) le a pebble game. G is called a pebble game of

fixed rank if the number of nodes in S is fixed.
THEOREM 3.3. A two-person pebble game problem offixed rank is P complete.

Proof. It is clear that the problem is in P.
LetM (O, E, F, 6, b, ql, qa, U) be a log n space bounded standard ATM, where n

is the length of the input w ww2 wn of M. Now let G (X, R, S, t) be a pebble
game of rank 3 where:

(1) X={[q,i,l]:q6O, l-<_i<=n,l<=l-<[logn]}

t_J flog n], a ’ r*}

kJ{[q, i, l, a, a’]: q 6 O, l_-<i<_-n, l_-<l_-< [log n], a, a’6F}

_J {Sl, $2, t}.

(2) R is defined as follows:
(2.1) for each q Q, (1 <_- _-< n), a F, (1 <_- -< [log n), fl, 3’ F* such that

[/avl- [log n l, It l; l- 1,
(2.1.1)if 6(q, wi, a) contains (q’, a’, (d’, d")), a # a’, then let

([q, i, l], [/3aT], [q, i, l, a, a’]),

([flay], [q, i, l, a, a’], [/3a’y]),

([q, i, I, a, a’], [/3a’y], [q’, + d’, + d"])

be elements of R;
(2.1.2) if 6(q, wi, a) contains (q’, a, (d’, d")) then let

([q, i, l], [/3aT], [q’, + d’, + d"])

be an element of R;
(2.2) foreach (l <=i <=n),l (1-</_-< flog n]), let ([qa, i, l],sx, sz)beelementsofR;

580 TAKUMI KAS/I, AKEO ADACHI AND SHIGEKI IWATA

(2.3) let ($2, $1, t) be an element of R.
(3) $= {[ql, 1, 1], [bb... b], $1}.

It can be shown that M accepts w if and only if the first player wins the game G by a
similar argument as in the proof of Theorem 3.1. Note that the construction of G is
performed within log-space and that the rank of G is 3. Since P
U __>0 ASPACE(i log n), the problem is P complete.

COROLLARY. A one-person pebble game problem of fixed rank is NLOGSPACE
complete.

Proof. Clearly this problem is in NLOGSPACE. We can construct a pebble game G
of rank 3 as in the proof of Theorem 3.3 such that a log n space bounded nondeter-
ministic Turing machine accepts input if and only if G is solvable. Note that the
construction of G is performed within log-space and an ATM would behave as a
nondeterministic Turing machine if each universal state is treated as an existential state.

4. Applications. In this section, the basic results are applied to show that certain
games are EXP complete.

DEFINITION. A Chinese checkers game is G (N, E, W, B, t), where N is a finite
set of nodes, E

_
N2 is the set of edges, W and B are subsets of N such that W

and is an element of N.
A Chinese checkers game G is a game played on the graph (N, E) between two

players, White and Black. White moves first. Initially, white stones are placed on each
node of W and black stones are placed on each node of B. Suppose that (x, y) and (y, z)
are edges of E. If there are a white stone on x, a black stone on y and no stone on z, then
White in his turn can move the stone from x to z. Similarly, if a black stone is on x, a
white stone is on y and no stone is on z, then Black can move the black stone from x to z.
The player wins if after his move he has a stone on his color on the node or the other
player cannot move any stone of his color.

THEOREM 4.1. The problem to determine whether there is a winning strategy in a
Chinese checkers game is EXP complete..

Proof. Since it is easily shown that the problem is in EXP, it suffices to show that
two-person pebble game problem is log-space reducible to this problem.

Let G (X, R, S, t) be a pebble game. We construct a Chinese checkers game G’
such that the first player has a winning strategy in G if and only if White has a winning
strategy in G’. For each node x in X, we introduce 8 nodes x, 2, x 1, 21, x 2, 22, x 3 and
23, and 8 edges shown in Fig. 4.1. Let Nx(x) {x, 2, x 1, 21, x2, 22, x3, 23}, let Ex(X)

x xl x2 x5 X
0 (C) (C) (C)

FIGURE 4.1

be a set of 8 edges shown in Fig. 4.1, let Wx(x) {x 1, x3} and let Bx(x) {21, 23}. For
each rule r (x, y, z) in R, we introduce nodes and edges shown in Fig. 4.2, where nodes
x, 2, y, 37, z, 2 are defined previously and - is the target node. In Fig. 4.2 the box with a
white stone and the box with a black stone stand for a graph shown in Fig. 4.3(1) and a
graph in Fig. 4.3(2) respectively. Let NR(r) be a set of nodes which appear in Fig. 4.2
except x, 2, y, , z, and -, and let ER (r) be a set of edges which appear in Fig. 4.2. ER (r)

CLASSES OF PEBBLE GAMES 581

X

X

(2)

FIGURE 4.2

contains edges of the form (rl, r2) and (1, 2), dotted edges shown in Fig. 4.2, if and
only if z t. Let WR (r) and BR (r) be sets of nodes in Fig. 4.2 which are marked nodes

582 TAKUMI KASAI, AKEO ADACHI AND SHIGEKI IWATA

al a2 _5 a4 T

bl b2 3 b4

FGUR 4.3

with white and black respectively. Now let G’= (N, E, W, B, ’), where:

N=(U Nx(x))U(U
xX rR

E=(LJ Ex(x)) U(U ER(r)),
xX rR

xX rR

xX rR

If the player moves the stone from the box, then he loses the game: if White moves his
stone from a3 in Fig. 4.3(1) then Black moves his stone from al to r through a3 hence
Black wins; and if Black moves his stone from b3 in Fig. 4.3(2) then White wins by the
same argument. When White places his stone on , x X, then he wins, since in Fig. 4.1,
White can place his stone to " through 2. Analogously, when Black places his stone on
x, x X, then Black wins.

Now we show that the first player moves a pebble from x to z by the rule
r (x, y, z) R in G if and only if White moves his stone from.x to z in G’, and that the
second player moves a pebble from x to z in G if and only if Black moves his stone from

to in G’. Before and after this simulation of a move of G in G’ the following (i), (ii)
and (iii) hold.

(i) If a stone is on x, x e X, then it is white and if a stone is on , x e X, then it is
black.

(ii) For each x e X, a white stone is on x if and only if a black stone is on .
(iii) All stones other than the above are as in Fig. 4.1 and Fig. 4.2.
Note that the initial stage of the simulation satisfies (i), (ii) and (iii) above. Suppose

that white stones are on x and y and no stone on z. (Thus, black stones are on and f
and no stone on .) We show that White in his turn can move the white stone from x
to z by the following (1)-(5) procedures (black stone on thus moves to), which
corresponds that the first player moves a pebble from x to z by the rule (x, y, z) in G.
Fig. 4.2(1) is used for White’s turn.

(1) White moves his stone from x to r 1. (If there is no stone on y, then White loses
since Black can move the stone on $ to y.)

CLASSES OF PEBBLE GAMES 583

(2) In case z Black must move his stone from to r2. Otherwise, White moves
his stone from r l to - through r2 and rS, then he wins. In case z t, White wins since
(rl, r2) is not in E.

(3) White must move his stone from rl to r3. Otherwise, Black moves the stone
from r2 to - through r3 and r6, then Black wins. If there has been a black stone on ,
then White loses since Black can move his stone from z7 to r4, and then r6 and 7.

(4) Black must move his stone from r2 to . Otherwise White moves the stone from
r3 to , then White wins.

(5) White must move his stone from r3 to z. Otherwise, Black moves the stone
from to r4 and r6, -, then Black wins.

We note that conditions (i), (ii) and (iii) above still hold after these procedures if

z t. Analogously, it can be shown that Black in his turn can move his stone from Y to

and also move white stone from x to z. (See Fig. 4.2(2).) If z and it is White’s turn,
then White wins since (rl, r2) is not in E and Black cannot move his stone from Y to r2
after White moves his stone from x to rl in Fig. 4.2(1). Similarly, if z and it is Black’s
turn then Black wins.

Thus the first player in G has a winning strategy if and only if White has a winning
strategy in G’.

Now we consider a game similar to the well-known game called the Towers of
Hanoi.

DEFINITION. Let Z be the set of integers, and let N be the set of natural numbers.
An n-dimensional vector addition system [10], [12] is a finite subset of Z n. Let V be an
n-dimensional vector addition system. Then the relation -v over N is defined as
follows. We write v -v w if and only if there exists z e Z such that

w(i) v(i) + z(i) for all i, 1 -<_ -< n,

where w(i), v(i) and z(i) denote the ith component of w, v and z respectively. Let -v
denote the reflexive and transitive closure of ’v.. The reachability problem for vector
addition systems is the problem to decide whether x y for given V, x and y.

A conservative vector addition system is a vector addition system V such that
(/21, /2n) e V implies Vl "1-/22"+’" "-t-/2n 0.

DEFINITION. A peg game is G (V, m, n), where V is an n-dimensional conser-
vative vector addition system, and m, n e N. Elements of V are called rules. We say that
G is solvable if

(m, O, O, , O).(0, O,..-, O, m).

A peg game can be considered as the game described as follows. There are n pegs
fixed upright on a board, and m disks. Each disk has a hole it its center. An element
y (y 1,’" ", y,) of N" represents that yi disks are threaded on the ith peg, 1,
2, , n. A rule v (v 1, , vn) e V means that for each i, if vi ->_ 0 then we put vi disks
on the ith peg, and if vi < 0 we remove vi disks from the ith peg. (See Fig. 4.4.) Initially,
all disks are threaded on the first peg. The object of the game is to transfer all disks to the

2 3 2 3
FIGURE 4.4

584 TAKUMI KASAI, AKEO ADACHI AND SHIGEKI IWATA

nth peg. In the two-person game, when two players al.ternatively move disks by the
rules, the player wins if after his move all disks are on the nth peg.

THEOREM 4.2. A two-person peg game problem is EXP complete.
Pro@ Since it is easily shown that the problem is in EXP, it suffices to show that

two-person pebble game problem is log-space reducible to a two-person peg game
problem.

Let G ({Xa,"" ", x,,}, R, $, xn) be a pebble game. We construct a peg game
G’= (V, n + 1, 3n +4) as follows. Disks on the first 3n pegs are used to represent
positions of pebbles in G and the last 4 pegs are auxiliary ones in the simulation of G.
Note that the (3n + 4)th peg is the target peg. Let V Va U V2 LI V3.

Va consists of the vectors (rules) u and v defined as follows.

(i)

()

-n-1 if/= 1,
u(/)= n+l if/=3n+l,

0 otherwise.

1

v()
0

if 1<_-1 <=n, xiES, or 2n <l <=3n, xeS,
if/=3n+l,
otherwise.

Va is the set of rules for the initial set of the simulation. At the beginning, the first
player P1 must apply the rule (i) above. No other rule can be applied. Then, the other
player Pz can apply only the rule (ii). After these applications, there is a disk on the
(3n + 1)st peg, and for each l, 1 <_- <_- n, a disk is on the/th peg if Xl $, and on the
(2n +/)th peg is Xl S.

V2 is the set of rules for the simulation of the rules in G. At any stage of the
simulation, the following conditions (a), (b) and (c) hold.

(a) For each l, 1 _<- -< n, exactly one disk is on either the/th, the (n +/)th or the
(2n +/)th peg;

(a-l) if there is a pebble on the node Xl in the pebble game G, then a disk is on
either the/th or (n +/)th peg; and

(a-2) if there is no pebble on Xl in G, then a disk is on the (2n +/)th peg.
(b) Exactly one disk is on either the (3n + 1)st or the (3n + 2)nd peg.
(c) There is no disk on either the (3n + 3)rd or the (.3n + 4)th peg.
For each (xi, xj, Xk) R, V2 contains the vectors v which satisfy conditions (1) to (5).
(1) v(i) 1, v(n + i) O, v(2n + i) 1, or v(i) O, v(n + i) 1, v(2n + i) 1.
(2) v(]) 1, v(n +]) 1, v(2n +]) O, or v(]) 1, v(n +]) 1, v(2n +]) O.
(3) v(k) 1, v(n + k) O, v(2n + k) 1.
(4) v(l) v(n + l) v(2n + l) 0 for all/(1 _-< _-< n), l {i,], k}.
(5) if k n, then

v(3n + 1) -1, v(3n +2) 1, v(3n+3)=v(3n+4)=O,

v(3n + 1) 1, v(3n + 2) 1, v(3n + 3) v(3n + 4) 0;

or

if k n, then

v(3n + 1) -1, v(3n + 2) 0, v(3n + 3) 0, v(3n + 4) 1,

or

v(3n + 1) 0, v(3n +2) -1, v(3n +3) 0, v(3n +4) 1.

CLASSES OF PEBBLE GAMES 585

Suppose that there are pebbles both on xi and xi, and no pebble on Xk. Then for
i,/’, the condition (a-1) holds, and for k, the condition (a-2) holds. Suppose that a

rule (xi, xj, xk) is applied in the pebble game. Then by the rule (1) above, a disk either on
the ith or the (n + i)th peg moves to the (2n + i)th peg; by (2), a disk either on the/’th or
the (n +])th peg moves to the (n +/’)th or the]th peg respectively; and by (3), a disk on
the (2n + k)th peg moves to the kth peg, and condition (a) still holds. If k : n, by (5), a
disk on either the (3n + 1)st or the (3n + 2)nd moves to either the (3n + 2)nd or the
(3n + 1)st peg, respectively. Conditions (b) and (c) hold in this case. If k n, by (5), a
disk either on the (3n + 1)st or the (3n + 2)nd peg moves to the (3n + 4)th peg. Note that
a rule in V2 cannot be applied if there is not any disk either on the (3n + 1)st or the
(3n + 2)nd peg. For example, if there are disks on the ith, the (n +])th, the (2n + k)th
and the (3n + 1)st pegs, and the rule corresponding to the rule (xi, xj, xk) of the pebble
game is applied, then these disks are moved to the (2n + i)th, the/’th, the kth and the
(3n + 2)nd pegs. (See Fig. 4.5.)

k n+i n+j n+k 2n+i 2n+j 2n+k n+l n+2
FIGURE 4.5

We note that the first player has a winning strategy in the pebble game if and only if,
in the two-person peg game, the first player can first apply the rule which corresponds to
the rule of the form (xi, xi, xn), that is, the first player can move the disk on either the
(3n / 1)st or the (3n + 2)nd peg to the (3n +4)th peg.

V3 is the set of rules for the collection of all disks to the (3n + 4)th peg. These rules
enable the first player who put a disk on the (3n / 4)th peg to collect all disks on the
(3n / 4)th peg. V3 consists of two kinds of vectors.

(i) +1 if/=3n+3,
v(l)= -1 ifl=3n+4,

0 otherwise.

(ii) for each (1 <- -<_ 3 n),

il
if or 3n +3,

v(l) if 3n + 4,
otherwise.

We note that after an application of the vector shown in (i) above, the only
applicable rules are in (ii), and that after an application of a vector in (ii), the only
applicable rule is the vector (i).

It is straightforward to show that in the pebble game G, the first player has a
winning strategy if and only if the first player has a winning strategy in the two-person
peg game.

COROLLARY. A one-person peg game problem is PS complete.
Proof. Let G’ be the peg game constructed from a pebble game G as in the previous

proof. Then, it is clear that G’ is solvable if and only if G is solvable. Since a one-person
pebble game problem is PS complete, the corollary is proved.

COROLLARY. The teachability problem ofconservative vector addition systems is PS
complete.

586 TAKUMI KASAI, AKEO ADACHI AND SHIGEKI IWATA

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN. The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] m. K. CHANDRA AND L. J. STOCKMEYER, Alternation, Proc. 17th Ann. IEEE Symp. on Foundation
of Computer Sciences, 1976, pp. 98-108.

[3] S. A. COOK, The Complexity of theorem-proving procedures, Proc. 3rd ACM Symp. on Theory of
Computing, 1971, pp. 151-158.

[4],An observation on time-storage tradeoff, J. Comput. System Sci., 9 (1974), pp. 213-229.
[5] S. A. COOK AND E. SETHI, Storage requirements for deterministic polynomial time recognizable

languages, Ibid., 13 (1976), pp. 25-37.
[6] S. EVEN AND R. E. TARJAN, A combinatorial problem which is complete in polynomial space, J. Assoc.

Comput. Mach., 23 (1976), pp. 710-719.
[7] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and Their Relation to Automata, Addison-

Wesley, Reading, MA, 1969.
[8] J. E. HOPCROFT, W. PAUL AND L. VALIANT, On time versus space, J. Assoc. Comput. Mach., 24

(1977), pp. 332-337.
[9] W. D. JONES AND W. T. LAASER, Complete problems for deterministic polynomial time, Theoretical

Comput. Sci., 3 (1977), pp. 105-117.
[10] R. M. KARP AND R. E. MILLER, Parallel program schemata, J. Comput. System Sci., 3 (1969), pp.

147-195.
11 R.M. KARP, Reducibility among combinatorialproblems, Complexity of Computer Computations, R. E.

Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[12] R. E. MILLER, Mathematical studies of parallel computation, Proc. First IBM Symp. on Mathematical

Foundation of Computer Science, IBM Japan, 1976.
13] T. J. SCHAEFER, Complexity of decision problems based on finite two-person perfect-information games,

Proc. 8th Ann. ACM Symp. on Theory of Computing, 1976, pp. 41-49.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0009 $01.00/0

TRANSLATABILITY AND DECIDABILITY QUESTIONS FOR
RESTRICTED CLASSES OF PROGRAM SCHEMAS*

ELAINE J. WEYUKERt

Abstract. Two new classes of schemas are introduced: the reachable schemas and the semifree schemas.
A schema is reachable if every statement in the schema is executed under some interpretation. A schema is
semifree if every test in the schema is necessary in the sense that each exit of the test is taken under some
interpretation.

It is shown that most of the standard decision problems are unsolvable for schemas in these two classes,
and that there can be no algorithm which effectively translates an arbitrary schema into an equivalent
reachable or semifree schema, even though such equivalent schemas always exist. These classes are also
compared to the free and liberal schemas, and interclass translatability questions are investigated. It is
demonstrated that every reachable schema can be effectively translated into a semifree schema, even though
it is not decidable whether a reachable schema is semifree.

Key words, program schema, flowchart schema, abstract program, translatability, decision problems

1. Introduction and definitions. For several years, people have studied abstrac-
tions of computer programs known as program schemas. A great deal of work has been
done comparing the relative computational power of classes of schemas with additional
features [1], [2], [8]. We are interested in considering classes of schemas whose
members fulfill certain semantic requirements. We introduce two such classes of
schemas, the semifree schemas and the reachable schemas, and consider various
decision problems for these classes. We also consider the relative power of these classes.
We compare them to the class of all schemas as well as to other well-known semantically
restricted classes. We use a program schema model based largely on the one formulated
by Luckham, Park, and Paterson [6].

We have a formal language whose alphabet consists of the following disjoint sets of
symbols:

(i) Variable or Location Symbols, denoted by the letters u, v, w, x, y, z. The set of
variables is divided into three disjoint subsets X, Y, and Z. The set X contains the input
variables. Y is the set of program variables, and Z is the set of output variables. A
variable in X may be referenced but never changed, whereas an element of Z may be
assigned a value, but may never be referenced. An element of Y may either be
referenced or assigned a value provided it has been assigned a value before it is
referenced.

(ii) Function Symbols, denoted by the letters f, g, h.
(iii) Predicate Symbols, denoted by the letters p, q, r, s, t.
(iv) Distinguished Symbols: START, HALT,), , numerals, comma.

Each of the symbols in (i), (ii), and (iii) may appear with or without a subscript.
The language has four types of statements, known as the legal statements:

(i) Start Statement: START.
(ii) Assignment Statement: y /(yl,""", yn) where yl," ", yn are elements of

X t_J Y, y is an element of Y LI Z, and [is an n-ary function symbol.
(iii) Test Statement: P(yx, , y,) where yx, , y, are elements of X Y and p

is an n-ary predicate symbol.
(iv) Halt Statement: HALT.

* Received by the editors October 14, 1977, and in final revised form November 1, 1978.
t Department of Computer Science, Courant Institute of Mathematical Sciences, New York University,

New York, New York 10012.

587

588 ELAINE J. WEYUKER

A]tow diagram is a labeled directed graph (see [5] for basic graph theory
definitions) each of whose vertices is labeled by a legal statement and such that"

(i) A vertex labeled with a start statement has no edges entering it and one edge
exiting from it.

(ii) A vertex labeled with an assignment statement has at least one edge entering it
and exactly one edge exiting from it.

(iii) A vertex labeled with a test statement has at least one edge entering it and
exactly two edges exiting from it which are labeled 0 and 1. Occasionally we will extend
the notation to include n-exit tests. This is simply a matter of notational convenience
and could equally be represented by a series of (n 1) two-exit tests.

(iv) A vertex labeled with a halt statement has at least one edge entering it and no
edges exiting from it.

A program schema P is a finite flow diagram with the following restrictions"
(i) There is exactly one vertex labeled START.
(ii) Each vertex lies on a path from the vertex labeled START.
(iii) On every path from the start statement, if u is a variable in Y U Z, then u is

assigned a value before it is referenced. That is, on every path, u must appear on the
left-hand side of an assignment statement before it may appear on the right-hand side
of an assignment or test statement. We note that this is a purely syntactic require-
ment.

The semantics of a schema is provided by an interpretation which specifies a
domain, assigns actual functions and predicates to the function and predicate symbols of
the schema, and also assigns initial values from the domain to each input variable.
Throughout this paper we use I(p(Y)) and I(/’()) respectively to stand for the value of
I(p) and I(f) applied to 1(2).

A Herbrand interpretation of a schema P is any interpretation I with the following
properties. The domain D is the set of syntactically well-formed strings over the input
variables and function symbols of the schema, I(x)- x for every input variable x, and
I(f(Ux,’’’, Un))--jcUl,""", Un for every n-ary function symbol/" of P and UI, Un
D. Note that the interpretation of P’s predicate symbols is not restricted in any way.

The execution sequence for schema P under interpretation I consists of the
sequence of statements of P executed under L Note that in defining both the syntactic
notion of a path, and the semantic notion of an execution sequence, care must be taken
in two circumstances. If either more than one exit of a test statement enter the same
vertex, or enter distinct vertices labeled with the same statement, then an indication of
which exit was selected is necessary to completely specify the path or execution
sequence.

For each interpretation/, the computation of the schema P either terminates (i.e.
reaches a halt statement), or diverges. In the former case the value, denoted val(P, I),
is the n-tuple of current values of P’s n output variables. If P diverges under I or if any
output variable has never been assigned a value, then val(P, I) is undefined.

We say two schemas, P and Q, are strongly equivalent, denoted P -= Q, if for every
interpretation L either both val(P, I) and val(O, 1) are defined and val(P, I) val(O, I),
or both values are undefined.

A class of schemas 1 is translatable into a class 2, if for every P1 1, there is a
strongly equivalent Pz 2.

2. Semantically restricted classes of schemas. Paterson [7] introduced the notions
of freeness and liberality as semantic restrictions on the class of schemas. He felt that
such restricted classes of. schema might have solvable decision problems.

TRANSLATABILITY AND DECIDABILITY QUESTIONS 589

A schema is free if every finite path through its flow diagram from the start
statement is an initial segment of some execution sequence. This property has been
shown [7] to be equivalent to the restriction that under no Herbrand interpretation is
any predicate symbol of rank n ever applied to an n-tuple of elements of the universe
more than once.

A schema is liberal if for every Herbrand interpretation, no element of the universe
is computed more than once, i.e. each particular n-tuple of elements of the universe is
an argument of each function symbol at most once.

A statement in a schema is reachable if there is an interpretation under which that
statement is executed. A schema P is reachable if every statement in P is reachable.

A schema P is semifr.ee if for every edge in the flow diagram of P, there is some
interpretation under which that edge is traversed.

We use o, , , 6, and to represent the classes of free, liberal, reachable,
semifree, and all schemas, respectively. It follows easily from our definitions that

The schema of Fig. 1 is an example of a nonreachable schema, as the HALT can
never be executed. If we modify the schema and have the 0-exit of the second p(y) test
(labeled 2) enter the halt statement rather than returning to point @, the schema is
reachable but not semifree, as the 1-exit of this test may never be taken. If in addition to
the above modification of the schema of Fig. 1, we have the 1-exit of the first p(y) test
(labeled 1) enter the second p(y) test and delete the assignment statement y -f(y), the
resulting schema is semifree but not free. Thus it follows that each of the inclusions is
strict.

y f(x)

y f(y)

z f(y)

FIG.

2.1. Reachable schemas. It has been shown [7] that is not translatable into or. In contrast to these results, it is interesting to note that corresponding to every
schema P, there is a semifree (and hence reachable) version Q. Unnecessary tests of P
must be removed, as well as any unreachable code. To remove an unnecessary test, its
direct predecessors must first be connected to the statement at the exit which is always

590 ELAINE J. WEYUKER

taken, and then the test may be deleted. Pieces of code which become syntactically
inaccessible as a result of such modifications must then also be removed. Thus we have
immediately:

PROPOSITION 1. is translatable into 5, and hence into .
We see, however, that this translation is not effective.
LEMMA 2. It is decidable whether a reachable schema P halts under some inter-

pretation.
Proof. P halts under some interpretation itt it contains a halt statement.
THEOREM 3. There is no algorithm which, given an arbitrary schema P, constructs a

reachable schema Q, such that P =-Q.
Proof. Assume such an algorithm existed. Then by Lemma 2, it would be decidable

whether Q, and hence P, halted under some interpretation. But this is a well-known [7]
undecidable property for arbitrary schemas.

Thus although for every schema there is a strongly equivalent reachable schema,
we cannot in general effectively obtain it. We next see that reachability is an undecid-
able property for schemas.

The notion of reach.ability in schemas is analogous to state accessibility in Turing
machines, and as the next results indicate, reachability is an undecidable property of
schemas for precisely the same reasons that state accessibility is an undecidable
property of Turing maclrines.

LEMMA 4. It is not decidable whether an arbitrary assignment statement o] a schema
is reachable.

Proof. Let P be an arbitrary schema. We assume without loss of generality that P
contains a single halt statement. We construct a schema Q from P by replacing the halt
statement of P by an assignment statement s, followed by a halt statement. Then if it
were decidable whether s is reachable in Q, it would be decidable whether P halted
under some interpretation. I-I

THEOREM 5. It is not decidable whether a schema is reachable.
Proof. We prove this theorem by showing that there is an algorithm which, given an

arbitrary schema P and assignment statement Sk Of P, constructs a schema Q such that
Q is reachable iff Sk is reachable in P. Let P be an arbitrary schema with statements
s, , s. Let sg be an assignment statement of P. Let p be an n-exit predicate symbol
which does not appear in P. We construct schema Q from P by inserting an initializing
assignment statement,])(x), immediately following the start statement. The nota-
tion indicates that we are assigning the value/(x), where x is some input variable, to
every program variable y. This is done simply to gurantee that every program variable is
assigned a value before it is referenced. We also insert the test p(x) after instruction Sk.
The branch from the mth exit of p enters statement s,, The construction of Q is outlined
in Fig. 2. Clearly Sk is reachable in P iff Q is a reachable schema. 71

Before considering similar questions for ow, we consider two other decision
problems for .

LEMMA A (Paterson [7]). It is not decidable whether an arbitrary schema P halts
under every interpretation.

Tr/EOREM 6. It is not decidable whether a reachable schema halts under every
interpretation.

Proofi We present an algorithm which for a given schema P, produces a reachable
schema Q which halts under every interpretation iff P does.

Assume P contains n + 1 statements labeled 0, 1, , n with 0 the start statement
and 1 the unique successor of the start statement. We assume without loss of generality,
that P contains exactly one halt statement, and that it is labeled n.

TRANSLATABILITY AND DECIDABILITY QUESTIONS 591

9 f(x)

Sk+!

sn

FIG. 2

Let p, ql, , qn-1, r be predicate symbols which do not appear in P. Intuitively, O
can be in one of two distinct modes, depending on the interpretation of the test p(x). If
I(p(x))= 1, then the schema is in "reachability mode." This mode guarantees that
every instruction of O can be reached. If I(p(x)) 0, then the schema is in "simulation
mode," and is effectively simulating the computation of P under interpretation L
Furthermore, since x is an input variable, and thus can never be assigned a new value,
once a mode is determined, it cannot be changed. We construct O as shown in Figs.
3a-d.

We call the subschema of Fig. 3a the initial subschema. 7](x) is an initializing
assignment statement, as described in Theorem 5. We let s(i) denote the instruction in P
labeled i.

Case 1. If s(i), 1,..., n- 1, is an assignment statement in P such that the
successor of s(i) is sO’), then in O we have the subschema shown in Fig. 3b.

Case 2. If s(i), 1, , n 1, is a test statement in P with 0-successor s(k), and
1-successor sO’), then in O we have the subschema shown in Fig. 3c.

Case 3. s(n) is the halt statement in P. Then in O we have the subschema shown in
Fig. 3d.

592 ELAINE J. WEYUKER

F. 3(a)

s()

FIG. 3(b)

0 0

FIG. 3(c) FIG. 3(d)

Note that a schema Q does not in general contain all of the predicate symbols
ql,"’, qn-1 but contains one qi for each test statement in P. The extra predicate
symbols are included simply to facilitate the notation.

In either mode, we are not interested in the value calculated by Q. If I(p(x))= O,
then P halts under interpretation I if and only if Q halts under interpretation L If
l(p(x)) 1 then Q halts regardless of P’s behavior under interpretation L

We also point out here the reason for the test statements qi and r. They are only
encountered under interpretations which put the schema into reachability mode and are
in fact used to guarantee that every statement is reachable. In the case that s(i) is a test
statement, we cannot guarantee that there is some interpretation which makes the value
of s(i) under that interpretation 1, and some other interpretation such that the value of
s(i) is 0. Hence it is possible that one of the two test statements p(x) might not be
reachable. By adding the tests qi(x), where qi does not appear anywhere else in the
schema Q, we can guarantee that both p(x) tests are reachable.

To see that Q is reachable, note that subschema 1 is reachable, that subschema
+ 1 is always reachable from subschema when I(p(x)) 1, and that every statement

within each subschema is reachable when I(p(x))= 1.
Our final task is to show that Q halts under every interpretation if and only if P

does. If Q halts under every interpretation, then P halts under every interpretation for
which I(p(x))=O. But p is not a predicate symbol in P’s language, and hence P’s

TRANSLATABILITY AND DECIDABILITY QUESTIONS 593

behavior under an interpretation must be independent of the interpreted value of p.
Thus P halts under every interpretation.

If P halts under every interpretation, then
such that I(p(x))= 0. Furthermore, O has been constructed so that under an inter-
pretation I for which I(p(x)) 1, the subschemas 1, 2, , n are executed in order and
then the schema halts. Thus O halts under every interpretation.

Thus we have shown that O is a reachable schema which is constructed effectively
from an arbitrary schema P and such that O halts under every interpretation if and only
if P halts under every interpretation. Therefore, if we could decide whether a reachable
schema halts under every interpretation, we could decide whether an arbitrary schema
halts under every interpretation, contradicting Lemma A.

COROLLARY 7. It is not decidable whether two reachable schemas are strongly
equivalent.

Proof. Let P be a reachable schema with input variable x, and output variables
z 1, , z,. Let O be the reachable schema shown in Fig. 4a. Note that O halts under
every interpretation.

We construct schema R by replacing each halt statement of P by the sequence of
instructions of Fig. 4b. Clearly R is reachable iff P is reachable. Also,

0 R iff R halts under every interpretation
iff P halts under every interpretation.

Thus if strong equivalence were decidable for reachable schemas, we could
decide whether a reachable schema halts under every interpretation, contradicting
Theorem 6. fi

CSTART")

z| f(x) z| *" f(x)

z n f(x) z n f(x)

FIG. 4(a) FIG. 4(b)

2.2. Semifree schemas. The semifree schemas represent a restriction on the class
of reachable schemas. Not only must we be able to reach every statement in the schema,
but we must also be able to leave via any exit. Paterson [7] showed that a schema is free
iff it does not contain any repeated tests. Furthermore, there are schemas which are
inherently nonfree in the sense that they are not strongly equivalent to any free schema,
and thus must repeat some tests in order to do the desired computation. In contrast to
this, Proposition 1 stated that there are no inherently nonsemifree schemas.

We say that a test is necessary if there are interpretations I0 and 11 such that the
0-exit of is taken under I0 and the 1-exit is taken under 11.

594 ELAINE J. WEYUKER

PROPOSITION 8. A schema P is semifree iff every test in P is necessary.
THEOREM 9. There is no algorithm which given an arbitrary schema P, constructs a

semifree schema Q, such that P Q.

Proof. This is a direct consequence of Theorem 3 and the observation that

We now discuss an interesting situation which underscores the necessity of
considering both the letter and the spirit of a result. Our next theorem demonstrates
that for any reachable schema, we can construct a strongly equivalent semifree schema.
At first glance, that seems like a very desirable situation. It seems to say that if we know
that we do not have any unreachable code, then we can effectively get rid of any
unnecessary tests. However, the theorem does not really say that at all. The con-
struction used in the proof below will cause just the opposite to happen. Instead of
deleting unnecessary tests, we will add additional tests and code in order to force the
newly constructed schema to be semifree.

We would really like to begin with a reachable schema, and if it is not semifree,
delete exactly the unnecessary tests and be left with a "reduced" strongly equivalent
semifree schema. Theorem 14 shall demonstrate that such a procedure is not possible.

THEOREM 10. There is an algorithm which given an arbitrary schema P, produces a
strongly equivalent schema Q, such that Q is semifree iffP is reachable.

Proof. Assume P contains n test statements, designated tl," ’’, tn. Let ko and k
denote test tk’S O- and 1-successor respectively, k-1,..., n. Let p, q, and s be
predicate symbols not appearing in P.

We build Q, shown in Fig. 5, as follows. It contains two slightly modified copies of
schema P, which we call PL and PR. If a is the first statement following the start
statement of P, then the corresponding statements in P. and PR are called aL and aR
respectively.

For a given interpretation I, Q is entered and one of four conditions holds. If
I(s(x)) 0 and I(p(x))- 0 the computation proceeds through PL exactly as it would
through P with the addition of repeated testing of p(x) and s(x). Similarly, if I(s(x)) 1
and I(p(x))= 1, the computation proceeds through PR. If I(S(X))= 0 and I(p(x))= 1,
then q is tested and one of the n tests of PL is selected and applied. Next p (x) and s (x)
are retested and then PR is entered at aR and the computation proceeds as it would
through P under I. Similarly, if I(s(x)) 1 and I(p(x)) 0 some test of PR is selected,
PL is entered at aL and the computation proceeds as through P under I. Thus P---Q.

A straightforward, but tedious argument verifies that Q has the required proper-
ties, and is omitted here. I-1

As we mentioned previously, this theorem is interesting since it points out that a
semifree schema is not necessarily "optimized," or even an improvement over an
equivalent schema which is not semifree. It is also useful as several results follow as
corollaries to it.

COROLLARY 11. It is not decidable whether an arbitrary schema is semifree.
COROLLARY 12. It is not decidable whether a semifree schema halts under every

interpretation.
Proof. The proof follows immediately from Theorem 10 and Theorem 6.
COROLLARY 13. It is not decidable whether two semifree schemas are strongly

equivalent.
Proof. The proof follows immediately from Theorem 10 and Corollary 7.

3. Relationships between M and ’ and other semantically restricted classes of
schemas. We have seen in the previous section that many properties are not decidable
for schemas in and , and in fact even membership in these two classes is

TRANSLATABILITY AND DECIDABILITY QUESTIONS 595

0

f(x)

edges
enterinq
koin P

0

edges
entering
k in P

0 0

FIG. 5

edge
entering

koin P

edges
entering

klin P

undecidable. In this section we investigate under what circumstances knowing that a
schema possesses certain desirable properties, enables one to decide whether it has
other desirable properties.

THEOREM 14. It is not decidable whether a reachable schema is semifree.
Prool’. Let P be an arbitrary schema. We construct a reachable schema O which is

semifree if and only if P is semifree. Since semifreeness is undecidable for arbitrary
schemas, we cannot decide whether a reachable schema is semifree.

Assume P contains n test statements designated tl," ", tn. The 0-successor of
statement tk is denoted by k0, and the 1-successor is denoted by k 1. Let tl be the first test
statement encountered under every interpretation (i.e. tl is the test statement nearest to
START). Then 10 and 1 denote the 0- and 1-sucessors of tl, respectively.

Let p be a predicate symbol not appearing in P. Let q be a 2n-exit predicate symbol
not appearing in P. The exits of q are labeled tlO, tzO,..., tnO, tll,..., t,l. We
construct O from P by inserting 2n + 1 copies of the test statement p(x) and one copy of
the test statement q(x) in the flow diagram of P as follows"

(1) Immediately after the start statement of P, insert an initializing statement
<--f(x) followed by the statement p(x). The 0-successor of this test is the statement

596 ELAINE J. WEYUKER

which is the successor of the start statement in P; we designate that statement a. The
1-successor of the p(x) statement is the test statement q(x).

(2) Insert one copy of the test statement p(x) as the 0-successor of each test
statement tk, k 1, , n. Both the 0- and 1-successors of p(x) will be the statement k0
of P. Similarly, we insert one copy of p(x) as the 1-successor of tk. Both the 0- and
1-successors of this copy of the test statement p(x) will be statement kl of P.

(3) The 2n successors of the test statement q(x) are the 2n copies of p(x) inserted
in step 2 above.

Thus we have constructed the schema Q whose outline is shown in Fig. 6.
Intuitively we can think of Q as being divided into 2n + 1 segments of code, the entrance
to each segment being controlled by the interpretation of the initial p(x) test and the
q (x) test.

A straightforward argument can be used to verify that the schema Q, so con-
structed, has the required properties. The complete proof appears in [9].

tkt

FIG. 6

TRANSLATABILITY AND DECIDABILITY QUESTIONS 597

Since every free schema is semifree, one might hope that semifreeness would be
sufficient to allow us to decide freeness. The next theorem tells us that this is not the
case.

TI-IEOREM 1 5. It is not partially decidable whether a semifree schema is free.
Proof. Assume such a partial decision procedure existed. It has been demonstrated

[9] that semifreeness is partially decidable. Thus we can apply the hypothesized partial
decision procedure and select the semifree, free schemas. But o%___ ow and hence we
would have a partial decision procedure for freeness, which Paterson [7] showed was
not partially decidable. [3

Although the decidability of the equivalence problem for free schemas remains
n open problem, it is easy to demonstrate that the following related question is
unsolvable. The proof uses an argument similar to that of Corollary 7.

THEOREM 1 6. It is not decidable whether a semifree schema and a free schema are
strongly equivalent.

THEOREM 17. There is no algorithm which, given a semifree schema, produces a
strongly equivalent free schema.

Proof. The proof follows from Corollary 1 2 and the observation that it is decidable
whether a free schema halts under every interpretation. 71

We next consider how is related to and 5e. Paterson [7] showed that is
effectively translatable into w 71 o. Thus w is effectively translatable into and ow. The
schema shown in Fig. 1 is a simple example of a liberal schema which is not reachable,
and hence neither semifree nor free.

LEMMA 1 8. It is decidable whether a liberal schema halts under some interpretation.
Proof. The proof follows from Paterson’s construction, Lemma 2, and the fact that

THEOREM 19. It is decidable whether an arbitrary statement in a liberal schema is
reachable.

Proof. Let P be a liberal schema with statements sl, , sn. For each k, 1 <- k =< n,
we construct a liberal schema Pk from P, such that Pk halts under some interpretation,
iff s is reachable in P. To construct Pk, we replace each halt statement of P by a LOOP
statement, and statement sk by a halt statement. If statement s was anything other than
a halt statement, we remove all edges leaving s, and delete any portions of the flow
diagram which are disconnected as a result of this replacement. Thus we have the
schemas outlined in Figs. 7a and 7b.

SCHEMA P
FIG. 7(a)

SCHEMA Pk
FIG. 7(b)

598 ELAINE J. WEYUKER

Since P is liberal, and the construction of Pk from P does not add any new
calculations, Pk is also liberal. Furthermore, since Pk contains only the single halt
statement, in place of P’s Sk, it is clear that Pk halts under some interpretation if and only
if Sk is reachable in P. From Lemma 18 it is decidable whether Pk halts under some
interpretation, and hence whether Sk is reachable in P. !-1

COROLLARY 20. It is decidable whether a liberal schema is reachable.
Since reachability of individual statements is decidable for liberal schemas, we can

remove the unreachable ones. Thus we have:
COROLLARY 21. There is a procedure which given a liberal schema, effectively

constructs a strongly equivalent schema which is liberal and reachable.
THEOREM 22. It is decidable whether an arbitrary test statement ofa liberal schema is

necessary.
Proof. Let P be a liberal schema containing a test statement tk. We construct a

liberal schema Pk from P by adding new assignment statements at each exit of tk. It
follows that tk is necessary iff both new assignment statements are reachable.

COROLLARY 23. It is decidable whether a liberal schema is semifree.
COROLLARY 24. There is a procedure which, given a liberal schema, effectively

constructs a strongly equivalent schema which is liberal and semifree.
We note that both Corollaries 21 and 24 follow from Paterson’s result, cited

earlier, that is effectively translatable into f) . The results in this paper to which
they are corollaries demonstrate that the translation procedure fulfills both the letter
and the spirit of the definitions. This is in contrast to the result in Theorem 10.

Acknowledgment. I am grateful to Tom Ostrand and Ann Yasuhara for all their
encouragement, helpful discussions, and suggestions. I am also very grateful to Emily
Friedman for carefully reading the paper and making many good suggestions, par-
ticularly that I look for a construction such as the one which appears in Theorem 10.

REFERENCES

[1] A. K. CHANDRA, On the properties and applications of program schemas, Ph.D. thesis, Stanford
University, Stanford, CA, 1973.

[2] R. L. CONSTABLE AND D. GRIES, On classes ofprogram schemata, this Journal, (1972), pp. 66-118.
[3] S. J. GARLAND AND O. C. LUCKHAM, Program schemes, recursion schemes and formal languages,

J. Comput. System Sci., 7 (1973), pp. 119-160.
[4] S. A. GREIBACH, Theory of Program Structures: Schemes, Semantics, Verification, Lecture Notes in

Computer Science, Vol. 36, Springer-Verlag, New York, 1975.
[5] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[6] D. C. LUCKHAM, D. M. PARK AND M. S. PATERSON, On formalized computer programs, J. Comput.

System Sci., 4 (1970), pp. 220-249.
[7] M. S. PATERSON, Equivalence problems in a model ofcomputation, Ph.D. thesis, Cambridge University,

Cambridge, England, 1967.
[8] M. S. PATERSON AND C. E. HEWITT, Comparative schematology, Record Project MAC Conference on

Concurrent Systems and Parallel Computation, 1970, pp. 119-128.
[9] E. J. WEYUKER, program schemas with semantic restrictions, Ph.D. thesis, Dept. Comp. Sci. Tech.

Report DCS-TR-60, Rutgers University, New Brunswick, NJ, 1977.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics
0097-5397/79/0804-0012 $01.00/0

AN EFFICIENT METHOD FOR STORING ANCESTOR INFORMATION
IN TREES*

DAVID MAIERt

Abstract. We present a space efficient method for computing ancestor information in trees, specifically,
whether one node is an ancestor of another and the lowest common ancestor of two nodes. We show the
method is tunable to specific applications, and compare it to other methods. Finally, we apply our procedures
to the problem of finding negative cycles in sparse graphs.

Key words, lowest common ancestor, tree algorithms, negative cycles

1. Introduction. We present a method of storing information in a tree that assists in
quickly finding the lowest common ancestor of two nodes in the tree. Section 2 presents
the general method, giving algorithms for the operations of inserting a node in the tree,
grafting a subtree from one part of the tree to another, finding the ancestor of a node at a
specified depth, and finding the lowest common ancestor of two nodes. The structure
imposed upon the tree is a generalization of that used by Van Emde Boas, Kaas and
Zijlstra [14]. We derive time and space bounds for these operations in terms of a
parameter G. Section 3 shows how the complexity of the procedures can be tailored by
letting G G(n), where n is the number of nodes in the tree, and gives a hypothetical
example on which we perform the tailoring.

We compare our procedures to those of Aho, Hopcroft and Ullman 1 and see that
the major improvement is in space complexity. On a tree of depth D(n), the Aho,
Hopcroft and Ullman method requires O(n log2 D(n)) space, while we can use as little
as O(n(log2D(n)/log210g2D(n))l/2). Both of the LCA procedures run in
O(log2 D(n)). Their LINK and our GRAFT procedures are seen not to be comparable,
but in the special case of building a tree a node at a time, we take
O(n(log2 D(n)/log2 log2 D(n)) 1/2) time as compared to O(n log2 D(n)) for their
method. Section 4 presents another example, finding negative cycles in a graph, that
motivated the general case. We can find a negative cycle in a graph in space linear in the
input, and time proportional to (number of nodes). (number of edges) for not too
sparse graphs. Finally, 5 outlines some additional savings in time and space that can be
made.

In what follows, we refer to nodes in a tree or in a graph by lower case letters.
Names composed of upper case letters represent variables and functions used in the
algorithms. We also assume the names of nodes are integers, so that we can easily store
pointers to them. All time and space bounds are for the RAM model of Aho, Hopcroft
and Ullman [2].

2. Storing iniormation in the tree.
2.1. Given a tree T with root r, assume that each node u in the tree contains a

pointer to its parent, except for the root. Call this pointer PARENT[u]. Pointers to
children and siblings become necessary later for certain operations, but are not needed
for all. Our method involves storing, at each node, a certain amount of additional
information that can be computed quickly when the node is added to the tree and that

Received by the editors September 23, 1977, and in revised form November 13, 1978.
t Department of Electrical Engineering and Computer Science, Princeton University, Princeton, New

Jersey. Currently at Department of Computer Science, State University of New York at Stony Brook, Stony
Brook, New York 11794. This work was partially supported by the National Science Foundation under Grant
DCR-74-21939.

599

600 DAVID MAIER

FIO.

enables us to make long jumps up the tree. For each node u in T, the depth of u is the
number of ancestors of u in T, and is denoted DEPTH[u]. In Fig. 1, DEPTH[19] 7,
while the depth of the root, node 1, is 0.

Suppose we are given the maximum depth, say D, for any node in T. Pick an integer
2 < G -<D that we call the base. The method of selecting G is explored later.

DEFINITION. The level of a node u in T is the largest integer such that G divides
DEPTH[u]. The notation is LEVEL[u] i. The root thus has infinite level, which is
denoted LEVEL[r] 1.

In Fig. 1, G 3. All the nodes with a single circle are of level 0, those with two
circles are of level 1, and the one node, 24, with three circles is of level 2. In the figures,
the convention is that nodes of level have + 1 circles, while the root has one heavy
circle. In tree T, there is a maximum level among the nodes that are not the root. Call
this value L. Note that L [log D]. In Fig. 1, L [log3 10J 2.

DEFINIrION. For any node u in T, the chief of u is the closest ancestor v of u such
that the level of v is greater than the level of u. This relationship is denoted CHIEF[u]
v. The chief of the root is the root itself.

In Fig. 1, CHIEF[13] 9, CHIEF[17] 1 and CHIEF[26] 24. Clearly, nodes of
level 0 cannot be chiefs.

STORING ANCESTOR INFORMATION 601

DEFINITION. Let node v be a chief, and let LEVEL[v i. The k-clan of v, for any
k < i, is the set of all nodes u such that LEVEL[u] k and CHIEF[u] v. Also, v is the
k-chief of its k-clan.

It is easily ascertained that every (k + 1)-chief must also be a k-chief. In Fig. 1, the
0-clan of node 17 is {18, 19, 20, 21, 22, 23}; the 1-clan of node 1 is {7, 8, 9, 10, 16, 17}
and the 2-clan of node 1 is {24}. Hence node 17 is a 0-chief, and node 1, the root, is a
1-chief and a 2-chief (and also a 0-chief). When we refer simply to the clan of a node u,
where LEVEL[u] k, we mean the k-clan of the chief of u. Referring again to Fig. 1,
the clan of node 5 is the 0-clan of node 1 which is {2, 3, 4, 5, 6}. The chief of a clan is not
considered a part of the clan.

We have defined three new pieces of information for each node u, namely
DEPTH[u], LEVEL[u] and CHIEF[u]. We now present two arrays of informa-
tion that are associated with the nodes of T. The first is the clan-pointer vector,
denoted CLAN_PTR[u], that contains pointers to certain members of the clan of u.
Specifically, CLAN_PTR[u][]] is the flh nearest ancestor of u in the clan of u, with the
length of CLAN_PTR[u being the largest such that u has an ith nearest ancestor in its
clan. Note that the root of T, among other nodes, has no clan-pointer vector. Figure 2
diagrams CLAN_PTR[5], with length 2, and CLAN_PTR[16], with length 1. The base
G 4. Node 11 has no clan-pointer vector. Note that the largest clan-pointer vector has
G 2 entries.

i" CLAN-PTR {5]{ " 2

FIG. 2

602 DAVID MAIER

DEFINITION. For a node u in T, a superchief of u, recursively, is
1. the chief of u, or
2. the superchief of a chief of u.

In Fig. 2, nodes 16 and 1 are superchiefs of node 18.
DEFINITION. Node v is the k-superchief of u if

1. v is a superchief of u,
2. LEVELly]> k, and
3. there is no closer superchief w of u with LEVEL[w] > k.

In Fig. 2, node 16 is the 0-superchief of node 18, and node 1 is the 1-superchief of
node 18. What the k-superchief of u amounts to is the nearest ancestor of u of level
k + 1 or greater. Note that not all k-superchiefs are k-chiefs. In Fig. 1, node 24 is the
1-superchief of node 27, but node 24 is not the 1-chief of any node, since it has no
descendents of level 1.

The purpose of clans and clan-pointer vectors is to allow large jumps up the tree T.
When traveling up the graph, we attempt to do so within a clan of highest possible level.
With the information stored in the tree so far, traveling from a 0-level node to its
k-superchief takes O(k) steps in the worst case. If we store information about
superchiefs at each node, we can make the traversal in constant time. Unfortunately,
this requires O(L) additional storage at each node. The first step in getting around this
problem is noting that all the nodes in a clan have the same superchiefs. Second, any
node v that is a k-chief is also a 0-chief, and for all nodes u in the 0-clan of v, the
k’-superchief of v, for k’> LEVEL[v], is the k’-superchief of u. The solution is to
spread the superchief information among the members of each 0-clan, thereby saving
space while having the information quickly accessible by every node of T. The exact
method follows.

For each 0-level node u, define a vector SCHIEF[u], where the length of
SCHIEF[u plus the length of CLAN_PTR[u equals some fixed H, in order that there
is the same amount of storage at each node. We determine the exact value of H shortly,
but first let us work an example. Figure 3 shows a fragment of a tree T where the base G
is 5 and the maximum level L is 14. We show a portion of the 0-clan of node 1" nodes 2,
3, 4 and 5. Among these four nodes we want to apportion the information about
superchiefs of the members of this 0-clan. We need pointers to the 1-superchief through
the 13-superchief. (The 0-superchief of a 0-level node is the same as the chief of the
node, and the 14-superchief of any node is the root.) Hence 13 slots are needed among
these four nodes. The lengths of CLAN_PTR for nodes 2, 3, 4 and 5 are 0, 1, 2 and 3.
We need an H where

(H-O)+(H- 1) + (H- 2) + (H- 3)_-> 13,

which implies

4H-6__> 13,

so H _-> 5 suffices. Hence the lengths of SCHIEF for nodes 2, 3, 4 and 5 are 5, 4, 3 and 2.
Figure 3 shows the way the information is apportioned.

In the general case, with base G and maximum level L, we choose the smallest H
such that

G-1 G-1

L-l<= Y. H-i+I=(H+I)(G-1)- Y.
i=1 i=1

(H + 1)(G- 1)- (G- 1)G/2 (2H + 2- G)(G- 1)/2.

STORING ANCESTOR INFORMATION 603

Fo. 3

Solving for H, we obtain

2(L- 1) L-1 6-2
--------<_ 2H + 2- G or ---_<- H.
G-1 G-1 2

To determine the contents of SCHIEF[u][j], let m DEPTH[u] mod G, and let

m--1

b= Y H-i+l=(2H+2-m)(m-1)/2.
i=1

Then SCHIEF[u][j] points to the (b +j)-superchief of u.
At this point we present several functions to help us access the SCHIEF vectors of

the 0-level nodes.
1. CONTENT(u, j) returns k such that SCHIEF[u][j] points to the k-superchief

of u. This function can be computed as shown above.
2. VLENGTH(u) returns the length of SCHIEF[u]. VLENGTH(u)=

H + 1 -(DEPTH[u] mod G).
3. DISTANCE(k) and POSITION(k) are used to find where within a 0-clan a

pointer to the k-superchief may be found. DISTANCE(k) gives the distance from
a 0-chief to any node u in the corresponding 0-clan that contains a pointer to the

604 DAVID MAIER

k-superchief in SCHIEF[u]. For the tree in Fig. 3, DISTANCE(11) 3, since any node
3 nodes below a 0-chief contain a pointer to its 11-superchief.

POSITION(k) tells which entry in the appropriate SCHIEF vector points to the
k-superchief. In Fig. 3, POSITION(11)- 2. DISTANCE and POSITION are almost
partial right inverses to CONTENT: CONTENT(u, POSITION(k)) k for any node u
DISTANCE(k) below a 0-chief. It is possible to define explicit formulae for DIS-
TANCE and POSITION, but Claim 1 shows they are unnecessary.

We also define one other useful function, MLEVEL(m), that returns the largest
integer j such that G divides m.

CLAIM 1. CONTENT, VLENGTH, DISTANCE and POSITION can be imple-
mented to run in O(1) time, given O(L) precomputation time and O(L) additional space.

Proof. First note that the mod function is just the remainder after integer division.
The claim is clear for CONTENT and VLENGTH. DISTANCE and POSITION have
domains of only L- 1 values, so they are best implemented as tables of length L- 1.
These tables can be computed in O(L) time.

CLAIM 2. MLEVEL can be computed in O(log2L) time, with O(L) precomputation
and 0(L) additional space.

Proof. Precompute the powers of G up to GL in O(L) time. Given these powers, we
can find the desired value of MLEVEL by bisection search among them, looking for a f
such that G divides m but Gi-1 does not. Thus we get the O(log2 L) bound once the
precomputation is done, since we are searching over O(L) values. 71

We now use some of these functions to define another function,
FIND_CHIEF(v, k), that finds the k-superchief of v if k _-> LEVEL[v], and otherwise
finds the k-superchief of PARENT[v], which then must be of level 0.

Input. A node v and a nonnegative integer K. In this and all subsequent algorithms
in this section, H, G, L, and the tree T are implicitly assumed to be parameters and all
parameters except T are assumed to be passed by value.

Output. The next node above v of level K + 1.
Explanation. In FIND_CHIEF, v is moved up the tree until it points to the desired

node. Lines 2 and 3 move v to be the next node up the tree that is a chief. Note if
LEVELly # 0, then LEVEL[PARENT[v]] 0. Line 4 checks if v points to the desired
node. If not, in lines 5-9 an SCHIEF vector in the 0-clan above v is examined to find the
proper superchief. In lines 5-7 the algorithm determines, via DISTANCE, which node
above v contains the appropriate information in its SCHIEF vector, and v moves to this
node. POSITION is used in line 8 to select the correct entry in the SCHIEF vector, and
v is set to this new value, which points to the next k-superchief. Thus, at line 10, v points
to the desired node and is returned.

1. algorithm FIND_CHIEF(v, K)
2. i LEVEL[v] 0 then v - CHIEF[v];
3. else v CHIEF[PARENT[vII;
4. if LEVELly -< K and LEVELly 1 then do;
5. M- DISTANCE(K);6. if M G- 1 then v PARENT[v];
7. else v CLAN_PTR[PARENT[v]][G-M- 1];
8. v SCHIEF[v][POSITION(K)];
9. end;

10. return (v);
11. end FIND_CHIEF;

This system of storing information on superchiefs still allows much duplication of
information among members of a 0-clan, but it consumes less space than storing all the

STORING ANCESTOR INFORMATION 605

pointers at each node. Section 5 gives ways to eliminate some duplication. As the system
stands, if T has n nodes, the amount of additional space required is O(nH).

2.2. Building the tree. Our next question is, if we are adding a new node u to
tree T, how long does it take to compute DEPTH[u], LEVEL[u], CHIEF[u],
CLAN_PTR[u], and SCHIEF[u]? Let us look at the following algorithm, ADD, that
inserts a new node into the tree.

lnput. A node v in tree T and a new node u.
Output. An updated tree T having u as a child of v and all necessary information

stored at u.
Explanation. In lines 2-4 ADD fills in the parent, level and depth for u. In lines 5-7

ADD finds the chief of u when the level of u is 0. In line 8 it finds the chief of u in all
other cases. (Line 8 will not work when the level of u is 0, since in the case
LEVEL[u]= 0, FIND_CHIEF uses CHIEF[u].) In lines 9-10 the next ancestor of u
of level greater than or equal to level u is found, and assigned to NEXT. In line 11
ADD uses NEXT to check if u has any ancestors in its clan; if so, the clan-pointer
vector is filled in by lines 12-16. Finally, in lines 17-20, SCHIEF is computed if u is
of level 0.

1. algorithm ADD(u, v)
2. PARENT[u] v;
3. DEPTH[u DEPTH[v + 1;
4. LEVEL[u] MLEVEL(DEPTH[u]);
5. if LEVEL[u] 0 then
6. if LEVEL[v] 0 then CHIEF[u]- CHIEF[v];
7. else CHIEF[.u v;
8. else CHIEF[u]FIND_CHIEF(u, LEVEL[u]);
9. if LEVEL[u] 0 then NEXT v;

10. else NEXT FIND_CHIEF(u, LEVEL[u]- 1);
11. if CHIEF[u NEXT then
12. do I from 1 to H-VLENGTH(u)-1;
13. CLAN_PTR[u][I + 1] <--- CLAN_PTR[NEXT][I];
14. end;
15. CLAN_PTR[u 3[1 - NEXT;16. end;
17. if LEVEL[u 0 then
18. do I from 1 to VLENGTH[u] while CONTENT(u, I) exists;
19. SCHIEF[u][I] - FIND_CHIEF(u, CONTENT(u, I));
20. end;
21. end ADD;

When implementing this algorithm, CLAN_PTR and SCHIEF share a single
vector of length H, since their lengths were chosen to sum to this amount.

THEOREM 1. The algorithm ADD runs in O(H + log2L) time, given an initial
precomputation of O(L) time.

Proof. Referring to Claim 1, the only parts of ADD that do not run in constant time
are line 4 and the loops 12-14 and 18-20. Line 4 takes O(log2 L) time, as shown by
Claim 2. The worst case for the loops occurs when LEVEL[u 0 and both loops are
executed. The loop 12-14 runs H-VLENGTH(u)-1 times, while the loop 18-20
runs VLENGTH[u] times. Since both loops have a constant amount of time expended
in their bodies, they run in O(H) time. So the time for the entire algorithm is
O(H + log2 L). lq

606 DAVID MAIER

To build an entire tree from its nodes, the root of the tree must be initialized. We
assume a procedure INIT(r) that initializes r as the root and runs in constant time. After
calling this procedure, we just add the nodes one at a time until the tree is complete.

2.3. Grafting. A graft of a subtree of T headed by node u is simply changing the
parent of u to any other node in T that is not u or a descendent of u, and then updating
all the ancestor information in the subtree. In order to graft, we need pointers at each
node to enable us to travel down the tree. Assume in this subsection that such pointers
exist, and that there is a function PRE such that PRE(v) is the next node after v in a
preorder traversal of T. Further assume the time PRE consumes in traversing an entire
subtree of s nodes is O(s) and that PRE uses a global variable, PEND, that causes PRE
to return -1 instead if DEPTH[PRE(v)] -< PEND. Finally, assume ADD is modified
to set the additional pointers. With these assumptions, the following algorithm grafts
node u onto node v. Note that the parent and descendent information in the subtree
below u is the same before and after GRAFT is applied.

Input. Nodes u and v in T, with u not v or a descendent of v.
Output. An updated tree, with u a child of v and all information in the subtree

headed by u properly modified.

algorithm GRAFT(u, v) global PEND;
ADD(u, v);
PEND DEPTH[u];
w PRE(u);
do until w 1;

ADD(w, PARENT[w]);
w PRE(w);
end;

end GRAFT;

If u heads a subtree of s nodes, then GRAFT(u, v) will perform s ADD operations. The
time expended in calls to PRE is O(s) total, and the O(L) precomputation time for the
ADD procedure becomes negligible as s grows. Hence we have

THZORFM 2. The time to graft a subtree of size s is O(s(H + logz L)).

2.4. Finding an ancestor at a given depth. The next algorithm finds the ancestor of
a node u at depth R. This result allows us to answer the question "Is v an ancestor of
u ?" by finding the ancestor of u of depth DEPTH[v] and comparing it to v.

Input. A node u in the tree and a nonnegative integer R.
Output. The ancestor of u at depth R.
Explanation. The variable u is used as a pointer that is moved up the tree until it

hits depth R. Let u’ denote the value of u when ANS is called. In the loop 3-5 we move
up the tree by going from node to the chief of the node. At line 6, the ancestor of u’ at
depth R must be between u and the chief of u. This condition holds whenever we return
to line 6. In lines 7-8 we attempt to jump along the clan of u, with the length of the jump
being therefore a multiple of GLEvELtul. In line 9 we see if this jump brings us to the
desired depth. If not, lines 10-12 check if the desired node is among the next G-1
nodes. Otherwise, lines 13-21 find the node y above u of highest level such that
DEPTH[y]_->R and LEVEL[y]< LEVEL[u]. In step 20 we set u equal to this y. We
now return to line 6, once again having the desired node between u and CHIEF[u], and
also knowing that the level of u is less than the level during the previous pass through
loop 6-22. Eventually u reaches the right depth, we drop out of the loop and return u.

STORING ANCESTOR INFORMATION 607

1. algorithm ANS(u, R);
2. if R > DEPTH[u] then return ("error");
3. do while DEPTH[CHIEF[u]]>R and DEPTH[u] 0;
4. u - CHIEF[u];
5. end;
6. do until DEPTH[u] R;

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22. end;
23. return (u);
24. end ANS;

QUOT [(DEPTH[u]- n)/oLEVEL[J
if QUOT 0 then u CLAN_PTR[u][QUOT];
if DEPTH[u] R then

if DEPTH[u R < G then
if DEPTH[u]-R 1 then u - PARENT[u];else u - CLAN_PTR[PARENT[u]][DEPTH[u R 1];

else do;
y-u;
LEV- LEVEL[u];
do until DEPTH[y]> R and LEV< LEVEL[u];

y - FIND_CHIEF(u, LEV- 2);
LEV- LEV- 1;
end;

u-y;
end;

THEOREM 3. The algorithm ANS take O(L) time.

Proof. The precomputation for the functions used in FIND_CHIEF and for the
powers of G in line 7 takes O(L) time. The loop 3-5 iterates at most L times, since the
level of u increases each time through. To figure the amount of time in loop 16-22, note
that if on one pass we iterate loop 16-19 times, the level of u is decreased by when we
return to line 6. So in all the iterations of loop 6-22, loop 16-19 iterates at most L times.
Also, since the level of u decreases each time we return to line 6, the whole loop 6-22
can run at most L times. Thus the loop 6-22 takes O(L) time. Summing the time for the
different parts of ANS gives a total running time of O(L).

2.5. Finding the lowest common ancestor. Finally, we are ready to solve the lowest
common ancestor (lca) problem. The lca of two nodes in tree T is the node of greatest
depth which is an ancestor of the two nodes. We allow the lca to be one of the given
nodes, if that node is an ancestor of the other, or the two nodes are the same. The
predicate DONE(u, v) is true if u v or u and v hve the same parent.

Input. Two nodes, u and v, in tree T.
Output. The lca of u and v.
Explanation. LCA uses u and v as pointers to work its way up the tree from their

original locations to their lowest common ancestor. Let u’ and v’be the original values.
In lines 2-3 we bring u and v to the same depth, using ANS. In lines 4-7 u and v move
up levels from node to chief, until u and v have the same chief. This situation is
diagrammed in Fig. 4a, disregarding the solid arrows. The dashed arrows indicate
strings of nodes. Portions of the tree immaterial to this discussion are not shown. The
strategy is to have CHIEF[u] CHIEFly] every time line 8 is executed, while decreas-
ing the level of u and v, all the time bracketing the lca of u’ and v’ between u and v and
CHIEF[u]. Loop 8-37 insures this condition. The first part of the process is contained in

608 DAVID MAIER

STORING ANCESTOR INFORMATION 609

lines 9-21, which are a bisection search in the clan of u (= the clan of v) for the least
depth to which u and v can be moved and still bracket the lca of u’ and v’. TOP is the
depth, within the clan, of a common ancestor of u and v. (TOP 0 originally, indicating
the chief of the clan, which is always a common ancestor.) M is the depth, within the
clan, of u and v. The search continues until the next ancestor of u and v within the clan is
the same. (M TOP + 1.) The movement of u and v is given by the solid arrows in Fig.
4a. Figure 4b depicts the new situation, disregarding solid arrows. Note that when u and
v are of level 0, the result of lines 9-21 is to give u and v the same parent.

Lines 22-36 return us to the state where CHIEF[u] CHIEF[v], while decreasing
the level of u and v. Lines 23-26 take care of the case where the lca of u and v lies within
a 0-clan directly above x and v. In this case LCA moves u and v into the 0-clan.
Otherwise, in lines 27-36 LCA searches for nodes above u and v of highest level less
than LEVEL[u] that are distinct but have the same chief. In lines 32-33 we set u and v
to these new values at level LEV- 1. The solid arrows in Fig. 4b show the movement of
u and v. Figure 4c shows the situation after the move, which is analogous to the one in
Fig. 4a with the level of u and v decreased. LCA now returns to line 8. Once we drop out
of the loop 8-37, u and v are the same, or share the same parent. Lines 38-39
determine which is the case.

1. algorithm LCA(u, v);
2. if DEPTH[v]> DEPTH[u] then v ANS(v, DEPTH[u]);
3. else u ANS(u, DEPTH[v]);
4. do while not DONE(u, v) and CHIEF[u] CHIEF[v];
5, 6. u # CHIEF[u]; v CHIEFly];
7. end;
8. do until DONE(u, v);

10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

TOP- 0;
M *- (DEPTH[u] mod GrEVELtu+I)/GLEVELtul;
MOVEM;
do until M TOP+ 1;

MOVE- [MOVE/2]
TRY-TOP+MOVE;i CLAN_PTR[u][M TRY] CLAN_PTR[v][M TRY] then

TOP-TRY;else do;
u CLAN_PTR[u][M-TRY];
v CLAN_PTR[vJIM TRY];
M TRY;
end;

end;
not DONE(u, v) then

if CHIEF[PARENT[u]] CHIEF[PARENT[v]] then do;
u PARENT[u];
v PARENT[v];
end;

else do;
FLAG- 0;
do LEV from LEVEL[u] to 2 by -1

while FLAG 0;
if FIND_CHIEF(u, LEV-2)

FIND_CHIEF(v, LEV-2) then do;

610 DAVID MAIER

31.
32.
33.
34.
35.
36.
37. end;

FLAG 1;
u FIND_CHIEF(u, LEV- 2);
v - FIND_CHIEF(v, LEV- 2);
end;

end;
end;

38. if u v then return (u);
39. else return (PARENT[u]);
40. end LCA;

THEOREM 4. The algorithm LCA takes O(L log2 G) time.

Proof. Lines 2-3 involve one call to ANS, which requires O(L) time. In loop 4-7,
the level of u and v is always increasing, so this loop iterates at most L times and hence
takes O(L) time. We know that each time we return to line 8 the level of u and v
decreases. Hence the loop 8-37 runs at most L times. Within the loop, lines 9-11
execute once per iteration, while the subloop 12-21 is a bisection search within a single
clan. Since a clan has depth at most G, this subloop requires time O(log2 G) per
iteration of the outer loop.

For the lines 22-36 we either execute lines 22-25 in constant time, or we execute
the loop 29-36. For the loop 29-36 we have a situation similar to Theorem 3 where the
inner loop 29-36 executes a total of at most L times during all the iterations of loop
8-37, since the level of u and v decreases for each iteration of the inner loop. Hence the
major cost in loop 8-37 is the bisection search, so we can execute the loop in
O(L Iog2 G) time. This term dominates the run time for the rest of the algorithm, so the
entire algorithm runs in time O(L log2 G). I-I

3. Results and tuning.
3.1. Recall the relations between G, H and L: L=logD and H=

[(L- 1)/(G 1) + (G 2)/2]. Let the number of nodes in tree T be n, and assume that
the maximal depth of T is a function of n, D(n). We shall express our previous results in
terms of G, D(n) and n. The space required for any of our features is O(nH) + O(L), the
O(L) being for tables for computing DISTANCE and POSITION. This space
requirement becomes

O(n[(logD(n))/G + G] +logD(n)) O(n((logD(n))/G + G)).

The time to add a node is

O(H / log2 L) / O(L) precomputation time,

which is

O((log D(n))/G + G) + O(log D(n)).

The log2 L term vanishes, since O(log D(n)/G + G) is at least O((log D(n))l/). The
time for grafting is just s, the size of the subtree, times the first term in the complexity of
the add operation, or

O(s((log D(n))/G + G)).

The time for finding an ancestor at a given level is

O(L) O(logo D(n)).

STORING ANCESTOR INFORMATION 611

Finally, the time for finding the lca of two nodes is

O(L log2 G) O(logo D(n). log2 G) O(log2 D (n)).

Let us examine a hypothetical case where we use some of these procedures, and see
how to pick G. We are developing an algorithm that builds a binary tree T from n
nodes, knowing D(n) <= (n) 1/2. During the process of building the tree we will make at
most n/2 grafts of average size log2 n. While building the tree we will compute n2/2
lca’s. These values correspond to no specific real life situation, but are picked only to
show how to choose G. Using the bounds just derived, the times we spend on each
operation are as follows.

1. Adding:

O(n ((log nl/2)/G + G))+ O(logo n 1/2) O(n ((logo n)/G + G)).

2. Grafting:

O(n/2 loga n ((log nl/2)/G + G)) O(n log2 n ((log n)/G + G)).

3. Finding the lca’s:

0(n2/2 log2 n 1/2) O(n 2 log2 n).

The add time is subsumed by the graft time and the time for the lca’s does not
depend on G. If we choose G such that the time for grafting is less than that for finding
the lca’s, the time complexity of the whole task will be O(n z log2 n). So we want

O(n 2 log2 n) >- O(n log2 n ((log n)/G + G)).

If we pick G as a function of n, specifically,

G(n) (log2 n/log2 log2 n) 1/2,
we satisfy the constraint on G(n), our total time complexity is O(n 2 log2 n) and our
space complexity is O(n(log2 n/log2 log2 n)1/2). There are other values for G(n) that
work for this hypothetical example. The choice G(n)= (log2 n/log2 log2 n) 1/2 mini-
mizes the space requirements as well. Note that the complexity O((log n)/G + G) is
minimized when O((log n)/G) O(G) or O(log n) O(G2), which means

O(log2 n) (G2 log2 G).

Substituting our choice of G(n) in the right side gives

O(1og2 n- ((log2 log2 log2 n)/log2 log2 n))-- O(log2 n).

3.2. Comparison to other methods. The data structure described herein is quite
similar to that of Van Emde Boas, Kaas and Zijlstra [14]. Our concept of level
corresponds to their concept of rank, except they use an explicit ranking function to
assign ranks to nodes of various depths. This ranking function differs for trees of
different heights, but resembles our level function when G 2. For a given base G, our
computation of the level of a node is uniform for trees of varying heights. Van Emde
Boas, Kaas and Zijlstra must impose additional restrictions on their ranking function.
They are using the function to decompose the tree for a divide and conquer strategy and
the subtrees resulting from the decomposition must be close to the same height.

We now compare our operations to the LINK and LCA operations of Aho,
Hopcroft and Ullman (AHU) [1]. The first place we see an improvement is in space
complexity. For a tree with n nodes and ultimate depth O(n), the AHU method
requires O(n log2n) additional space, while ours can use as little as

612 DAVID MAIER

O(n(log2 n/log2 log2 n)1/2). (As we saw before, G(n)= (log2 n/log/log/n)1/2 mini-
mizes the space complexity.) In general, if the depth of the tree is known in advance to
be D(n), the AHU method requires O(n log2 D(n)) space, while ours can run in
O(n(log2 D(n)/log2 log2 D(n))1/2) space.

Comparing the two LCA procedures, for/’(n) lca’s in a tree of depth D(n), both
procedures will need O(.f(n)log/D(n)) time. The AHU LINK procedure and our
GRAFT procedure are not comparable in terms of time. The O(n log2 n) time bound
on LINK depends heavily on the restriction that once a node is given a parent, the
parent never changes. The GRAFT procedure, on the other hand, can be used to
change a node’s parent after it has been added to the tree. In the special case where we
build a tree one node at a time, ADD operations suffice. We have a total time of
O(n(log2 n/log2 log2 n)1/2), if we choose G(n) as before, as compared to O(n log2 n)
for the AHU method.

Last, we include a procedure, ANS, for finding if one node is the ancestor of
another, that the AHU method does not have.

4. Finding a negative cycle in a graph. We turn our attention to the problem of
finding negative cycles in a sparse graph. This problem has application in the area of two
dimensional package placement and was originally brought to our attention by Eric
Cho. We are given a digraph (V, E) where for each edge e in E we are given a cost c(e)
that ranges over the real numbers. There is also a source node s in V, from which all
other nodes in V are reachable. The problem is to find if graph G has a negative cycle: a
path from a node to itself where the sum of the costs of the edges along the path is
negative. If such a cycle exists, we also want to find one such cycle. We can not find all
negative cycles, since if one exists, there are an infinite number. We further wish to
constrain our space complexity to be linear in the size of the input, which we assume to
be O(1 V] +]El), where [El grows much more slowly than IV[2.

In the literature, most methods of detecting negative cycles in a graph are
modifications of the single-source shortest path problem [4], [6], [7], [8], [10], [15],
[16]. These are iterative methods in which the number of iterations until convergence
can be bounded in the absence of a negative cycle, but the algorithm runs forever in the
presence of such a cycle. The procedures are modified to count steps and, after the
bound is passed, report the presence of a negative cycle. For recent results and
bibliographies, the reader is directed to Johnson [8], Pape [12], and Pierce [13]. Several
methods [3], [5], [9] look for negative cycles directly, without computing information
about shortest paths. However, no complexity analysis is given for any. Yen 16] shows
a worst case for the method of Florian and Roberts [5] of worse than O(I V[3), and the
method of Klein and Tibrewala [9] would seem to be O(] VI3).

Of the methods above that compute shortest paths, most exhibit two traits. First,
they detect the presence of negative cycles, but do not find one. Second, they achieve
their worst case behavior in the presence of negative cycles. The method we present,
though another modification of the shortest paths problem, does not share these
shortcomings. We are essentially using Yen’s implementation of the Ford-Fulkerson
algorithm [6], [16]. We do not always generate shortest paths, but at each stage i, we
look for paths of length from the source s to the other nodes, such that these paths are
less costly than paths discovered so far of length i- 1 or less. This strategy corresponds
generally to a breadth-first search through the graph (V, E), looking for paths with
lesser cost to the nodes visited. We keep track of the search in a tree Tg, in which source
node s is the root and each path from node to root corresponds to the least costly path
found so far in the graph from the node to s. Keeping Tg up to date requires add and

STORING ANCESTOR INFORMATION 613

PRED[v] PRED[w]

(a)

(b)

FIG. 5

graft operations as nodes are first reached and less costly paths are found. We are
looking for the case where we can generate a less costly path from s to some node u by
passing through u earlier on the path. This betrays the existence of a negative cycle.

In the algorithm CYCLE below, the vector DIST holds the current lowest costs for
paths from s to the nodes of V; the vector PRED is used to temporarily hold
predecessor information about tree Tg while we check for cycles; and the sets U and U’
hold "active" nodes for the current and next iteration. We further assume the nodes and
edges of the graph are presented in a way that we can form a list of adjacent nodes for all
nodes in O(]EI) time. The double arrow (,(:=) is used for set or list assignment; lambda
(A) is used for the null value.

Input. A graph (V, E) and a cost function c on the edges of the graph.
Output. The message "no negative cycles" or a list of nodes along a negative cycle

in the graph.
Explanation. Steps 1-4 are straightforward. Step 1 initializes the lists of adjacent

nodes for each node in V. Step 2 initializes s as the root of the tree Tg, as well as
initializing the set U and the vector DIST. In step 4, where the iteration actually begins,
we clear the vector PRED and the set U’ which holds the nodes we consider during the
next iteration. Step 5 is the meat of the distance finding procedure. We check, for each
node u that received a lesser distance at the last stage, if we can establish a less costly
path to any of the nodes adjacent to u using the path from s to u. We make one
restriction" We do not consider a node u in U if u has already been added to U’ during
the current stage. The reason for this restriction is that we want the active nodes of the
same depth at each stage. If all the nodes in U are currently at depth 1 and we add a
node w to U’ where PRED[w] is already in U’, then when we restructure Tg in step 7,
node w would end up at depth + 1 rather than i. Another bad effect avoided by this
restriction is depicted in Fig. 5, where two nodes end up in U’ with their predecessors
being each other. After step 7, these nodes would end up disconnected from Tg. The
reason we can ignore paths through a node u already added to U’ is that node u turns up
in the set U during the next iteration and we consider it then. All that concerns us is that
if there are less costly paths in the graph that we have not yet found, there is at least one
node in U’ at step 6, and tree Tg continues to grow in depth.

Step 7 would seem to be incorrect. Here, after checking to see if we are trying to
make a node a descendent of itselfimplying a negative cycle (see Figure 6)it seems

614 DAVID MAIER

PRED[u] \\

FIG. 6

we should graft node u to PRED[u], as Figure 7 shows. We perform only an add
instead. We do not need to update the information in the subtree headed by u, since
each of these nodes eventually become members of U’ themselves, as the improved
distance to u propagates down to them in subsequent stages, or they are added to other
nodes in the tree. The out-of-date information they contain is not accessed before they
become active. We only check the ancestor relation (using ANS) between a newly active
node and a node above it in the tree T. Before any node in the subtree in question can
have an active descendent, it must itself become active again. Hence we are able to get
by with an ADD operation rather than the GRAFT alluded to before.

PRED{u]

/

\
\
\
\

(a)

FIG. 7

(b)

STORING ANCESTOR INFORMATION 615

algorithm CYCLE
1. for all v in V let LIST[v] be a list of all nodes u such that (v, u) is in E.
2. U{s}; call INIT(s); DIST[s]0;

for all v in V, v s, do DIST[v - A;
3. do steps 4-7 while "true";
4. PREDA; U’;
5. for each u in U do;

if u has not been added to U’
then for each v in LIST[u do;

if DIST[v]<DIST[u]+c((u, v)) then do;
PRED[v] - u;
DIST[v] DIST[u] + c((u, v));
U’,--U’U{u};
end;

end;
end;

6. if U’ then return ("no negative cycles");
7. for all u in U’ do;

if ANS(PRED[u], DEPTH[u])= u then
construct NEG_CYCLE, a list of the nodes along the
path in Tg from PRED[u] to u;
return (NEG_CYCLE);

else ADD(u, PRED[u]);
end;

Complexity. We assumed earlier that the input allows step 1 to be executed in
O(IE[) time. Step 2 takes O(I V[) time. Step 4-7 can be repeated at most VI times, since
Tg gains depth during each iteration. Step 4 is O(I VI), and step 5 is O([EI), since we can
perform the body of the loop no more times than the total number of members of
LIST[u] for all u in U, which is bounded by [El. Step 7 does at most one ADD and ANS
for each node in U’, and hence it takes

o(Ivl). (O(logo IVl)+ O((logo IV[)/G +G))= O([V[. (logo IVl+ O))

which is minimized when

O(logo Vl)- O(G) or O(log_ Vl)- O(G log2 Vl),

This relationship is satisfied if

G (log21Vl)/log log2 vl,

Since steps 5 and 7 are our major time consumers, the total time complexity is

o(I vl. (IEI + Vl(log21Vl)/log2 log21 vl)).
Our space complexity is O(IVl+]EI) to represent
vl" O((loglVl)/G + G) for our tree T. Hence we have

THEOREM 5. The algorithm CYCLE requires

the graph, plus

o(I vl. (11 + Vl(log21Vl)/log2 log2 Vl))
time and

o(11 + Wl(log= wl)/log= og= wl)
space on the graph V, E).

616 DAVID MAIER

COROLLARY. If for a class ofgraphs, O(IEI) > O(I Vl(log21VI)/log2 log2 vl), then
the algorithm CYCLE runs in space linear in its input, that is, O(1 V[+ [El).

S. Other economies and conclusions.
5.1. Perhaps the most obvious economy is to modify G(n) to a function G’(n)

where the value of G’(n) is the closest power of two to G(n). Now all statements
involving powers of G(n) can utilize shift operations for exponentiation and division,
and there is no need for a table of powers of G(n).

;

LEFTMOST SON .l CHILDREN INFORMATION

-- Sibling Links

FIG. 8

If the tree includes child pointers, we can make both a time and a space savings by
noting all the children of a node share the same information, except for their names.
Thus, instead of keeping information for children of a node at each child, we store one
copy of the information at the node itself, for all the children to access. Figure 8 shows

to w

(a)

FIG. 9

(b)

STORING ANCESTOR INFORMATION 617

one possible arrangement. This modification gives us a time and space savings, since we
need assign space only to interior nodes and need compute the information only for the
first child of the node. Thus, the time complexity for the GRAFT operation, for
example, becomes

O(s + Is" ((log D(n))/G + G))

where s is the number of nodes in the subtree being grafted, and Is is the number of
leftmost sons, which equals the number of interior nodes. This rearrangement of
storage results in substantial savings when the ratio of leaves to interior nodes is large.

The reader may wonder why the same amount of space is allocated for each node in
the tree when some nodes do not need it all and why much of this information is
duplicated. The storage is apportioned in this way to accommodate grafting nodes,
where the levelmand hence the space requirements--for a node can change. If we know
in advance that we will make no grafts, we can assign each node only the amount of
space needed. For example, non-0-1evel nodes require no space for SCHIEF pointers.
Or we could keep all the superchief information at the chief of each 0-clan, rather than
apportioning it among the nodes of the clan. It may also be possible, even in the
presence of some grafting, to keep each 0-level node at level 0 after a graft, by inserting
dummy nodes to force alignment. (See Fig. 9.)

5.2. Conclusions. We have given a method that, by addition of some information
to a tree, allows us to add nodes, graft nodes, and find if one node is an ancestor of
another and the lowest common ancestor of two nodes within the tree. The time and
space complexities are shown to be tunable to different applications. Our results are
seen to compare favorably to the on-line results of Aho, Hopcroft and Ullman method,
especially in regards to space complexity. The procedures are applied to finding
negative cycles in graphs and yield a linear space algorithm when the graph is not too

sparse. We have also shown a number of ways to make savings in time and space, in
special cases.

Acknowledgment. I thank Jeff Ullman for reading and discussing an earlier version
of this paper 11]; Eric Cho, Allen Korenjak and Henry Baird of RCA Laboratories for
suggesting and discussing the negative cycle problem; and the referees for their
suggestions on improving my presentation.

REFERENCES

[1] A. V. AHO, J. E. HO’CROFT AND J. D. ULLMAN, On finding lowest common ancestors in trees, this
Journal, 5 (1976), 115-132.

[2] The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
[3] W. DOMSCHKE, Two algorithms to detect negative cycles in a valued graph, Computing, 11 (1973), pp.

124-136. (In German.)
[4] S. E. DrEvrus, An appraisal of some shortest-path algorithms, OR, 17 (1969), pp. 395-411.
[5] M. FLORIAN AND P. ROBERTS, A direct search method to locate negative cycles, Management Sc., 17

(1971), pp. 307-310.
[6] L. R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,

NJ, 1962.
[7] T. C. Hu, A decomposition algorithm]:or shortest paths in a network, Operations Res., 16 (1968), pp.

91-102.
[8] D. B. JOHNSON, Efficient algorithms for shortestpaths in a network, J. Assoc. Comput. Mach., 24 (1977),

pp. 1-13.
[9] M. KLEIN AND R. K. TIBREWALA, Finding negative cycles, INFORmCanada J. Operational Res. and

Information Processing, 11 (1973), pp. 59-65.
[10] S. R. KOSARAJU, private communication to J. D. Ullman, 1977.

618 DAVID MAIER

[11] D. MAIER, A space efficient method for the lowest common ancestor problem and an application to

finding negative cycles, TR #230, Computer Science Laboratory, Princeton University, Princeton,
NJ, June 1977. Also in Proceedings of the 18th Annual Symposium on Foundations of Computer
Science, October 1978, pp. 132-141.

[12] U. PAPE, Eine Bibliographie zu "Kurzeste Weglangen und Wege in Graphen," Bericht 77-07, Tech-
nischen Universitat Berlin, Berlin, May, 1977.

[13] A. R. PIERCE, Bibliography on algorithms for shortest path, shortest spanning tree, and related circuit
routing problems (1965-1974), Networks, 5 (1975), no. 2, pp. 129-149.

[14] P. VAN EMDE BOAS, R. KAAS AND E. ZIJLSTRA, Design and implementation of an efficient priority
queue, Math. System Theory, 10 (1977), pp. 99-127.

[15] J. Y. YEN, An algorithm]:or finding shortest routes from all source nodes to a given destination in general
networks, Quart. Appl. Math., 27 (1970), pp. 526-530.

[16] ., On the efficiency of a direct search method to locate negative cycles in a network, Management
Sci., 19, no. 3 (1972), pp. 333-335.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0013 $01.00/0

NODE-DELETION NP-COMPLETE PROBLEMS*

M. S. KRISHNAMOORTHYS AND NARSINGH DEO:t:

Abstract. The entire class of node-deletion problems can be stated as follows: Given a graph G, find the
minimum number of nodes to be deleted so that the remaining subgraph g satisfies a specified property zr. For
each zr, a distinct node-deletion problem arises. The various deletion problems considered here are for the
following properties: each component of g is (i) null, (ii) complete, (iii) a tree, (iv) nonseparable, (v) planar, (vi)
acyclic, (vii) bipartite, (viii) transitive, (ix) Hamiltonian, (x) outerplanar, (xi) degree-constrained, (xii) line
invertible, (xiii) without cycles of a specified length, (xiv) with a singleton K-basis, (xv) transitively orientable,
(xvi) chordal, and (xvii) interval. In this paper, these 17 different node-deletion problems are shown to be
NP-complete. A unified approach is taken for the transformations employed in the proofs.

Key words. Graph, node cover, node-deletion, NP-complete

1. Introduction. Only loopless, finite graphs without multiple edges will be
considered here. We will denote a graph by G V, E), where V is the set of nodes, and
E, the set of edges of graph G. The more-or-less standard graph terminology and
definitions used here can be found in most textbooks on graph theory, e.g., [4], [6]. By
deleting a node v from a graph G, we mean that the node v is removed from G and all
edges incident upon node v are also removed. A graph is said to be null if it has no
edges. An articulation point in a connected graph is a node whose removal makes the
given graph disconnected. A nonseparable graph is connected, has more than one node
and has no articulation points. A graph G is said to be Hamiltonian, if there is a circuit in
G, which passes through all nodes once and only once. A diagraph is said to be transitive,
if for every pair of edges (vi, vi), and (vj, Vk), there is an edge (/)i, Vk). An outerplanar
graph is a planar graph with a planar mapping in which every node lies on the infinite
region. A line graph (or an edge graph) L of a given graph G is a graph in which each
node corresponds to a distinct edge of G, and two nodes in L are adjacent if[the
corresponding edges in G are incident at a common node. Graph L is called line
invertible, and G is referred to as an inverse line graph of L. An undirected graph is said
to be transitively orientable, if by assigning appropriate directions to the edges, the
resultant diagraph becomes transitive. A chordal graph is one in which for every circuit
of length greater than 3, there is an edge (called a chord) joining two nonconsecutive
nodes of the circuit. A graph G is called an interval graph if every circuit of length 4 in G
has a diagonal and its complement G is transitively orientable.

Since Cook’s discovery of the NP-complete class of problems [3], the list of
problems in this class has been growing steadily. Karp [7], [8], Sahni [9], Garey,
Johnson and Stockmeyer [5], Ullman [11], and other have have shown that a large
number of combinatorial problems are NP-complete. Three of the NP-complete graph
problems, namely, minimum feedback node-set, minimum node-cover, and maximum
clique can be viewed as particular cases of a more general node-deletion problem stated
as follows" Given an undirected or directed graph G, find a minimum number of nodes
to be deleted from G, so that the remaining subgraph or subdigraph of G satisfies a
specified property. Thus, the minimum node-cover problem is the same as the node-
deletion problem, the specified property being that the remaining subgraph is a null
graph.

* Received by the editors January 5, 1977, and in final revised form August 28, 1978. This work was
partially supported by the National Science Foundation under Grant No. MCS-7825851.

" Computer Science programme, Indian Institute of Technology, Kanpur, India.
Department of Computer Science, Washington State University, Pullman, Washington, 99163.

619

620 M. S. KRISHNAMOORTHY AND NARSINGH DEO

Our results depend on the property 7r being such that if G1 and G2 satisfy zr, then
Gl-b G2 also does. In other words we say that a property zr is determined by the
components of a graph, if whenever the components of a graph G satisfy zr, then G also
satisfies zr.

For some node-deletion problems polynomial-time algorithms have been dis-
covered. In this paper, we shall show that 17 node-deletion problems are NP-complete,
by first transforming an NP-complete problem into the node-deletion problem and then
proving that the latter is in NP. Itrcan be verified that the transformations can be
performed in polynomial time. We also examine these NP-complete problems, when
the input graphs are restricted to be of a particular class.

2. Node-deletion problems. The following 17 node-deletion problems are stated
as recognition problems. Each problem is specified by giving (under the heading
"Input") as a generic element of its domain of definition and (under the heading
"Property") the property that causes an input to be accepted.

(i) Node-deleted "null" subgraph (node-cover). Input. Undirected graph
G (V, E) and a positive integer k.

Property. When we delete k nodes from G, each component of the remaining
subgraph is a null graph.

(ii) Node-deleted "complete" subgraph (maximum clique). Input. Undirected
graph G (V, E) and a positive integer k.

Property. When we delete k nodes from G, the remaining subgraph is the union of
complete components.

(iii) Node-deleted "tree" subgraph. Input. Undirected graph G (V, E) and a
positive integer k.

Property. When we delete k nodes from G, each component of the remaining
subgraph is a tree.

(iv) Node-deleted "nonseparable" subgraph. Input. Undirected graph G (V,, E)
and a positive integer k.

Property. When we delete k nodes from G, each of the connected components of
the remaining subgraph is nonseparable.

(v) Node-deleted "planar" subgraph. Input. Undirected graph G (V, E) and a
positive integer k.

Property. When we delete k nodes from G, each component of the remaining
subgraph is planar.

(vi) Node-deleted "acyclic" subdigraph (feedback node-set). Input. Directed
graph D (V, E) and a positive integer k.

Property. When we delete k nodes from D, each component of the remaining
subdigraph is acyclic.

(vii) Node-deleted "bipartite" subgraph. Input. Undirected graph G (V, E) and
a positive integer k.

Property. When we delete k nodes from G, each component of the remaining
subgraph is bipartite.

(viii) Node-deleted "transitive" subdigraph. Input. Directed graph D (V, E)
and a positive integer k.

Property. When we delete k nodes from D, the remaining subdigraph is the union of
transitive digraphs.

(ix) Node-deleted "Hamiltonian" subgraph. Input. Undirected graph G (V, E)
and a positive integer k.

Property. When we delete k nodes from G, the remaining subgraph is the union of
Hamiltonian graphs.

NP-COMPLETE PROBLEMS 621

(x) Node-deleted "outerplanar" subgraph. Input. Undirected graph G (V, E)
and a positive integer k.

Property. When we delete k nodes from G, each component of the remaining
subgraph is outerplanar.

(xi) Node-deleted "degree-constrained" subgraph. Input. Undirected graph G--
(V, E) and a positive integer k.

Property. When we delete k nodes from G, each component of the remaining
subgraph contains no node with degree greater than any specified positive integer k.

(xii) Node-deleted "line-invertible" subgraph. Input. Undirected graph G=
(V, E) and a positive integer k.

Property. When we delete k nodes from G, each component of th remaining
subgraph is line-invertible.

(xiii) Node-deleted "without cycles of specified length" subdigraph. Input. Direc-
ted graph D- (V,.E) and a positive interger k.

Property. When we delete k nodes from G, each component of the remaining
subdigraph contain no cycles of length (any specified positive integer).

(xii) Node-deleted "a singleton K-basis’’1 subgraph. Input. Undirected graph
G (V, E) and a positive integer k.

Property. When we delete k nodes from G, each of the connected components of
the remaining subgraph has a singleton K-basis.

(xv) Node-deleted "transitively orientable" subgraph. Input. Undirected graph
G (V, E) and a positive integer k.

Property. When we delete k nodes from G each component of the remaining
subgraph is transitively orientable.

(xvi) Node-deleted "chordal" subgraph. Input. Undirected graph G (V, E) and
a positive integer k.

Property. When we delete k nodes from G, each component of the remaining
subgraph is a chordal graph.

(xvii) Node-deleted "interval" subgraph. Input. Undirected graph G (V, E) and
a positive integer k.

Property. When we delete k nodes from G, each component of the remaining
subgraph is an interval graph.

Each such property denoted by 7r, (except "Hamiltonian," and "nonseparable")
holds even when G is disconnected [6]. Thus, if each of the connected components of G
satisfies property 7r, then the given graph G satisfies property 7r. For the node-deleted
"nonseparable" subgraph property, we specify that each of the connected components
be nonseparable. Otherwise it is fairly easy to find one; namely it is equal to the
difference between the number of nodes and the number of nodes the largest bicon-
nected component has.

3. Transformation steps. The entire class of the node-deletion problems stated in
2 is in NP. We prove here that the node cover problem is polynomially transformable
to the node-deletion problems.

We use two general techniques for the transformation that applies to a variety of
deletion problems. In the first of two lemmas, we substitute a graph, which satisfies
some specified conditions, for every edge of G in the node cover problem. In the second
lemma, we substitute a graph, which satisfies some specified conditions, for every node
of G in the node cover problem. In the subsequent corollaries we draw graphs for each
property, which when substituted provides the necessary transformation.

The problem of finding a minimum K-basis 10] of graph G is that of selecting as small a set B of nodes
as possible, such that every node of G is at a distance K or less from some node in B.

622 M. S. KRISHNAMOORTHY AND NARSINGH DEO

LEMMA 1 (edge substitution lemma). Let 7r be a specified graph property that is
determined by its components, and suppose there is a graph H with two nodes s and such
that the following hold:

(1) The graph H is a forbidden graph for property
(2) If we take one, two or three H’s, delete either s or from each, and join the graphs

at the remaining s and t, then the resulting graph has property r.

(3) If we delete both s and from H, then the resulting subgraph has property
Then the node-cover problem in graphs of degree at most three is polynomially

transformable to the node-deletion problem for property zr.

Proof. Let G be a given graph of degree at most three in which we wish to find the
node-cover. Substitute each edge (u, v) in the given graph by the whole graph H with
the nodes s and coinciding with u and v respectively.

Let the minimum number of nodes for the node-cover problem be kl. That is, by
deleting these k nodes from the given graph G, we get a null subgraph. When we delete
these k nodes from the constructed graph, the resultant subgraph will satisfy property
zr by condition (1) and (2) as the set of kl nodes is either s or from each of the H’s.

Conversely, let the minimum number of nodes for the node-deletion problem for
property 7r be k2. These k2 nodes are either s or or other nodes from each of the graph
H. When these nodes are other than s or in a particular H, then the corresponding s
and cannot be included in the minimum set of nodes, for then the set of nodes chosen is
not minimal. So whenever a node other than s or from H is chosen, one might as well
have chosen the nodes s or from each of the graphs H, retaining the minimality. That
is, when we delete these k2 nodes, the resulting subgraph satisfies property zr. When
these k2 nodes are deleted from the given graph G, we will get a null subgraph;
otherwise at least one edge is not covered by any node thus contradicting the
assumption; hence the lemma follows.

LEMMA 2 (node substitution lemma). Let zr be a specified graph property that is
determined by its components, and suppose there is a graph Fwith a node "s" such that the
following hold:

(1) The graph F and the subgraph resulting after deleting node "s" from F
satisfy

(2) Ira node x is added to the graph Fand nodes x and "s" arejoined by an edge, then
the resulting graph is a forbidden induced subgraph for property

Then the node-cover problem is polynomially transformable to the node deletion
problem for property zr.

Proof. Let G be a given graph in which we wish to find the node-cover. Replace
each node u of G by the graph F, with u coinciding on the node "s". It can be seen (as in
the proof of Lemma 1) that a node cover with k nodes exists in G iff k nodes can be
deleted from G, so that the remaining subgraph satisfies the property

CoroItArY 1. The node-cover problem in graphs of degree at most three is
polynomially transformable to the node-deleted (a) tree, (b) planar, (c) acyclic, (d)
bipartite, (e) transitive, (f) outerplanar, (g) without cycles of specified length, (h) a single
K-basis, (i) transitively orientable, (j) chordal, and (k) interval subgraph problems.

Proof: The graph H to be used in the edge substitution lemma is shown in Fig. 1.
CortoIIA:’v 2. The node-cover problem is polynomially transformable to the

node-deleted (a) nonseparable (b) degree-constrained (c) line-invertible subgraph prob-
lems.

Proof. The graph F to be used in the node substitution lemma is shown in Fig. 2.
The node-deleted "null’ subgraph problem and the node-deleted "complete" subgraph
problem have already been shown to be NP-complete [7]. The Hamiltonian circuit

NP-COMPLETE PROBLEMS 623

(a) (b)

S

(c)

(d)

S

nodes

S

()

SlK/2
it Jnodes

(h)

(k)

FIG. 1. Graph H.

-t
(f)

S

r nodes

(a) (b) (c)

FIG. 2. Graph F.

problem is polynomially transformable to the node-deleted Hamiltonian subgraph
problem.

As a result of corollaries 1 and 2 and the fact that the node-deletion problems are in
NP, we have the following theorem.

624 M. S. KRISHNAMOORTHY AND NARSINGH DEO

THEOREM 1. All the node-deletion problems in 2 are NP-complete.

4. Restricted NP-complete problems. When the input graphs of node-deletion
problems are restricted to be planar or bipartite, the problems may be simplified. For
example the node-deleted "complete" subgraph problem (2 problem (ii)) can be
solved in polynomial time when the input graph is constrained to be planar. This follows
from an observation that solutions for the maximum clique problem can be obtained in
polynomial time for planar graphs [3].

Another example of such reduction in complexity is the node-deleted ’acyclic’
subdigraph problem (feedback node-set) in transitive digraphs. In a transitive digraph
each strongly connected component is a complete subdigraph, and so using depth-first
search we can find in O(n, e) time the number of the strongly connected components.
Once the number is known the cardinality of feedback node-set can be calculated as
’=1 (ni-1)=n-t. Thus we have an O(n, e) algorithm for finding the feedback
node-set in transitive digraphs.

On the other hand, restricting the domain of a problem does not always move a
problem from NP to P class. For example, Garey, Johnson and Stockmeyer [5] have
shown that the node-cover problem remains NP-complete for planar graphs and for
graphs of degree at most 3. In this vein we will show that some of the restricted
node-deletion problems are NP-complete. We state two general lemmas from which
different restrictions become corollaries.

LEMMA 3. Letr be a specified graph property that is determined by the components of
the graph and let p be a restriction. LetHbe a graph with two nodes s and such that the
following hold:

(1) The graph H is a forbidden graph for property
(2) If we take one or more H’s, delete either s or from each, and loin them at the

remaining s or t, then the resulting graph has property
(3) IfH is substituted]:or all edges in a graph G with property p, the resulting graph

has property p.
(4) The node-cover problem for G with restriction O is NP-complete.
(5) If we delete both s and from H, then the resulting subgraph has property
Then the node-deletion problem for property zr with restriction p is NP-complete.
Proof. Transform the node-cover problem on a given graph G with restriction p to

the node-deletion problem by substituting the graph H for every edge in G.
As the node-cover problem in planar graphs is NP-complete, the following

theorem results from Lemma 3.
THEOREM 2. All the node-deletion problems stated in 2 (except "planar",

"complete", and "Hamiltonian" (subgraph)) are NP-complete even when the given
graph is restricted to be planar.

In addition to this we have one more lemma regarding the restricted NP-complete
problems.

LEMMA 4. Let zr be a specified graph property that is determined by the graph’s
components, let p be a restriction and suppose there is a graph H with two nodes s and
such that the following hold:

(1) The graph H is a forbidden graph for property
(2) If we take one, two or three H’s, delete either s or from each, andjoin them at the

remaining s or t, then the resulting graph has property
(3) For any graph G, when H is substituted for all edges in G, the resulting graph

satisfies property p. (This implies in particular that H satisfies p with G a single edge.)
(4) If we delete both s and from H, then the resulting subgraph has property
Then the node-deletion problem for property zr with restriction p is NP-complete.

NP-COMPLETE PROBLEMS 625

Proof. Transform the node-cover problem for graph of degree at most three to the
node-deletion problem when every edge in G is substituted by the graph H.

As a result of the above lemma and Corollary 1, we have the following theorem:
THEOREM 3. The node-deleted "tree" subgraph problem in bipartite graphs is

NP-complete.
As the node-cover problem in planar graphs is also NP-complete, we also have a

stronger theorem.
THEOREM 4. The node-deleted "tree" subgraph problem in planar bipartite graphs

is NP-complete.

5. Conclusions. In this paper, we have shown that 17 node-deletion problems are
NP-complete. A unified approach for the transformation from the node-cover problem
to the node-deletion problems using forbidden subgraphs has been developed. This
may help in finding the complexities of new node-deletion problems. When the input
digraph is restricted to transitive digraph, an O(n, e) algorithm has been proposed for
finding the feedback node-set (one of the 17 node-deletion problems). We have also
proved that many (14 of them) node-deletion problems remain NPocomplete for planar
graphs. Further we have shown that the node-deleted "tree" subgraph problem
remains NP-complete in planar bipartite graphs.

Acknowledgment. The authors wish to thank Professor J. D. Ullman for having
suggested a number of improvements in Lemma 1. The authors wish to thank the two
referees for their constructive criticisms.

REFERENCES
A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA, 1974.
[2] G. CHARTRAND, D. GELLER and S. HEDETNIEMI, Graphs with forbidden subgraphs, J. Combina-

torial Theory Ser. B, 10 (1971), pp. 12-41.
[3] S. A. COOK, The complexity of theoremwproving procedures, Proc. of Third Annual ACM Symp. on

Theory of Computing, 1970, pp. 151-158.
[4] N. DEO, Graph Theory: with Applications to Computer Science and Engineering, Prentice-Hall,

Englewood Cliffs, NJ, 1974.
[5] M. R. GAREY, D. S. JOHNSON AND L. STOCKMEYER, Some simplified polynomial complete problems,

Proc. of Sixth Annual ACM Syrup. on Theory of Computing, 1974, pp. 47-64.
[6] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[7] R. M. KARP, Reducibility among cominatorial problems, Complexity of Computer Computations, R. E.

Miller and J. W. Thatcher, eds., Plenum Press, NY, 1972, pp. 85-104.
[8], On the computational complexity of combinatorial problems, Networks, 5 (1975), pp. 45-58.
[9] S. K. SAHNI, Computationally related problems, this Journal, 3 (1974.), pp. 262-279.

[10] P. J. SEATER, R-Domination in graphs, J. Assoc. Comput. Mach., 23 (1976), pp. 446-450.
[11 J. D. ULLMAN, Complexity ofsequencing problems, Computer and Job-Shop Scheduling Theory, E. G.

Coffman, ed., John Wiley, New York, 1976.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0014 $01.00/0

A FAMILY OF ALGORITHMS FOR
POWERING SPARSE POLYNOMIALS*

DAVID K. PROBST? AND VANGALUR S. ALAGARf

Abstract. We discuss four new algorithms from a family of algorithms for computing integer powers of
sparse polynomials. The four algorithms form a sequence of successively better algorithms; even the first
member of the sequence shows an improvement in the leading term of the cost function in comparison with
the best previously known binomial-expansion algorithm. To quote one result, if f is a 32-term sparse
polynomial, computing [* f9 takes 8.75 x 109 multiplications, while the best new algorithm computes flO
from scratch using 1.125 x 109 multiplications. The time and space analyses given support the conjecture that
the best new algorithm is optimal for time and space within the family of sequential binomial-expansion
algorithms for this problem. If the input polynomial has terms, then the nth power may be computed by this
algorithm with a time complexity of

+t"- +O(tn-2), n>2,
n! 2(n--2)! 2"-(n--1)!

and a space complexity of

22"-’*(n 1)!
+ O(t"-2), n>2.

Key words, powers of polynomials, sparse polynomials, analysis of algorithms, symbolic computation

1. Introduction. In a previous paper [2] we made a comparative study of several
sequential algorithms for computing integer powers of sparse polynomials. We
emphasized the various design decisions which led to three new algorithms having
significantly lower time complexities than the best algorithm proposed in [4]. We
conjectured that the best of the new algorithms was optimal for time, in the sense that
the leading terms of its time-complexity cost function could not be improved on, within
the family of binomial-expansion algorithms. In this paper, we extend our previous
results in several directions. In particular, we give a fourth new algorithm with low space
complexity, and slightly improved time complexity. Our analysis shows why the newest
sequential algorithm is difficult to improve on, and supports our conjecture that it is
optimal for both time and space within the binomial-expansion family whenever the
problems are of at least moderate size.

Several approaches to powering sparse polynomials are known, including repeated
multiplication [5!, binomial expansion [-4] and multinomial expansion [6]. Reference [4]
contains a comparison of these approaches. Our analysis supports the analysis given
there which suggests that binomial expansion is by far the most promising general
approach. Neither of the two binomial-expansion algorithms proposed in [4], viz.,
BINA and BINB, is optimal for time or space, although BINB is the better algorithm of
the two. We discuss four successively-better superior algorithms from the binomial-
expansion family, viz., BINC, BIND, BINE and BINF. We obtain, with BINC, an
improvement in the coefficient of the leading term of the BINB time complexity and,

* Received by the editors December 29, 1977, and in final revised form November 29, 1978.
t Department of Computer Science, Concordia University, Montreal, Quebec, Canada H3G 1M8. This

work was supported in part by the National Research Council under Grant A3552.

626

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 627

with BINE, an improvement in the leading term of the BINB space complexity.
Selected values of the various cost functions are tabulated in the appendices.

In all cases we make an analysis of intrinsic time complexity and intrinsic space
complexity rather than use the results of run-time tests. The computational model
characterizes the problem domain; the cost model defines how intrinsic complexity is
measured. We require that the input polynomials be completely or almost completely
sparse to the power sought (definition follows). We measure the time complexity of a
sequential algorithm by the number of coefficient multiplications which occur. We say
that the space complexity of an algorithm is $ if we can produce an implementation of
that algorithm in which the central memory requirements for the storage of inter-
mediate results do not exceed $ terms. One term will require several central memory
words.

We represent sparse polynomials in one or more variables with integer coefficients
as a sum of monomials, where each monomial is of the form c(1-IxTi). Let be the
number of nonzero terms in this representation. We say that is completely sparse to
power n if and only if .i, when expanded, for all from 1 to n, contains exactly the
number of terms of the t-term multinomial expansion. This means that no collection of
like terms is possible with respect to such an expansion. The model of sparse polynomial
is due to Morven Gentleman [5]. The assumption of sparsity affects the design of the
powering algorithms in two ways. First, it is reasonable to multiply sparse polynomials
by multiplying each term of one by each term of the other. Second, the new algorithms
have been designed so that, when the input polynomial is completely sparse, no like
terms are ever formed during polynomial multiplication; hence, no sorting routines
are required. When the input polynomial is almost sparse, the analysis remains correct,
but the relatively few like terms are not collected. Johnson [7] shows the high
cost of exponent comparisons in large polynomial multiplications when sorting is
required.

We assume that multiplication and addition costs do not grow with the size of the
result. In the new algorithms, the computation consists exclusively of multiplying
polynomials by binomial coefficients, and multiplying polynomials by polynomials, with
no collection of like terms. Multiplying a monomial by a monomial requires a coefficient
multiplication and an exponent set addition; multiplying a monomial by a binomial
coefficient requires a coefficient multiplication. The coefficient multiplication count is
therefore an accurate reflection of the run-time cost. This cannot be guaranteed when
an algorithm contains sorting routines.

This paper is organized as follows: we describe the various design decisions within
the family of binomial-expansion algorithms and show, for sequential algorithms, which
combination of decisions minimizes both time complexity and space complexity; briefly
review the description and time analysis of algorithm BINC; describe and give time and
space analyses of algorithms BINE and BINF; and, in the conclusion, briefly compare
the new algorithms to some existing algorithms.

2. Design decisions. The discussion in [2] of the family of binomial-expansion
algorithms did not include space considerations. Analysis now shows that the algorithm
which had been preferred for its low time complexity can be adapted to yield an
algorithm with low time and space complexity. We show the place of the new algorithm
within the algorithm family.

Analysis suggests that binomial expansion is the best general approach for power-
ing sparse polynomials. We choose therefore to compute .n as

fn (fl -lt- f2)n r=0 (/’/)ff--r.r

628 DAVID K. PROBST AND VANGALUR S. ALAGAR

We study various design decisions which, by successive refinements, ultimately yield
fully-specified algorithms for the problem. It seems likely that it is the binomial-
expansion family which contains the algorithms with the least time complexity and the
least space complexity, and that these algorithms are in fact achievable provided that
one chooses the correct means of achieving the various subgoals implicit in binomial
expansion.

We represent the algorithm family as a tree. The root is the problem, and the
terminal nodes are the algorithms. Each nonterminal node represents a decision point;
the branches which exit from a node are the possible decisions. As a graphical
convention we draw the branch corresponding to what we regard as the best decision on
the left. A branch is better than another if it leads to an algorithm with lower time and
space complexity. We follow Dijkstra [3]"

A program should be conceived and understood as a member of a family .
When we split f, we must choose the relative sizes of fl and f2. This choice affects

the time complexity of generating and combining subpolynomial powers, and the space
complexity of storing them. Analysis of many algorithms from within the binomial-
expansion family shows that splitting which is as even as possible reduces both time and
space complexity. Even splitting reduces generation costs more than it increases
combining costs, and also limits the size of the largest subpolynomial.

Another splitting decision arises when one considers alternative means of generat-
ing subpolynomial powers. Prior to [2], binomial-expansion algorithms used (essen-
tially) repeated multiplication for this task. In contrast, the new algorithms use binomial
expansion. Therefore, the original polynomial is split recursively until the monomial
level is reached; this is called "multilevel splitting." Multilevel splitting permits both
lower time complexity and lower space complexity.

Multilevel, even splitting of a polynomial may be displayed graphically using a
binary tree. A "term group" is one or more terms from the polynomial; the tree is called
the "term group tree." The polynomial goes into the root; the two halves of the
polynomial go into the left and right subnodes, and so on, recursively. If one half is
larger, it goes into the left subnode.

The multilevel algorithms generate subpolynomial powers using binomial expan-
sion in one of three distinct ways. In recursion, powers of subpolynomials are obtained
by applying the original algorithm to the subnodes. Separate recursive application for
distinct powers of a subpolynomial leads to some recomputation. In binary merge,
which is a form of dynamic programming, one keeps track of subproblems and never
solves the same problem twice. Starting from the terminal nodes, one first generates
powers of subnodes, and then powers of father nodes, and so on, until ultimately one is
able to generate the desired power of the root. In distribution, which is a modified form
of binary merge, one minimizes the space required to store solutions to subproblems by
finding the minimum set of such solutions from which the final answer can be computed
using only simple loops. Up to the level of the subsubnodes of the root, distribution
proceeds exactly as binary merge. One does not store powers of subnodes of the root.

Rather one stores certain products of the form (nr)f which occur in the binomial

expansion of the root. From these and powers of subsubnodes, the final answer is
computed.

One reduces both time and space complexity by using the "smaller" technique for
combining powers of subpolynomials. We assume that binomial coefficients are avail-

F/\
able free. The products r)ffz-r may be computed either (a) left to right, or (b) by first

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 629

the smaller polynomial by/| n},\ and then this result by the othermultiplying polynomial.
/

In itself, the smaller technique reduces the number of coefficient multiplications. In
combination with distribution, it also reduces space complexity by reducing the size of

the (rn)f. We call the classical technique left-to-right.

The whole set of what are apparently the optimal decisions for both space and time
within the family of sequential binomial-expansion algorithms can be diagrammed in
the following way"

binomial expansion some other approach

evensplitting//unevensplitting
multilevel
splitting , / \- s!ngle-level.sp!itting

(’recursive’)N(’nonrecurstve)
edrfie ed /\

merge orX cursion

BINF
(Binomial F)

FIG. 2.1. The program family.

We have consistently drawn the apparently optimal choice on the left, and the
other choice (or choices) on the right. Our analysis BINF is optimal for time and space
within the entire family of sequential binomial-expansion algorithms for computing
integer powers of sparse polynomials.

3. Mathematical preliminaries. The following results are either standard (e.g.,
Knuth [8]) or have appeared in Gentleman [5] or Fateman [4]. Except for slight
differences, they have been previously collected in [4].

(r+i) (r+n+l) (r+n+l)THEOREM 3.1.
i=o r r+l n

THEOREM 3.2. (r+t)(r+n--i) (2r+n +1)
i=0 r r n

THEOREM 3.3. Letfbe a t-term polynomial which is completely sparse to power n. If
(f) gives the number of terms in f, then size (fn) (t+ n 1

/
size ,t>=2.

n
THEOREM 3.4. In combining powers, in the binomial expansion of a completely

sparse polynomial, the multiplication ofa polynomialfby a polynomial g may be obtained
with a cost of size (f). size (g).

630 DAVID K. PROBST AND VANGALUR S. ALAGAR

Proof. By writing fn as

fn fl +f. + f.--r
r=l

and observing that

(t+n-1) 2(t/2+n-1)+l(t/2+r-1)(t/2n n r=l /"
+n-r-l)

we see that if any of the terms in the cross products did combine, fn would have fewer
terms than is required for a completely sparse polynomial. As no terms combine, the
cost of multiplying f by g is measured by the number of monomial products, which is
size (). size (g). Q.E.D.

The function size (f) has already been introduced. We provide an alternate
functional form: size (s, n) is size (f") when size (f)= s. The sparsity of is assumed.

size (s, n)= (s +n-l) 1

j=l

where the square brackets indicate Stirling numbers, of the first kind; cf. [8]. We
introduce a further notation.

(3.2)

Finally, we state

group (s, n) & size (s, j)
i=1

n . j+l
s.

i=1

n-1
-n= 2 2s

(n-1)!j=l k=o]+1 k

We should also mention [4]
THEOREM 3.5. No algorithm can compute f", the n-th power of an arbitrary

polynomial, in fewer than size (fn)-size (f) multiplications.
Suppose now that f is completely sparse to power n and that size (f) t. If we use

L(t, n) to denote this theoretical lower limit, we have

that is,
n-1

(3.5) L(t, n) --[. + 2(n 2)!
+ O(t"-2)"

4. Algorithms.
4.1. Algorithm BINC. We repeat the description and time analysis of BINC, the

first of the new algorithms announced in [2]. The algorithm is specified by the design
decisions" binomial expansion, even splitting, multilevel splitting, recursion for sub-
polynomial powers, and left-to-right for cross products. It differs from BINB (the best
algorithm in [4]) only in that repeated multiplication has been replaced by recursion.
The analysis is given for 2 k. The original polynomial f is split into f and f2 such that
size (f) size (f2) t/2. Powers of subpolynomials other than monomials are obtained

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 631

by recursive application of BINC, powers of monomials by repeated squaring. Cross
products are formed left-to-right.

Analysis. Let C(t, n) be the number of coefficient multiplications to compute fn
when size (f)= t. If we expand fn as

we have

n-1

(4.1) C(t, FI)-- 2C(t/2, n)At- Z Qr

where Qr is the sum of costs itemized as follows.

Step Compute Cost

f C(t/2, r)

2 f’- C(t/2, n-r)

4 ()ff:- (t/2+r-t/2_l (1) t/2+n-r-lt/2_l)
Therefore

(4.2)

-1 l (t/2 + r_ l)C(t,n)=2C(t/2, n)+2 E C(t/2, r)+
t/2- 1

l (t/2+r-1)(1
+

t/2- t/2-

We use the summation formulas (3.1) and (3.2) to obtain

(4.3)

C(t, n) (t+n-1)_2(t/2+n-1)+ (t/2 + n -1)n n n-1

-1 + 2 C(t/2, r), where C(1, n) [log2 n].

Given a closed form for C(t, n), we may obtain one for C(t, n + 1) by using the formula:

(4.4)

C(t,n+l)=nt+ t+n--1) k(t/2r++2r_ n -1)H n

k

+E 2r-lc(t/2r-1, n)

obtained from (4.3) by changing n to n + 1 and using recurrence on t. Using induction on
n, we obtain the general form of C(t, n).

(4.5) 2n--1
(n)tn--i+l (nC(t, n) E ai + E ai)k i-

n+l

632 DAVID K. PROBST AND VANGALUR S. ALAGAR

We have at once that a]n) 1/n !. Substituting (4.5) into (4.4) and rearranging gives
finally the coefficient of the second leading term. It is

a2n 1 3

2(n 2)! (n 1)!(2-- 2)"

Let B(t, n) be the coefficient-multiplication cost function for algorithm BINB (see [4]).
We can show the superiority of algorithm BINC by subtracting cost functions. We have:

B(t,n)-C(t,n)

(4.6) 1 t, I n-1 3]t,_-n(n-2)!2n-1 +
(n-2)!2n-1 (n-1)!(2--2) + O(t"-2).

It is also true, for large n, that:

(4.7) C(t,n)-L(t,n)-(n_l) - + O(t"-2).

Both B(t, n) and C(t, n) approach L(t, n) for large and large n. However, the
improvement in the coefficient of the leading term makes C(t, n) approach L(t, n) much
more rapidly. Examination of tabulated values shows that BINC outperforms BINB for
n >2 and t=>9.

4.2. Algorithm BIND. BIND improves on BINC by modifying just one of BINC’s
suboptimal decisions. Recursion is retained, but cross products are formed via the
smaller technique rather than left-to-right. The analysis of the time complexity can be
carried through in an exactly analogous fashion. The general form of D(t, n) is

2n-1
(n)tn--i+l (n)l,,.i--n(4.8) D(t,n)= ai +t ai

n+l

The coefficient of the leading term, i.e., a]", is still 1/n.. The coefficient of the second
leading term, however, has been reduced. It is now

a(2, 1 1

-2(n-2)+
(n 1)!(2n-- 1)"

We now describe algorithms BINE and BINF, and give new time and space
analyses for both of them.

4.3. Algorithm BINE. This algorithm is specified by the design decisions:
binomial expansion, even splitting, multilevel splitting, binary merge for computing
subpolynomial powers, and smaller for forming cross products. More formally, we
describe the algorithm as follows. As before, f fa + f2.

Description. (1) Create the binary term-group tree for the polynomial f:
(a) place f at the root;
(b) place fl, size (f)= [size (f)/2], in the left subnode;
(c) place f2 in the right subnode;
(d) repeat steps (b) and (c) until each term of f has been placed at one of the

terminal nodes of the tree.
(2) For each term of the original polynomial f, compute all powers from 2 to n. This

completes the processing of the terminal nodes.

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 633

(3) For each strictly interior node, both of whose subnodes have already been
processed, compute all powers from 2 to n accorling to the following scheme:

(node) (left subnode + right subnode)

expanded binomially.
(i) Fors=ltor-ldo

Multiply ()by whichever of (left subnode) and (right subnode)(a has

fewer terms.
(b) Multiply the result in (a) by the remaining factor.

(ii) Collect (left subnode) + (right subnode) + the products computed in (i).
(4) Compute the nth power of the root according to the previous scheme.
Analysis. We save all space-complexity analysis for a later section and discuss only

time complexity h.ere. We introduce the concept of a "power group triangle." The
power group triangle of a node a + b is the graphical representation in triangular form
of all binomial expansions required to compute all powers from 1 to n of that node,
given all powers from 1 to n of the two subnodes a and b, where all cross-products have
been written in conformity with the "smaller" idea.

For example, when n --6, the power group triangle is as shown in Fig. 4.1. It is
understood here that a is the left subnode and b is the right subnode. Therefore,
size (a) => size (b). When size (a) size (b), powers alone determine the relative sizes of
a and b j. When 2k, this will always be the case. When 2k, there will be a few
isolated instances where a larger power of the right subnode will have fewer terms than
a smaller power of the left subnode. The power group triangle, therefore, is not always a
strict embodiment of the "smaller" idea. For an actual computation, the difference
between the two will be extremely small. Tabulated values of number of coefficient
multiplications have been determined using a strict interpretation of "smaller."

a + b6 + a 6b + b 6a + an 15b + b4 15a + a 20b

a5+bS+a4 5b+b4 5a+a 10b2+b 10a

a4+b4+a 4b +b 4a +a 6b

a3+b3+a2. 3b+b. 3a

a2+b2+a 2b

a+b

FIG. 4.1. Power group triangle when n 6.

Our first task is to evaluate BC(s, n), the total number of multiplications by
binomial coefficients in a power group triangle when the subnodes a and b are of size s.
This is just the sum of sizes of polynomials which are multiplied by binomial coefficients.
A simple summation gives

(4.9) BC(s, n)-BC(s,n-2)= 4[(s +P-1) 1] +Mn(s +p-l)p-1 p

where p In and Mn 1(3) when n is even (odd).

634 DAVID K. PROBST AND VANGALUR S. ALAGAR

Let x be 2(3)when n is even (odd). Therefore, BC(s, x)= Mn(s +0) A difference
1

which is

(4.13)

where

k-2

-" o 2-iBC(2i’n)"

Making use of (4.12) gives the following for the group binomial work (GBW)

GBW= m:O/=1

(t/2)i-1-.a (k-1)+ ai+a 2i_l

p! /+2 (p-l)! k+j

In addition to group binomial work there is root binomial work (RBW). This is

(4.15) RBW 2
t/2 +j- 1 t/2 + r- 1

1 r

where r In/2] and N. 1(0) when n is even (odd). We have

2 r
(4.16) RBW=(r_I)---- j+l +--.

Adding GBW and RBW gives the total number of multiplications by binomial
coefficients in algorithm BINE. When p > 1, the leading term in that sum is

p! 2 -1

scheme, counting down from n by twos, gives

 to(s
(4.10) BC(s,n)-BC(s,x)=.{ll4[(f
Using (3.1) for the summations and adding BC(s, x) gives

A closed form for BC(s, n) is therefore

{M [p + [p- s
=1 pk]+l (p-1) 0= k+] k

where we have used (3.3) and (3.2), and where it is understood that =o is zero
The leading term of BC(s, n) is (M/p)s. As a power group is computed for each
strictly interior node, by summing over all such nodes we obtain the group binomial
work" or number of multiplications by binomial coecients involved in computing
groups of powers. If the root is at level 0 and the terminal nodes at level k, then the
required sum is

BC(1, n)+ BC(2, n)+. .+2. BC(t/4, n)

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 635

The remaining or "nonbinomial" work is the number of coefficient multiplications
required to process all terminal nodes and form all polynomial-polynomial products in
the binomial expansions. As before, we distinguish group and root nonbinomial work.
The group work at level k is t(n 1), which is also group (1, n)- t. If we look at the
binomial expansion (]’1 +f2)", we see that the nonbinomial work involved in computing
fn given all powers of fl and f2 is size (f")-2. size (f’), as there is one monomial
multiplication per term formed. After the group work at level k is completed, an
additional nonbinomial work of t/2. group (2, n)-t.group (1, n) is required to
compute the powers from 2 to n of all nodes at level k- 1. The total nonbinomial work
to level k- 1 is their sum, namely, t/2 group (2, n)- t.

By continuing this argument, we see that the total nonbinomial work to level 1, i.e.,
for forming groups of powers, is given by 2 group (t/2, n)- t. The root nonbinomial
work is simply size (t, n)-2-size (t/2, n). The total nonbinomial work is their sum,
which is

size (t, n + 2. group (t/2, n 1)

or

This may also be written as

tn [(4.18) --+ tn_ 1
n! 2(n -2)!

+
1] t,,_:z

2"-Z(n 1)!
+ O(

Since the binomial work is O(t"), p [n/2J, these are in fact the leading terms of the
BINE time-complexity cost function. Indeed, we may write E(t, n) as

E(t, n)= L(t, n)+ 2. group (t/2, n-1) +BW,

where BW is the total binomial work and is O(t"). This last result shows that deviations
of E(t, n) from L(t, n) in the leading terms result exclusively from nonbinomial work
and would persist in exactly the same form even if the total binomial cost were reduced
to zero.

The complete, closed-form expression for E(t, n) is the sum of the closed-form
expressions for total binomial work and total nonbinomial work. We have

E(t, n) . f (n-1)t]+1 (-t

2 r[r](t)i N[J(t(4.19) (r-1)---. i q’l +--.]

where

(1.) x (.)(t/2)i-
ai+l 2]+ a (k-1)+ -1

(. M,[p + 1]a p!/]+1
+

4 p-]--I 1 k
(p-l), =o [-,](;1)2"

636 DAVID K. PROBST AND VANGALUR S. ALAGAR

We have:

(4.20)

(4.2a)

(4.22)

E(t, 2)= t2/2 + t/2 + kt/2,

E(t, 3) t3/6 + 3t2/4 + t/3 + 3kt/2,

E(t, 4) t4/24 + 7t3/24 + 29t2/24 2t/3 + 1 lkt/4.

The improvement of BINE over BIND is given by

D(t, n)-E(t, n) n-1 (2,2 ,-2 + O(t"-2)(4.23)
(n- 1)! -1)2

4.4. Algorit/m BiNF. This algorithm is specified by the design decisions:
binornial expansion, even splitting, multilevel splitting, modified merge for sub-
polynomial powers, and smaller. BINF differs from BINE in the handling of multi-
plication by binomial coefficients near the top of the term-group tree. The nurnber of
coefficient multiplications in the nonbinomial work, which is responsible for the leading
terms of the time-complexity cost function, does not change. As before, f- fl + f2.

Description. (1) Form the binary term-group tree for the polynomial f in the usual
manner: place f at the root, split f as evenly as possible placing the slightly larger half (if
the sizes are not identical) in the left subnode and the other half in the right subnode,
and continue this process until only monomials are left.

(2) Process the terminal nodes (original monomials of f) by forming all powers
from 2 to n.

(3) For all strictly interior nodes up to level 2, both of whose subnodes have
already been processed, compute all powers from 2 to n by:

(node) (left subnode + right subnode)

expanded binonially.
(i) For s= l to r-l do

(r] by whichever of (left subnode) and (right subnode) has(a) Multiply
\ /S

fewer terms.
(b) Multiply the result in (a) by the remaining factor.

(ii) Collect (left subnode) + (right subnode) + the products computed in (i).
(4) For the left and right subnodes of the root compute all powers from 2 to n

except for the following:
(a) For the left subnode, all powers from 2 to [(n 1)/2J, if any.
(b) For the right subnode, all powers from 2 to [(n 1)/2], if any.
(5) Compute the nth power of the root according to the following scheme. Use

binomial expansion in the manner of (3), that is, form each cross product of the
expansion as (larger subpolynomial power. (binomial coefficient.smaller sub-
polynomial power)). If the smaller subpolynomial power has already been computed in
(4), compute the inner parenthesis as indicated. Otherwise, compute the inner paren-
thesis by distributing the binomial coefficient over the binomial expansion of the smaller

subpolynomial power. That is, if g is the smaller subpolynomial power, compute (n/) gr
as

(n) (n) rl (Fl)(r)g + g2 + glg2
r r r S

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 637

where

f= g + h and g g + g2.

Analysis. We are interested in evaluating E(t, n)-F(t,n), the reduction in
number of multiplications by binomial coefficients caused by not computing all powers
from 2 to n of the two nodes at level 1. As the use of distribution to bypass the
independent computation of some subpolynomial powers effectively reduces the
amount of root binomial work, we reevaluate the function RBW(t, n).

Let the binomial expansion of the desired power of the root be written according to

the smaller idea. Products of the form (n] g will occur n- 1 times. In each case, if
s

g g + g2, we compute g as

means t at, we allow om.ut n tUe (")(s) we avoid the cost of

multiplying (n/ by the product terms in the binomial expansion of g. The cost of

the (n)(s)is Is/2] the number of distinct (s)1N] Ns-1" the reduction isforming
s]]’_

that the binomial cost of computing (n g drops from size (g’) to 2. size (g). The cost

of multiplying (n)(s) by the appropriate subpolynomials is already includeS in the

binomial cost of computing g, i.e., in GBW (t, n). When s 1, there are no product
terms in the binomial expansion of g, and hence no reduction. We see therefore that
RBW (t, n) is now given by

RBW 4 1(+2N.(t/4+r-1)
(4.24)

=4f(t/4+r-1) +2N,.(t/g+r-1)r-1 r

(4.25) 4. group (t/4, r 1) + 2N, size (t/4, r)

4 rf r](t)’ 2NfrJ().(4. (r-1)]+1 , +]

Therefore, while the leading term of the total binomial work in BINE is given by

2-N,+ p>l2o-- 1

the leading term of the total binomial work in BINF is given by

(4.28) ()P [2;, M,]+
2p-a- 1 P > 1.

We get an improvement, not in t", nor in "-, but merely in p.

638 DAVID K. PROBST AND VANGALUR S. ALAGAR

Adding the costs as before, but using the new value of RBW (t, n) gives the
complete, closed-form expression for F(t, n). However, we must also add BB(n), the
total binomial-coefficient-times-binomial-coefficient cost. As these products arise only
for 2-<-s <-p, BB(n) is given by

BB(n) Z
2

1/4(p -
where 6. O(1) when p is even (odd). The final result is therefore

F(t, n) .]

(4.29)

where

(n-l)! j+l
-t

4 rx[r] +--. x’[;](1/4)’(r-l), /’+1 ()’ 2Nn

(in) 01x .) (t/2)’- 1

a P! [i + 1
4 .-i-x [p_ll(k+J)2k

(p- 1)! kYo= k +j k

and p, r, N., and M. ha.ve their usual meanings.

4.. Space complexities. To obtain space-complexity functions for these
algorithms, we need to be more specific about implementation strategies, and in
particular to discuss data structures and storage management. The most interesting
comparison is between the space complexity of BINB, a single-level algorithm which
uses repeated multiplication to generate subpolynomial powers, and the space
complexities of BINE and BINF, two new multilevel algorithms which use dynamic
programming for the same task. We consider implementations of these algorithms, and
attempt to minimize space complexity.

We restrict the analysis to in-core implementations. A term of a multivariate
polynomial is specified by a coefficient and an exponent set. The former requires a single
central-memory word; the latter requires E words, E _>-- 1. E can be 1" we represent an
exponent set by a bit string, with portions of a central-memory word given over to each
variable. A polynomial may be represented as a linked list by adding a link field to each
term. In this case, if the link uses P words, P =< 1, one term will require (1 +E +P)
central-memory words.

As a lemma, we establish the space complexity of computing f by repeated
multiplication when size (f)= and f is completely sparse to power n. We make a
best-case analysis, and assign a lower bound to the space complexity. We adopt the
merge approach to multiplying sorted sparse polynomials recommended by Aho,
Hopcroft, and Ullman [1]. The final step is computing f. fn-1. Assuming f and fn-1
sorted, we form subsequences of length size(t,n-1), and then merge these
subsequences to obtain f". At the very least, we require space to merge the last
subsequence with the union of previous subsequences. We can sort in place by applying
a list merge sort to polynomials represented as linked lists. The combined size of the last
two lists to be merged is somewhat larger than size (t, n). As a lower limit, therefore, we
assign a space complexity of size (t, n) provided a link field is attached to each term.

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 639

Indeed, we believe that a linked-list representation for polynomials makes good sense
for all the sequential algorithms considered here.

4.6. Space analysis tor BINB. We consider an in-core linked-list implementation,
where the final answer is written to disc, and determine the central memory required to
store intermediate results. We split f evenly into fl and f2, and obtain powers of
subpolynomials using repeated multiplication. A power of fl or f2 not needed to
generate higher powers, and already used in the binomial expansion, need not be
retained in core. We form all powers from 2 to p of fl and f2, where p [n/2J. If n is

even, weform(n) p p]:1f2. We then form the powers from p + 1 to n of , using each power
P

in the expansion as soon as generated, releasing powers of f. whenever possible, and not
retaining powers of fl beyond ft. We proceed similarly for higher powers of fz. After

(n]fif we need to retain the powers from 1 to p- 1 of fl, and f. We alsoforming
P

require space to generate ft. So, at best, the space complexity of BINB is size (t/2, n) +
group (t/2, p). This may also be written as

1 n (+
p

(4.30) SB "--.. j .I j+l

InN
As a lemma, we establish that, if f and f-r are present in core, then

may be obtained with space complexity not exceeding the space, if any, required for the
result. That is, there is no working storage. We form the product by retrieving each term
of the smaller polynomial, multiplying by the binomial coefficient, and then retrieving
and multiplying by each term of the larger polynomial. A final lemma establishes the
space complexity of dynamic programming" If all powers from 1 to n of all nodes at
some level of the term-group tree are present in core, then the space complexity of
forming the next higher level does not exceed the space, if any, required to store the
higher level. For any g and any s, the terms of gS are the terms from g, g, and all terms
from the cross products in the binomial expansion of gS. To form a higher level from a
lower level, we need only add the terms from all cross products.

4.7. Space analysis for BINE and BINF. Again, we consider in-core linked-list
implementations, and write the final answer to disc. The levels of the term-group tree
are numbered from 0(root level) to k (terminal nodes). Storing all groups of powers at
level 1 would require 2 group (t/2, n) terms. Yet there is no need to retain the nth
power of any subpolynomial. If g and g have been written to disc, and the other
powers of gl and ga are available in core, writing the appropriate cross products to disc
writes g" to disc. Always writing the nth power of every subpolynomial to disc reduces
the space complexity of BINE to 2 group (t/2, n- 1). This may also be written as

(4.31) S=(n_l)!]+1

The tasks of computing the (nr)ffz-r are independent subtasks. We decide, therefore,

to generate the powers of nodes at level 1 only as they are needed in the binomial

640 DAVID K. PROBST AND VANGALUR S. ALAGAR

expansion. When is of at least moderate size, the most space required will be that to
generate f-l. Taking into account the groups of powers at level 2, and using a bar to
distinguish the new space complexity function, we have _Sz
size (t! 2, n 1) + 4. group (t!4, n 1), which is also

(4.32)
(n 1)! []

-+-
(n-l)!]+1

It is difficult to avoid in-core storage for the powers from 1 to n 1 of the nodes at
level 2. An improvement at level 1 with respect to storage is, however, possible if we

make use of distribution to precompute directly products of the form (nf; this is the
!

characterizing idea of algorithm BINF. In each cross product of the binomial expansion
of fn, let the larger polynomial be called the "a-list", and the product of the smaller
polynomial and the binomial coefficient be called the "b-list." By distribution (in the
algebraic sense), any b-list may be represented in terms of constants and powers of
nodes available at level 2. If we have storage for all of level 2 and for the largest b-list at
level 1, we may compute fn with no further central memory. This gives algorithm BINF
a space complexity of size (t/2, p)+ 4. group (t/4, n 1), p [n/2J. This may also be
written as

1 +(4.33) SF =-.1
4 nl[n])j"

(n-l)! /’+1 (1/4
When n > 2, the leading term of SF is given by

22n-4(n 1)!"

We give the computational procedure to form one cross-product. The b-list is
precomputed and stored. Let the a-list be g’, and its binomial expansion be

g g -’t- g2 -F Y’. g lg2
S

The rth powers g and g; are easily retrieved and multiplied by the b-list. Each of the
r- 1 cross products has a larger polynomial (called "large") and a smaller polynomial
(called "small"). We therefore execute the following nested loop, expressed in pseudo-
Pascal, r- 1 times.

for each term of small do
temp := binomial coefficient small [i];
for each term of large do

for each term of b-list do
write (temp large [j] b-list [k])

4.8. Comparison of space complexities. The BINE and BINF complexities
represent the space that would be used by those implementations; the BINB complexity
is a generous lower limit. Asymptotic arguments, say for fixed n and large t, show the
superiority of the BINE and BINF complexities. But there is a danger that the

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 641

asymptotically superior algorithm becomes superior just as we pass beyond the bounds
of the practically computable. We make a more careful comparison of SB (4.30) and SF
(4.33). These functions were tabulated for various values of 2k and n. When 4,
BINB requires less space. When t_->8, BINF requires less space; in the one case of
equality (t 8, n 3), the BINB lower limit can be shown to be inapplicable. Examina-
tion of the tabulated results shows the superiority of BINE over a wide range of the
practically computable. For a small problem 8, n 10, SB 411, SF 272; for a
large problem, 32, n 5, $ 15,656, SF 2,112. One may conclude, therefore,
that dynamic programming, coupled with intelligent memory management, leads to
space improvements more dramatic even than those in the time domain.

$. Conclusion. We have analyzed four new algorithms, viz., BINC, BIND, BINE,
and BINF, for computing integer powers of sparse polynomials. All four algorithms are
based on using binomial expansion systematically for obtaining all powers of all
polynomials other than monomials; they are successive improvements of the systematic
binomial-expansion approach. Binomial expansion is an extremely powerful general
approach to powering sparse polynomials. For example, if R(t, n) is the cost for
repeated multiplication, then the weak binomial-expansion algorithm BINA has a ratio
A(t, n)/R(t, n) which is roughly t/(t + n 1) [4], while the strong binomial-expansion
algorithm BINF has a ratio F(t, n)/R (t, n which is asymptotically 1/n. This shows the
degree of the superiority to repeated multiplication. Similarly, in the multinomial-
expansion algorithm of Horowitz and Sahni [6], the time complexity is 4 size (t, n); the
better binomial-expansion algorithms have time complexities which are asymptotically
size (t, n). Values of L(t, n) -size (t, n)- are tabulated in an appendix. In a previous
paper [2], we have reanalyzed the time complexity of algorithm BINB, and obtained a
slightly larger coefficient for the second term in the cost function in comparison with
that given in [4]. Tabulation shows the clear superiority of the new algorithms to BINB
no matter which analysis is used. In our analysis, BINC and BIND outperform BINB for
n > 2 and _-> 9, while BINE and BINF outperform BINB for n > 2 and _-> 2. The time
complexities of the sequential algorithms BINA through BINE form a monotonically
decreasing sequence, as measured by the leading two terms of the respective cost
functions. In comparison with a generous lower limit on the space complexity of BINB,
BINE has lower space complexity for large problems, while BINF has lower space
complexity for all but small problems. We conjecture that BINF is optimal for both
space and time among sequential binomial-expansion algorithms whenever the prob-
lems are of at least moderate size. We have implemented algorithm BINE in PASCAL
6000 to verify the cost function E(t, n) and to examine the appearance of the output.
One description of the output of the current implementation is to say that it is what
would be produced by any systematic binomial expansion, e.g., by hand, provided that
no reordering of terms took place.

The conclusions for the family of binomial-expansion algorithms are these" Both
the time complexity and the space complexity depend on design decisions for poly-
nomial splitting, subpolynomial powering, cross product formation, and intermediate
result storage. When the polynomials are sparse, even splitting reduces powering costs
and storage requirements. Repeated multiplication is not the best way to power
subpolynomials. Recursion and dynamic programming are successively better from the
time-complexity standpoint; a particular version of dynamic programming is
significantly better from the space-complexity standpoint. In cross product formation,
one lowers time and space complexity by always multiplying the binomial coefficient by
the smaller polynomial first.

642 DAVID K. PROBST AND VANGALUR S. ALAGAR

Appendix A. Values of B(t, n), C(t, n), D(t, n), E(t, n), and L(t, n) for selected
values of t and n.

T N B C D E L

4 4 79 94 92 68 31
8 4 585 600 578 458 322

16 4 6043 5100 4928 4400 3860
17 4 7499 6214 6048 5434 4828
18 4 9200 7554 7348 6648 5967
19 4 11181 9068 8846 8060 7296
20 4 13459 10858 10564 9692 8835
21 4 16078 12826 12523 11555 10605
22 4 19051 15125 14746 13682 12628
23 4 22432 17671 17254 16494 14927
24 4 26229 20608 20074 18818 17526
25 4 30507 23773 23240 21865 20450
26 4 35268 27394 26770 25276 23725
27 4 40589 31348 30688 29075 27378
28 4 46465 35828 35026 33294 31437
29 4 52986 40632 39810 37947 35931
30 4 60139 46037 45074 43080 40890
31 4 68028 51874 50845 48720 46345
32 4 76631 58392 57160 54904 52328
4 5 125 166 162 110 52
8 5 1324 1387 1332 1036 784

16 5 22365 18908 18332 16852 15488
17 5 29182 24260 23709 21948 20332
18 5 37379 30972 30226 28184 26316
19 5 47545 38944 38146 35823 33630
20 5 59559 48742 47606 45002 42484
21 5 74179 60111 58961 56034 53109
22 5 91211 73868 72340 69090 65758
23 5 111610 89772 88118 84545 80707
24 5 135090 108731 106496 102600 98256
25 5 162833 130218 128001 123688 118730
26 5 194440 155541 152782 148052 142480
27 5 231352 184243 181346 176199 169884
28 5 273034 217685 213970 208406 201348
29 5 321220 255052 251286 245243 237307
30 5 375214 298195 293562 287040 278226
31 5 437079 346351 341457 334456 324601
32 5 505931 401460 395336 387856 376960
4 6 183 262 256 164 80
8 6 2700 2835 2732 2140 1708

16 6 72749 62282 60828 57508 54248
17 6 99525 84074 82658 78617 74596
18 6 133022 112566 110518 105756 100929
19 6 176672 148154 145956 140473 134577
20 6 230201 193598 190304 184100 177080
21 6 298336 249067 245719 238660 230209
22 6 380511 318551 313850 305936 295988
23 6 483070 402405 397349 388580 376717
24 6 605026 505629 498476 488852 474996
25 6 754709 627987 620848 610067 593750
26 6 930552 776476 767062 755124 736255
27 6 1143290 951165 941307 928212 906165
28 6 1390584 1160379 1147122 1132870 1107540
29 6 1686046 1403244 1389822 1374181 1344875

ALGORITHMS FOR POWERING SPARSE POLYNOMIALS 643

Appendix A (contd.)

T N B C D E L

30 6 2026337 1690905 1673562 1656532 1623130
31 6 2428474 2022750 2004573 1986154 1947761
32 6 2887851 2411800 2388080 2368272 2324752
4 7 254 383 374 230 116
8 7 5104 5329 5144 4104 3424

16 7 214777 187504 184084 177596 170528
17 7 307400 265714 262410 254333 245140
18 7 428381 372260 367070 357404 346086
19 7 592998 511916 506412 495157 480681
20 7 803146 697079 688258 675414 657780
21 7 1081414 933854 924985 910192 888009
22 7 1429856 1240777 1227492 1210750 1184018
23 7 1880841 1626674 1612590 1593899 1560757
24 7 2436322 2117039 2095968 2075328 2035776
25 7 3141469 2722264 2701310 2677906 2629550
26 7 3997720 3478563 3449158 3422990 3365830
27 7 5066691 4400552 4370028 4341096 4272021
28 7 6348698 5535545 5492274 5460578 5379588
29 7 7926148 6900012 6856490 6821288 6724491
30 7 9797392 8558239 8498962 8460254 8347650
31 7 12070753 10532441 10470973 10428759 10295441
32 7 14741491 12903984 12819976 12774256 12620224

Appendix B. Values ot Sn (t, n), Se (t, n), _SE (t, n), and Sr (t, n) for selected values
and n.

T N SB(T, N) SE(T, N) S_E(T, N) SF(T, N)

4 4 10 18 16 15
4 5 11 28 21 19
4 6 16 4O 26 24
4 7 17 54 31 28
4 8 23 70 36 33
4 9 24 88 41 37
4 10 31 108 46 42
8 4 49 68 56 46
8 5 70 138 91 66
8 6 118 250 136 100
8 7 154 418 192 128
8 8 234 658 260 175
8 9 289 988 341 211
8 10 411 1428 436 272

16 4 374 328 256 172
16 5 836 988 606 312
16 6 1880 2572 1292 620
16 7 3596 6004 2552 956
16 8 6929 12868 4748 1646
16 9 11934 25738 8411 2306
16 10 20734 48618 14296 3648
32 4 4028 1936 1472 792
32 5 15656 9688 5852 2112
32 6 55232 40696 20648 5960
32 7 171512 149224 66272 12824

644 DAVID K. PROBST AND VANGALUR S. ALAGAR

Appendix B (contd.)

T N SB(T, N) SE(T, N) S_u(T, N) SF(T, N)

32 8 495158 490312 196280 29612
32 9 1312348 1470940 541790 55352
32 10 3289108 4085948 1404740 112740
64 4 52920 13088 9856 4400
64 5 377552 117808 71736 19904
64 6 2331328 871792 458384 87376
64 7 12626800 5521360 2623232 304432
64 8 61582652 30761872 13600880 1032984
64 9 273497784 153809368 64465628 2994240
64 10 1121535304 700687128 281610776 8548888

Acknowledgment. We wish to thank the referees for their valuable comments.

REFERENCES

1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA., 1974.

[2] V. ALAGAR AND D. PROBST, Binomial-expansion algorithms for computing integer powers of sparse
polynomials, International Computing Symposium 1977, E. Morlet and D. Ribbens, eds., North-
Holland, Amsterdam, 1977, pp. 395-402.

[3] E. W. DIJKSTRA, Structured programming, Software Engineering Techniques, J. N. Buxton and B.
Randell, eds., NATO Science Committee, Brussels, 1970, pp. 84-88.

[4] R.J. FATEMAN, On the computation ofpowers ofsparse polynomials, Studies Appl. Math., 53 (1974), pp.
145-155.

[5] W. M. GENTLEMAN, Optimal multiplication chains for computing a power of a symbolic polynomial,
Math. Comput., 26 (1972), pp. 935-939.

[6] E. HOROWITZ AND S. SAHNI, The computation ofpowers ofsymbolic polynomials, SIAM J. Comput., 4
(1975), pp. 201-208.

[7] S. C. JOHNSON, Sparse polynomial arithmetic, Eurosam ’74, SIGSAM Bull., 8 (1974), No. 3, pp. 63-71.
[8] D. E. KNUTH, Fundamental Algorithms, The Art of Computer Programming, Vol. 1, 2nd ed., Addison-

Wesley, Reading, MA, 1975, pp. 65-67.

SIAM J, COMPUT.
Vol. 8, No. 4, November 1979

(C) 1979 Society for Industrial and Applied Mathematics

0097-5397/79/0804-0010 $01.00/0

A LINEAR TIME ALGORITHM FOR FINDING
MINIMUM CUTSETS IN REDUCIBLE GRAPHS*

ADI SHAMIRt

Abstract. The analysis of many processes modeled by directed graphs requires the selection of a subset of
vertices which cut all the cycles in the graph. Reducing the size of such a cutset usually leads to a simpler and
more efficient analysis, but the problem of finding minimum cutsets in general directed graphs is known to be
NP-complete. In this paper we show that in reducible graphs (and thus in almost all the "practical" flowcharts
of programs), minimum cutsets can be found in linear time. We further show that the linear algorithm can
check its own applicability to a given graph, thus eliminating the need of prechecking (in nonlinear time)
whether it is reducible or not. An immediate application of this result is in program verification systems based
on Floyd’s inductive assertions method.

Key words, reducible graph, cutset, cutpoint, inductive assertions, verification

1. Motivation. A directed graph is often used as a path-generating device, which
models the succession of events (in the form of edge traversals) that can take place in
some process. Two common examples are the graph representations of finite state
machines (with edges labeled by symbols from some alphabet) and of flowcharts of
computer programs (with edges labeled by instructions).

Finite directed graphs which do not contain cycles can describe only finitely many
paths, each of which contains finitely many edges, and thus the path-analysis of these
graphs is usually straightforward. The analysis becomes qualitatively different in the
presence of cycles, since the number and length of the paths need not be finite any
longer.

However, in many cases the path-analysis of arbitrary graphs can be reduced to
that of cycle-free graphs by selecting an appropriate subset of vertices (called cutpoints)
such that any cycle in the graph contains at least one cutpoint. These cutpoints dissect
the graph in a natural way into cycle-free components, which can be analyzed
separately. All that remains to be done is to relate the overall behavior of the original
graph to that of its components, and this is usually done by some kind of induction.

An important concrete example of such an analysis is Floyd’s method for proving
the partial correctness of computer programs (Floyd (1967)). Since execution
sequences of instructions may be arbitrarily long (or infinite), one uses the selected
cutpoints in the flowchart in order to "chop" them into subsequences of bounded size. If
the correctness of the specifications attached to the cutpoints is preserved along any
such subsequence, one can infer the overall correctness of the program by induction of
the number of subsequences.

Graphs may have many sets of cutpoints, all of which are useful in principle (one
example is the set of all the vertices pointed to by backward edges in a depth-first
search; the potential redundancy in this choice of cutpoints is demonstrated in Fig. 1). In
many cases, the number of cutpoints selected has a strong influence on the complexity of
the subsequent analysis. For example, if each cutpoint gives rise to an equation (where
the equated quantities may be numbers, logical formulas, or sets of_strings), and the
time required in order to solve n such simultaneous equations is a rapidly growing
function of n, then minimizing the number n of cutpoints can be very desirable.

*Received by the editors June 12, 1978.
5 Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139. This research was supported by the Office of Naval Research under Grant N00014-76-C-0366.

645

646 ADI SHAMIR

/lthe vertices pointed to

FIGURE

The problem of finding the smallest set of vertices which cut all the cycles in a given
directed graph is NP-complete (Karp (1972)), and thus the optimization of the set of
cutpoints is probably too expensive for big graphs. However, in this paper we show that
for reducible graphs, the smallest set of cutpoints can be found in linear time.

Reducible graphs occur naturally in connection with flow-charts of computer
programs. All the flowcharts which have a clear loop structure (with uniquely-defined
loop entries) are reducible graphs, and as observed empirically, most programs used in
practice have this property. Reducible graphs have been extensively analyzed in
connection with problems of code-optimization (see Aho and Ullman (1973, vol. 2)).

As a typical application of the suggested algorithm, let us consider once more
Floyd’s method. An interactive implementation of this method needs a user-supplied
set of inductive assertions, one for each cutpoint. Since assertions in nontrivial
programs tend to be very long and very detailed, a small number of cutpoints can
minimize the user’s effort in finding the relations between program variables at each
cutpoint, in formalizing them as inductive assertions, in "fine tuning" their pairwise
power so that they may imply each other, and even in entering them into the computer.
Furthermore, the number of verification conditions that the computer must prove is
proportional to the number of cutpoints, and thus reducing the number of cutpoints can
shorten the verification time considerably.

One possible fallacy in this argument is that some selections of cutpoints may be
more natural than others, giving rise to shorter or simpler inductive assertions.
However, a special feature of the suggested algorithm is that the selected cutpoints are
always loop entries, and in most practical cases these places tend to be natural locations
for inductive assertions.

2. Basic definitions. A graph is a pair (V, E) where V is the set of vertices and
E
_
V x V is the set of (directed) edges (an edge from v to its son v’ is denoted by v - v’).

A path from v to a descendant v’ is a sequence of zero or more edges in E of the

form v Vl V2-’’’Vk V’ (which we sometimes shorten to v v’). A cycle is a
nonempty path from a vertex to itself; it is simple if all the vertices along it (except the
first and last) are distinct. A graph which does not contain cycles is called a dag (directed
acyclic graph).

A rooted graph is a triple V, E, r) such that (V, E) is a graph, the root r is in V, and
for any v V there is a path r v. A depth first search (DFS) of a rooted graph is a way
of exploring a rooted graph, which can be implemented in linear time O(] V] + I 1) on a
pointer machine, using an auxiliary stack. A detailed description of DFS and its
properties can be found in Tarjan (1972). A DFS defines two possible orders on the

FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS 647

vertices:
(i) preordermthe order in which vertices are pushed into the stack during the DFS.
(ii) postordermthe order in which vertices are popped from the stack during the

DFS.
A DFS defines a partitioning of the edges into:
(i) Backward edges (or fronds): edges v- v’ such that v’ is already in the stack

when v is pushed into the stack.
(ii) Dag edges: all the other edges. In the literature these edges are classified

further into tree edges, reverse fronds and cross links; we shall not use this finer
classification.

The classification of edges may depend both on the graph and on the order of
search in the DFS. For a given G (V, E, r) and DFS a, we define the dag ofG defined
by c to be G (V, E, r) where E is the set of dag edges in E. G is always a rooted
dag, and if any edge in E-E is added to it, a cycle is generated.

3. Cutsets in graphs.
DEFINITION. A vertex v cuts a path P if it is an endpoint of one of the edges in P. A

set S of vertices in a graph G is a cutset if any cycle in G is cut by at least one vertex from
S. A cutset S is minimum if for any other cutset S’, [SI-<-[S’]. The vertices in a cutset are
called cutpoints.

Note that a minimum cutset of G need not be unique (e.g., when G is a single cycle
of length =>2), but all the minimum cutsets have the same size.

DEFINITION. The set of all cycles in a graph G is denoted by Ca. Given a set S of
vertices, the set of all the cycles in G which are not cut by vertices in $ is denoted by C.

Clearly, C is the initial set of cycles Ca, and a set S is a cutset iff C QS.
A simple but important observation is that the cycle cutting problem is monotonic

in the following sense"

LEMMA 1. Let G be a graph and let $1, S2 be two sets ofvertices such that Csl
_

c.S2
Then the minimum number of vertices which should be added to $2 to get a cutset is equal
to or greater than the minimum number of vertices which should be added to $1 to get a
cutset.

Proof. Let $& be a minimum set of vertices such that $2 LI $& is a cutset. Any cycle in

C is a cycle in C2, and thus must be cut by some vertex in S&. Consequently, $1 t.J S&
is also a cutset in G, and the minimum number of vertices that should be added to $1 to
obtain a cutset cannot exceed ISI. Q.E.D.

This lemma actually asserts that in order to solve a harder problem, more cutpoints
are needed. We now use this property of the problem in order to describe an iterative
process by which minimum cutsets can be monotonically "grown". The inductive
hypothesis used at each stage is that the current set S of vertices is a subset of some
minimum cutset. Initially $, which clearly satisfies this hypothesis. When the set S
of vertices becomes a cutset, the hypothesis about being a subset of a minimum cutset
makes $ itself a minimum cutset. The main problem is of course how to select a new
vertex which can be added to an intermediate set $ without violating the inductive
hypothesis and without knowing what the minimum cutsets of G are.

The following theorem shows that under certain (strong) conditions, this can be
safely done:

THEOREM 1. Let S be a subset of some minimum cutset in a graph G, and let
01 " V2 "-->" ’’)’ Ok " Vl be an uncut cycle in C. Suppose that vl has the property that any
cycle in cS cut by some vi (2 <- <= k) is also cut by Vl. Then there exists a minimum cutset
in G which contains S tO {Vl}.

648 ADI SHAMIR

Proof. By assumption any cycle in C left uncut by /)1 is also left uncut by
v2, v3, , Vk, and thus

c c c
for all 2_<-i _-< k. By Lemma 1, the size of the minimum cutset containing S LJ{vl} is
smaller than or equal to the size of the minimum cutset containing $ U {vi}. However,
the cycle Vl v2" vk vl is not cut by vertices in S, and thus any cutset containing
S must also contain $ U {vi} for some 1 <- j <- k. Consequently, S U {Vl} is contained in
some minimum cutset in G. Q.E.D.

The problem in applying Theorem 1 is that in general, there need not exist a cycle
for which one of the vertices is superior to all the others in cycle-cutting power.
However, as we shall show later in the paper, this is exactly the case if the graph G is
reducible.

Note that a vertex vl, which does not satisfy the condition in Theorem 1 with
respect to the initial set S , may still satisfy the weakened condition at a later stage
(with respect to a bigger S), since C becomes successively smaller. (For example,
when a single uncut cycle remains in C, any vertex along this cycle can be taken as v 1.)
Thus even if very few vertices satisfy this condition initially, it is still possible to
construct iteratively a full cutset if sufficiently many vertices become available at later
stages.

4. Reducible graphs. A number of equivalent definitions of reducible graphs are
known (see Hecht and Ullman (1974)). One of them is:

DEFINITION. A rooted graph G is reducible if the dag of G defined by a, G] is the
same for any DFS a of G.

The simplest example of a nonreducible graph appears in Fig. 2(a). A DFS of this
graph can proceed either along Vl --> v2 or along vl -> v3, giving the two decompositions
illustrated in Fig. 2(b) and Fig. 2(c) (the backward edges are denoted by double arrows
and the dag edges by single arrows).

On the other hand, the graph in Fig. 3 is reducible, since it is easy to verify that any
DFS must recognize/23 " Vl, /-)4 -’ VZ, /)5 " /)3 and/)6 /)1 as backward edges, and all the
other edges as dag edges.

DI

v2 0 0 v3 v2

(a) (b) (c)

FIGURE 2 FIGURE 3

In order to check whether big graphs are reducible, some less direct methods must
be used. The best known algorithm appears in Tarjan (1974), and its time complexity is
slightly more than linear in the size of the graph. Some classes of graphs can be shown to
contain only reducible graphs, and thus special checks are not needed for them. For
example, all the graphs which can be obtained by adding to a rooted tree some edges

FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS 649

that always point from vertices to their tree ancestors are reducible. The dag of such a
graph is the original rooted tree, and the backward edges are all the added edges.

DEFINITION. A vertex v’ dominates another vertex v in a rooted graph G
(V, E, r) if v’ cuts any path r - v.

One of the basic properties of reducible graphs (due to Hecht and Ullman) is:
LEMMA 2. If V I)’ is a backward edge in a reducible graph G, then v’ dominates v.
Using this lemma, it is easy to prove:
LEMMA 3. IfG is a reducible graph, then any simple cycle in G contains exactly one

backward edge.
Proof. Let C be a simple cycle in G, let P be some path from r leading into the cycle,

and let v be the first vertex along P which is also along C. Proceeding from v along the
cycle, let v’ v" be the first backward edge encountered (there must be at least one such
edge, otherwise C would be a cycle in a dag). If v - v", v" does not occur along the path
r - v - v’, and thus v" does not dominate v’a contradiction. If v v", the simple
cycle closes at that point and thus cannot contain a second backward edge. Q.E.D.

Any cycle in a graph contains at least one simple cycle (just consider the first
repeated occurrence of a vertex along the cycle, with respect to an arbitrary starting
point). Lemma 3 provides a useful partitioning of the set of simple cycles in G in terms
of their backward edges. Thus in order to check whether a given set $ is a cutset, it
suffices to check for any backward edge v v’ in G that all the forward dag paths from v’
to v contain vertices from S.

We end this section by analyzing the possible interactions between simple cycles in
a reducible graph:

THEOREM 2. Let C1 and Ca be two simple cycles in a reducible graph G, which have a
common vertex w. If u -. u’ and v -. v’ are the backward edges in Ca and C2, respectively,
then either u’ or v’ is contained in both Ca and C. (See Fig. 4.)

Proof. Consider an arbitrary path P in the dag ad from the root r to w. Since this
path can be extended to u and v, both u’ and v’ must occur along P. Without loss of
generality, we can assume that u’ precedes v’ along P. Let P’ be the path constructed in
the following way:

(i) follow P from r to u’"
(ii) follow C from u’ to w;
(iii) follow C2 from w to v.
Since v’ dominates v, it m-tast be contained in one of these three segments. By

assumption, it does not occur along segment (i) (unless u’ v’), and by the properties of
dags it cannot occur along segment (iii) (unless w v’). The result that v’ occurs along
both C and C2 immediately follows. Q.E.D.

650 ADI SHAMIR

5. Minimum cutsets in reducible graphs.
DEFINITION. If V -> V’ is a backward edge in a reducible graph G, then v’ is called a

head and v is called a tail in G (we also say that v’ and v are corresponding head and
tail).

DEFINITION. Let G be a reducible graph which is partially cut by a set S of vertices.
Then a head v is active if there is some dag path from v to a corresponding tail, which is
not cut by vertices from S. An active head is maximal if none of its proper dag
descendants in G is an active head.

Example. The heads in the graph in Fig. 3 are the vertices Vl, /-)2 and/23 (note that Vl

has two corresponding tails, and that v2 is both a head and a tail in G). When S {v3},
the head Vl is active (there is an uncut path Vl v v6 to one of the two corresponding
tails), the head v. is active (the paths v2 v3 v4 and v. v6 v3 v4 are cut by S, but
the path v. v6 v7 v4 is still open), and the head v3 is not active. Consequently, the
only maximal active head in G is v.

Note than if a head v is active, then there is at least one cycle in C which contains
v, but not necessarily vice versa. However, unless $ is a cutset, the graph G contains at
least one active head, and thus also at least one maximal active head.

The main theorem justifying the cycle cutting algorithm can now be formulated as
follows:

THEOREM 3. Let G be a reducible graph, and let S be a subset ofa minimum cutset in
G. IfVl is a maximal active head in G, then S t_J {Va} is also a subset ofa minimum cutset in
G.

Proof. Since v is an active head, there is a simple cycle C" v v.. - Vk V in
C in which Vk - Vl is the (unique) backward edge. If C2 is any other cycle in C which
is cut by some vi (2 -< -< k), then C1 and C have a common vertex v. By Theorem 2,
either Vl or the head in C2 (call it v’) is contained in both cycles. If the active head v’ is
contained in C1, then there is a dag path (along C1) from Vl to v’, which contradicts the
maximality of the active head v (unless v v’). Thus v must cut C, and we can apply
Theorem 1 in order to deduce that S U{Vl} is a subset of a minimum cutset in
G. Q.E.D.

The basic algorithm is now a straightforward consequence of Theorem 3:
ALGORITHM A.
1. Start with $- .
2. Select a maximal active head v in G .with respect to the current set $. If there is

none, stop; otherwise set $ <-- S LJ{v} and repeat step 2.
When implementing this algorithm, it is convenient to enumerate the heads in G by

a DFS, and to consider them in postorder. By the properties of DFS, all the dag
descendants of a vertex v (and in particular the active heads among them) occur before v
in the postorder. Any head which is found to be active at some intermediate stage in the
algorithm is immediately added to $, thus ceasing to be active with respect to the new S.
Furthermore, the set S can only expand, and thus a nonactive head cannot become
active again at a later stage. Consequently, if heads are considered in postorder, then
any head which is still active when its turn comes is a maximal active head.

Algorithm A can thus be implemented on a pointer machine in the following way:
ALGORITHM B.
Note. "top" represents the vertex which is currently at the top of the stack.
1. Set $ <-- , push r into the (empty) stack.
2. If there is an unmarked edge top -> v, mark it and go to step 3, otherwise go

to step 6.
3. If v has not been visited so far, push v into the stack and go to step 2.

FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS 651

4. If top V is a backward edge, mark v as a head.
5. Go to step 2.
6. If v is marked as a head and is active with respect to the current set $, set

S,-SU{v}.
7. Pop the top of the stack; if the stack is empty, halt, otherwise go to step 2.
A straightforward implementation of step 6, based directly on the definition of an

active head, can be quite inefficient, but at least it shows that minimum cutsets in
reducible graphs can be found in polynomial time. In the following section we optimize
this "pedagogical" algorithm into a linear time algorithm.

6. The linear algorithm. The simplest way of checking whether a given head v is
active is to search for uncut dag paths between v and its corresponding tails. This can be
done in linear time by propagating labels from v through the dag edges, but the labeling
process has to be repeated for any maximal head, thus giving a wl, algorithm.

In order to develop a more efficient algorithm, we structure the search in such a way
that each edge is used only once, even though it may belong to dag paths between many
head-tail pairs in G. Since the search must convey sufficient information in order to
determine which of these paths are cut and which are still open, it seems that we need
labels that are sets of heads. Unfortunately, this method leads to nonlinear algorithms
even when the best known set manipulating techniques (Tarjan (1975)) are used.

As it turns out, the special structure of reducible graphs allows us to use much more
economical labels. To each vertex v we attach a single number Is(v), which may change
when new cutpoints are added to the current set $. Denoting by n(v) (an integer
between 1 and V]) the position of v in the preorder (rather than postorder) sequence of
vertices in G, we define:

DEFINITION. ls(v)=max {n (v ’) [there exists a backward edge v"- v’, and a dag
path v v" which is not cut by S}. If no such head v’ exists, then ls(v) is defined to be 0.

Example. Consider the graph in Fig. 3, in which n(v) for all the vertices. When
S {Vs}, there are only two heads (Vl, v2) whose corresponding tails are accessible from
v3 through a path which is not cut by S. Since n(v2) > n (Vx),/s(V3) 2. When S , on
the other hand, there is also an uncut dag path v3 v5 to the tail of the backward edge
Vs v3, and thus ls(v3)= 3.

In reducible graphs, these labels have the following property"
THEOREM 4. Let G be a reducible graph, let S be an arbitrary set o] vertices in it, and

let v be a vertex none o[whose proper dag descendants is an active head. Then
ls(v)<=n(v).

Proof. Suppose ls(v)> n(v). By definition, ls(v) is equal to some n(v’), where
v" v’ is a backward edge with some uncut dag path v v". Let r v be the tree path

from the root to v. The combined dag path r - v -v" must contain the head v’ which.
dominates v". If v’ occurs along the r v tree path, its preorder number is smaller than
or equal to the number of v, which contradicts the assumption that ls(v) n(v’) > n(v).,
Otherwise, it must occur along the uncut v v" path; this implies that v’ is an active
head which is a proper dag descendant of vagain a contradiction. Q.E.D.

Let us now assume that these labels are initialized and updated (whenever $

changes) by some external process, so that Algorithm B can take advantage of this extra
piece of information. The following theorem shows that when successive active heads
are considered and deactivated in postorder, step 6 in Algorithm B can be implemented
as a simple check which requires only constant time"

652 ADI SHAMIR

THEOREM 5. Let G be a reducible graph and let S be an arbitrary set ofvertices in it.
v is a vertex such that none ofits proper dag descendants is an active head, then v itself is an
active head iff ls(v)= n(v).

Proof. If Is(v) n(v), then by definition there is some backward edge v’ v whose
tail v’ is accessible from v through an uncut dag path. This immediately implies that v is
an active head.

On the other hand, if v is an active head, then ls (v) >= n (v) since n (v) is one of the
values maximized over in the definition of ls(v). The converse inequality ls(v)<= n(v)
was proved (under the given conditions) in Theorem 4, and the equality
follows. Q.E.D.

What remains to be done is to develop an efficient procedure for generating the
labels ls(v). If we first calculate all these labels with respect to the initial set S , we
may have to spend too much time updating them as S changes. Instead, we mix together
the two operations of label calculation and cutpoint selection. At any intermediate stage
in the process, only some of the vertices in G have labels (say, the subset L), and S is a
subset of these labeled vertices. In ordered to make the process efficient, we must add
new vertices to L and S according to the following rules:

(i) Vertices are added to L in postorder, i.e., a vertex is labeled only after the
labels of all its dag sons are known. This order minimizes the effort involved in
calculating the labels.

(ii) A vertex can be added to S only immediately after it is added to L. This order
minimizes the effort involved in updating the labels, as S expands.

It is a convenient coincidence that the natural processing order in Algorithm B
(which was defined for entirely different purposes) exactly satisfies these two conditions.

We now develop two procedures, one for adding a vertex to L (keeping $ fixed) and
one for adding a vertex to $ (keeping L fixed). These "atomic" procedures preserve the
correctness of the labels in the set L with respect to the cutpoints in the set S, and the
overall correctness of the labeling process then follows by induction on ILl /

The procedure for extending L is motivated by the following theorem:
THEOREM 6. Let G be a reducible graph and let S be an arbitrary set of vertices.

Then for any vertex v in G, the following equation holds:

ls(v)=O if v S or v does not have descendants in G,

max [/s(vl),’’ ", Is(vi), rt(Vi+l),’’ ", rt(tk)] otherwise,

where v Vl, 12 "-’) I.) are all the dag edges emanatingfrom v, and v
are all the backward edges emanating from v.

Proof. If v S or v does not have descendants, then ls(v) must be 0 since there
cannot be any uncut dag path from v to a tail of a backward edge.

If v is not in $, then clearly Is(v)>=n(vj) for any vertex v. such that v- vi is a
backward edge, since there is a trivial path from v to the tail v whose corresponding
head is vi. Similarly, if v is not in $ then ls(v) >= (vi) for any vi such that v vi is a dag
edge, since any uncut dag path from v. to a tail can be extended to an uncut dag path
from v to that tail. Consequently, ls(v) must be at least the maximum specified in the
theorem.

On the other hand, ls (v) cannot exceed this maximum, since any dag path from v to
a tail is either trivial, or else uses some dag edge v- vi emanating from v. The
corresponding head’s number is thus bounded from above by at least one entry in the
maximum. Q.E.D.

FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS 653

The equation in Theorem 5 shows how a new label can be computed in postorder
from the known labels of its dag sons, and from the numbers of its corresponding heads.
Note that while the labels of these backward sons are still unknown, they already have
preorder numbers, and thus no preliminary graph traversal is needed in order to
prepare these numbers. Note further that when the label of v is first computed, v S,
and thus the check v S in the equation in Theorem 6 is superficial.

The procedure for computing these labels makes use of the fact that max is an
associative operation, and thus it can be computed incrementally, taking new son values
into account as they become available. The "temporary labels" thus obtained become
valid labels as soon as all the sons of v are visited and we are ready to backtrack from v.
The number of operations involved in adding a new vertex to L is equal to its
out-degree, and thus all the wl vertices can be added to L by at most max
operations.

We now consider the problem of updating the labels of vertices in L when a new
vertex is added to S. As proved in the following theorem, at most one label can be
affected if the rules of the game are observed.

THEOREM 7. Let G be reducible graph, letL be a set of vertices]:or which labels have
been computed in postorder, and let S be a subset o]: L. If v is the next vertex added to L,
then adding v to S leaves all the labels in L correct with respect to the new set S {v}, and
changes lsu(v) to O.

Proof. The fact that Isu(v)= 0 follows from the definition, since any dag path
from v to a tail is cut by $ U {v}.

If v’ is any other vertex for which ls(v’) is already known, then all the dag
descendants of v’ are in L, and thus none of them is v. Since the addition of v to $ cannot
affect the uncut dag paths from v’ to tails, Isu(v’)= ls(v’). Q.E.D.

The final algorithm uses a single DFS of G in order to number the vertices of G in
preorder, to label them in postorder, to consider successive heads in postorder, and to
add new vertices to S (changing their labels to 0) when their postorder label and
preorder number coincide. It uses the same skeleton as Algorithm B, and its time and
space complexities are clearly linear in the size oe a. Even though this
algorithm is concise and easy to implement, its formal proof of correctness (say, using
Floyd’s inductive assertions method) is surprisingly subtle.

ALGORITHM C.
Note. Labels are denoted by l(v), without an explicit set subscript; the algorithm

keeps only one system of such labels, which correspond at any stage to the current set S.
1. Set S - set vertex counter c 1; clear all flags; push r into the (empty) stack.
2. Set n(top)c, c -c + 1, l(top)-O.
3. If there is some unmarked edge top- v, mark it and proceed, otherwise go

to step 7.
4. If v has not been visited so far, push v into the stack and go to step 2.
5. If top - v is a backward edge, set l(top)- max (l(top), n(v)) and go to step 3.
6. Set l(top) max (l(top), l(v)) and go to step 3.
7. If l(top)=n(top), set S-SU{top} and l(top)-O.
8. Save the current top of the stack in v’; pop the stack; if the stack is empty, halt,

otherwise, set l(top)max (l(top),/(v’)); go to step 3.
Example. We demonstrate the operation of Algorithm C on the graph G in Fig. 3.

Note that the DFS in which left sons are considered before right sons gives rise to
preorder numbers satisfying n(vi)= for all i.

We start by setting S - and pushing the root Vl into the stack. We then proceed
along the dag path Vl "-) /.)2 "-’)’ /23 /24, pushing /.)2, 93 and V4 into the stack. The edge

654 ADI SHAMIR

/)4 " V2 is then found to be a backward edge, and thus/(V4) max (0, n (v2)) 2. Since/)4
does not have other sons, we check that l(v4) 2 4 n (Va)t pop it from the stack, and
set l(v3)max(0,/(v4))=2. The vertex v5 is then pushed into the stack, and the
traversal of the backward edge vs v3 sets l(vs)-max (0, n(v3))= 3. Popping v5 from
the stack, we update/(v3)max (2,/(vs)) 3. We then consider the backward edge
v3vl, which sets /(v3)max (3, n(vl)) 3. Before popping v3 from the stack, we
discover that l(/)3)-" 3 n(v3), and we thus add v3 to $ and change its label to 0.

During the rest of the process, vertex v7 gets the label 2 calculated earlier for v4,

vertex v6 gets the label 2 (as max (0,/(V3), 1(/97), n (Vl))), and vertex v2 gets the label 2 (as
max (0, l(v3), 1(06))). Before backtracking from v2 to/)1 we again discover that/(v2)
2=n(v2), and thus add v2 to S, changing its label to 0. This leads to /(Vl)-
max (0, l(v2))= 0, and the algorithm halts after vl is popped from the stack.

The minimum cutset found by the algorithm is S {v3,. v2}. It is not uniquely
minimum since {v5, v2} and {v3, v6} are also cutsets. All the other cutsets contain three
or more vertices.

7. Algorithm C and nonreducible graphs. In some applications of cutsets (such as
program verification), a small fraction of the graphs to be analyzed may be nonreduci-
ble. When applied to a nonreducible input graph, Algorithm C may mislead its user by
generating (without any warning) a set S which is not a cutset, or which is an
unnecessarily large cutset (note that this nonoptimality is very hard to detect, given G
and S). It is thus desirable to enable Algorthim C to check its own applicability to the
input graph. The obvious way of doing it is to add to Algorithm C a reducibility-
checking subroutine, but this destroys its linearity.

In this section we show that by slightly augmenting Algorithm C, the reducibility-
checking subroutine becomes unnecessary. We develop a condition (satisfied by all the
reducible graphs as well as by some nonreducible graphs), which guarantees the
correctness of the minimum cutset algorithm, and which, unlike reducibility, is easily
checkable in linear time.

Algorithm C is modified into Algorithm D by adding a new step between steps 7
and 8:

7.5. If l(top) > n(top), print "graph is nonreducible" and abort.
By Theorem 4, the condition in step 7.5 can never be satisfied when the input is a
reducible graph, and thus erroneous messages are never printed out. What remains to
be done is to show that if the input graph is nonreducible but the condition is not
satisfied throughout the operation of Algorithm D, then the computed set S is still a
minimum cutset.

THZORZM 8. lfAlgorithm D halts successfully when applied to a graph G, then the
computed set S is a cutset in G.

Proof. If the theorem is false, there is some simple cycle C v - v2" vk Vl
in G which is not cut by S (note that it may contain more than one backward edge, since
G is not necessarily reducible). Without loss of generality, we may assume that Vl has
the lowest preorder number along this cycle.

Let vi vi/ be the first backward edge after v along C. The label l(vi) computed
by Algorithm D is by definition at least n (Vi/l), and this value is either copied backwards
or increased when the algorithm backtracks from v to v along the dag path V -’> /22 -’>

"-> vi (it can decrease only when a label along this path is set to O, but this would
contradict the assumption that none of these vertices was added to S).

Consequently, the label calculated for/)1 during the operation of the algorithm
satisfies

/(/)1) -> l(/)i) >= F/(Ui+I)

FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS 655

If I(/)1)= n(vl), step 7 adds vt to S, thus cutting the cycle C. On the other hand, if
l(/)a) > n(vx), step 7.5 causes the algorithm to abort. Since we assume that none of these
situations arose, we get a contradiction to the assumption that some uncut cycle
remained in G. O.E.D.

In order to show the minimality of the cutsets which are successfully calculated by
Algorithm D, we partition the vertices of G into disjoint sets according to the values of
their labels. For any vertex/) in G, we define

O={v’ll’(v’)--n(v)}
where l’(v’) is the maximum value of the label of v’ during the operation of the
algorithm (i.e., for v’ S we take l’(/)’)= n(v’) rather than l’(v)=0; this forces every
v’ $ to be in its own set Or’).

Example. When Algorithm D is applied to the graph G in Fig. 3, the partitioning is:

OVl--Ov4--Ov6--.Ov7---.
Note that/)1 does not appear in any set, since/’(/)1) 0 which is not the number of any
vertex.

THEOREM 9. For each/) S, there is a simple cycle Cv in G all of whose/)ertices are in

Proof. Among all the (nonempty set of) dag paths in G which start at v and pass
only through vertices in Q, let P be the longest, and let/)’be its endpoint. Since/)’ Q
l’(/)’) n(/)). According to Theorem 6 (which used the reducibility of G only in order to
give the notions of "dag edges" and "backward edges" a meaning which does not
depend on the particular DFS order used by the algorithm), this implies that either n (/))
is also the label of one of the dag sons of/)’, or else there is a backward edge/)’ /) in G.
The first possibility contradicts the maximality of the dag path P. The second possibility
implies that P can be closed into a cycle in G all of whose vertices are in Q, which is the
desired result. Q.E.D.

Let S -{/)1," ,/)k} be the cutset computed by Algorithm D when applied to the
graph G. According to Theorem 9, with each Vg S we can associate a cycle Cv, in G, and
these cycles are pairwise disjoint. Any cutset must contain at least one representative
from each one of these IS[cycles, and thus any cutset must contain at least IS[vertices.
Since S itself contains exactly [SI vertices, it is a minimum cutset.

Acknowledgment. Comments by M. S. Paterson and R. E. Tarjan helped simplify
an earlier version of the algorithm.

REFERENCES

A. V. AHO AND J. D. ULLMAN (1973), The Theory of Parsing, Translation and Compiling, Prentice-Hall,
Englewood Cliffs, NJ.

R. W. FLOYD (1967), Assigning meanings to programs, Proc. Symp. Appl. Math., 19, pp. 19-32.
M. S. HECHT AND J. D. ULLMAN (1974), Characterizations of reducible flow graphs, J. Assoc. Comput.

Mech., 21, pp. 367-375.
R. M. KARl’ (1972), Reducibility among combinatorial problems, Complexity of Computer Computations, R.

E. Miller and J. W. Thatcher, eds., Plenum Press, New York, pp. 85-104.
R. E. TARJAN (1972), Depth first search and linear graph algorithms, this Journal, 1, pp. 146-160.

(1974), Testing Flow Graph Reducibility, J. Comput. System Sci., 9, pp. 355-365.
(1975), Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mech., 22, pp.
215-225.

SIAM J. COMPUT.
Vol. 8, No. 4, November 1979

1979 Society for Industrial and Applied Mathematics
0097-5397/79/0804-0011 $01.00/0

CORRIGENDA:
A COMPLETENESS CRITERION FOR SPECTRA*

T. HIKITA AND A. NOZAKI:I:

1. A result of A. V. Kuznecov has been erroneously cited in Theorem 3.1, omitting
an important assumption. The correct form is: If we assume that any ----incomplete
spectrum is included in some ----maximal spectrum, then the following holdsma spectrum
is ----complete if and only if it is not included in any ----maximal spectrum.

However, this assumption follows from Proposition 3.3 (a key result of the paper)
and the easily proven fact that there exists no properly increasing sequence of infinite
length consisting of spectra of type first, second or third. The latter is shown by noting
that, for a fixed value of k, there exist only a finite number of spectra of type second and
third, and that, for a properly increasing sequence of spectra of type first, their
"periods" p (see the definition of spectra of first type) must be decreasing. (Also note
that Theorem 3.1 is not used in the proof of Proposition 3.3 in 4.)

Thus, Theorem 3.1 in the original form should rather be regarded as one of the
results obtained in the paper.

2. In p. 296, Reference [2], 8 (1959) should be 8 (1962).

* This Journal, 6 (1977), pp. 285-297. Received by the editors January 2, 1979.
Department of Mathematics, Tokyo Metropolitan University, Tokyo 158, Japan.
Department of Computer Science, Yamanashi University, Yamanashi 400, Japan.

656

	SMJCAT_V08_i1_p0001
	SMJCAT_V08_i1_p0015
	SMJCAT_V08_i1_p0033
	SMJCAT_V08_i1_p0042
	SMJCAT_V08_i1_p0060
	SMJCAT_V08_i1_p0073
	SMJCAT_V08_i1_p0082
	SMJCAT_V08_i1_p0111
	SMJCAT_V08_i2_p0115
	SMJCAT_V08_i2_p0120
	SMJCAT_V08_i2_p0124
	SMJCAT_V08_i2_p0135
	SMJCAT_V08_i2_p0151
	SMJCAT_V08_i2_p0175
	SMJCAT_V08_i2_p0199
	SMJCAT_V08_i2_p0202
	SMJCAT_V08_i2_p0218
	SMJCAT_V08_i2_p0247
	SMJCAT_V08_i2_p0265
	SMJCAT_V08_i2_p0275
	SMJCAT_V08_i3_p0287
	SMJCAT_V08_i3_p0300
	SMJCAT_V08_i3_p0306
	SMJCAT_V08_i3_p0320
	SMJCAT_V08_i3_p0326
	SMJCAT_V08_i3_p0344
	SMJCAT_V08_i3_p0348
	SMJCAT_V08_i3_p0357
	SMJCAT_V08_i3_p0368
	SMJCAT_V08_i3_p0388
	SMJCAT_V08_i3_p0405
	SMJCAT_V08_i3_p0410
	SMJCAT_V08_i3_p0422
	SMJCAT_V08_i3_p0431
	SMJCAT_V08_i3_p0434
	SMJCAT_V08_i3_p0440
	SMJCAT_V08_i3_p0443
	SMJCAT_V08_i3_p0463
	SMJCAT_V08_i4_p0479
	SMJCAT_V08_i4_p0499
	SMJCAT_V08_i4_p0508
	SMJCAT_V08_i4_p0524
	SMJCAT_V08_i4_p0542
	SMJCAT_V08_i4_p0546
	SMJCAT_V08_i4_p0561
	SMJCAT_V08_i4_p0574
	SMJCAT_V08_i4_p0587
	SMJCAT_V08_i4_p0599
	SMJCAT_V08_i4_p0619
	SMJCAT_V08_i4_p0626
	SMJCAT_V08_i4_p0645
	SMJCAT_V08_i4_p0656

